
Chapter 1

Cluster Analysis

1.1. Introduction

Cluster analysis or clustering, which is an important tool
in a variety of scientific areas including pattern recognition,
information retrieval, microarrays and data mining, is a
family of exploratory data analysis methods that can be used
to discover structures in data. These methods seek to obtain a
reduced representation of the initial data and, along with
principal component analysis, factor analysis and
multidimensional scaling, are one form of data reduction. The
aim of cluster analysis is the organization of the set into
homogeneous classes or natural classes, in a way which
ensures that objects within a class are similar to one another.
For example, in statistics, cluster analysis can identify
several populations within a heterogeneous initial
population, thereby facilitating a subsequent statistical
study; in natural science, the clustering of animal and plant
species, first proposed by Linnaeus (an 18th-Century Swedish
naturalist), is a famous example of cluster analysis; in the
study of social networks, clustering may be used to recognize
communities within large groups of people and, at a more
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general level, simply naming of objects can be seen as a form
of clustering.

The attempt to formally define clustering, as a basis for an
automated process, raises a number of questions. How can we
define the objects (elements, cases, individuals or
observations) to be classified? What is a cluster? How are
clusters structured? How can different partitions be
compared? Most often, the first step consists of defining the
notion of proximity, a measure of closeness that can be
similarity, dissimilarity or distance, among the objects to be
clustered: two objects are close when their dissimilarity or
distance is small or their similarity is large. Sometimes these
proximities are the form in which the data naturally occur. In
most clustering problems, however, each of the objects under
investigation will be described by a set of variables or
attributes, and the first step, possibly the most important, in
clustering is to define these proximities. Then, a numerical
function, usually known as a criterion, measuring the
homogeneity of the clusters must be defined.

A classical example of a criterion used when the objects
x1, . . . ,xn are described by d continuous variables is the
within-group sum of squares, also called within-group inertia.
In this situation, each individual being characterized by a
vector xi = (xi1, . . . , xid), the data take the form of a matrix x
of dimension (n, d) defined by values xij , where i belongs to a
set I of n observations and j belongs to a set J of d continuous
variables. The within-group sum of squares can therefore be
written as

IW (z) =
1

n

�
i,k

zikd
2(xi,xk) =

1

n

�
i,k

zik||xi − xk||2, [1.1]

where xk is the mean vector of the kth cluster and d is the
Euclidean distance. Using the within-group covariance matrix
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SW = 1
n

�
k z.kSk, where z.k is the size of the kth cluster and

Sk is the covariance matrix of the kth cluster

Sk =
1

z.k

�
i

zik(xi − xk)(xi − xk)
t,

this criterion can also be written as IW (z) = trace(SW ). The
closer the within-group sum-of-squares criterion is to 0, the
more homogeneous the partition will be. In particular, this
criterion will be equal to 0 for a partition where each object is
a cluster.

The problem can then appear very simple: from the finite
set of partitions, select the partition that optimizes the
numerical criterion. Unfortunately, the number of partitions
is too large for them to be enumerated in a realistic time
frame, because of combinatorial complexity. Generally,
heuristics are used that, rather than giving the best solution,
give a “good” solution close to the optimal solution and lead to
local optimization. For instance, the two most commonly used
clustering algorithms, namely the k-means algorithm for
obtaining partitions and Ward’s hierarchical clustering
method for obtaining hierarchies, use the within-group sum
of squares criterion trace(SW ) derived from the within-group
covariance matrix SW , and used the Euclidean metric as a
measure of proximity.

In recent years, what used to be an algorithmic, heuristic
and geometric focus has tended to give way to a more
statistical approach using probabilistic clustering models to
formalize the intuitive notion of a natural class [BOC 89].
This approach allows precise analysis and can provide a
statistical interpretation of certain metrical criteria whose
different variants are not always clear (such as the
within-group sum of squares criterion trace(SW )), as well as
yielding new variants corresponding to precise hypotheses. It
also represents a formal framework for tackling difficult
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problems such as determining the number of classes or
validating the obtained clustering structure. We should bear
in mind that in many cases the set to be segmented is merely
a sample drawn from a much larger population, and that the
conclusions drawn from clustering the sample are to be
extrapolated to the entire population. Here, clustering
becomes meaningless in the absence of a probabilistic model
justifying this extrapolation. All probabilistic approaches to
clustering first assume that the data represent a random
sample x1, . . . ,xn from among a population, and then use an
analysis of the probability distribution of this population to
define a clustering. A number of different probabilistic
clustering methods have been proposed, but the most
traditional approach is the use of mixture models, which
forms the main subject of this chapter.

Section 1.2 presents a brief review of the main approaches
to clustering. Sections 1.3 and 1.4 deal with, respectively, the
probability mixture models and the EM algorithm, the
standard tool for estimating the parameters of such models.
Section 1.5 describes how clustering may be carried out using
a mixture model. The four subsequent sections describe
several classical situations including Gaussian mixture
models for continuous variables, and the latent class model
for binary variables, categorical variables and contingency
table, and in section 1.10, we study the implementation of
these different methods.

1.2. Miscellaneous clustering methods

1.2.1. Hierarchical approach

In this section, it will generally be assumed that all the
relevant relationships within the set to be classified are
summarized by a dissimilarity d. The aim of hierarchical
methods is to construct a sequence of partitions of a set
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varying from partitions of singletons to the whole set. There
are two principal approaches. The divisive approach starts
with just one cluster containing all the objects. In each
successive iteration, clusters are split into two or more
further clusters, usually until every object is alone within a
cluster. Note that other stop conditions can be used, and the
division into clusters is governed by whether or not a
particular property is satisfied. For example, in taxonomy,
animals may be separated into vertebrates and invertebrates.
The agglomerative approach, in contrast to the divisive
approach, starts out from a set of n clusters, with each object
forming a singleton cluster. Then, in each successive
iteration, the closest clusters are merged until just one
cluster remains. Using a dissimilarity D among groups, the
closest clusters are the two clusters that are the closest with
respect to D. According to the definition of D, several
agglomerative criteria exist, but the most commonly used are
the single linkage or nearest-neighbor criterion [SIB 73], the
complete linkage or furthest-neighbor criterion [SOR 48] and
the average linkage criterion [SOK 58]. When the objects are
described by continuous variables, it is also possible to use
Ward’s method.

1.2.2. The k-means algorithm

This section deals with the k-means algorithm, which is
the classical method in partitional clustering when the data
are a set of objects x1, . . . ,xn described by d continuous
variables. The objective of partitional (or non-hierarchical
clustering) is to define the partition of a set of objects into
clusters, that the objects in a cluster are more “similar” to
each other than to objects in other clusters. Starting from g
initial cluster centers, the k-means algorithm involves the
two following steps up to the convergence: assign each object
in Ω to the nearest cluster center; use the centroids of the
different clusters as the new cluster centers. It can easily be



6 Co-Clustering

shown that this algorithm yields a stationary sequence of
partition decreasing the within-group sum-of-squares
criterion.

The term k-means actually covers a whole family of
methods, and the algorithm previously described is only one
example. Bock [BOC 07] has carried out an interesting
survey of some historical issues related to the k-means
algorithm. We can cite Dalenius [DAL 50, DAL 51], Lloyd’s
algorithm [LLO 57] in the context of scalar quantization in
the one-dimensional case and Steinhaus [STE 56] for data in
Rd in the multidimensional case. Different strategies have
been used: first, we have batch algorithms that process all
the objects of the sample at each iteration, and incremental
algorithms that process only one object at each iteration.
Second, we have on-line or off-line training. In on-line
training, each object is discarded after it has been processed
(on-line training is always incremental). In off-line training,
all the data are stored and can be accessed repeatedly (batch
algorithms are always off-line). The term sequential is
ambiguous, referring sometimes to incremental algorithms
and sometimes to on-line learning. On-line k-means variants
are particularly suitable when not all the data to be classified
are available at the outset. The k-means algorithm previously
described is an example of a batch algorithm. This batch
version, which is the one used most often, was proposed by
Forgy [FOR 65], Jancey [JAN 66] or Linde et al. [LIN 80] in
vector quantization. The algorithm of MacQueen [MAC 67],
who was the first to use the name “k-means”, and the neural
gas algorithm [MAR 91b] are examples of on-line k-means.

If the aim is to find the partition minimizing the
within-group sum-of-squares criterion, the k-means
algorithm does not necessarily provide the best result, but
simply a sequence of partitions, the value of whose criterion
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will decrease, thus giving a local optimum. Since, in practice,
convergence is reached very quickly (often in fewer than 10
iterations even with a large data set), the user can run
k-means several times, with different random initializations
and retain the best partition, i.e. that optimizes the criterion.

If the number of clusters is not known, several solutions
are possible to solve this very difficult problem. For example,
the best partition is sought for several numbers of classes
and the number of classes are selected by choosing an elbow
on the scree plot. It is also possible to add additional
constraints relating, for example, to the number of objects by
cluster or to the volume of a cluster (see, for instance, the
Isodata algorithm [BAL 67]). Finally, there are other
approaches using statistical methods, such as hypothesis
tests or selection model criteria. This last approach,
apparently the most interesting, consists of penalizing the
criterion by a function depending on the number of classes,
making the criterion “independent” of this number of classes.
For instance, minimizing the within-group sum of squares
can be viewed as maximizing a likelihood (see section 1.6),
and selection model criteria such as the Akaike information
criterion (AIC) or the Bayesian information criterion (BIC)
can be used to determine the number of clusters.

Finally, it can be interesting to use k-means and Ward’s
method simultaneously: the two methods are similar in that
they both attempt to minimize the within-group
sum-of-squares criterion. This leads us to propose strategies
using the two approaches, such as, for example, the hybrid
method proposed by Wong [WON 82].

1.2.3. Other approaches

The dynamic cluster method proposed by Diday
[DID 71, DID 76] is a generalization of the k-means
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algorithm based on the quite powerful idea that the cluster
centers are not necessarily centroids of clusters in Rd and to
replace them by centers that may take a variety of forms,
depending on the problem to be solved. The k-medoids
algorithm ([KAU 87]) is a typical dynamic cluster method
where the cluster centers are objects of the set to cluster.
Different versions have been proposed: partition around
medoids (PAM) ([KAU 90]) and CLARANS ([NG 94]), which
are more efficient for large volumes of data. This method is
particularly well adapted when the data are given as a
dissimilarity matrix d. The k-modes algorithm
[HUA 97, NAD 93] for categorical data is another example in
which the centers are vectors of categories. A final example
(adaptive distance, [DID 74, DID 77]), in which each center is
a pair of point and distance, determines partition and
distance simultaneously allowing the shapes of clusters to be
taken into account.

Fuzzy clustering [RUS 69], developed to handle the notion
of overlapped clusters, generalizes the classical approach in
clustering by assuming that each element xi can belong to
more than one cluster with different levels. A fuzzy partition
can therefore be represented by a fuzzy classification matrix
c = {cik} satisfying the following conditions: ∀i, k, cik ∈ [0, 1],
∀k,

�
i cik > 0 and ∀i, �k cik = 1. Bezdeck [BEZ 81] proposed

the fuzzy k-means algorithm, which can be viewed as a fuzzy
version of k-means. The parameter estimation of a mixture
model (see section 1.3) can also be viewed as a fuzzy
clustering, and the associated EM algorithm is a more
statistically formalized method that includes the notion of
partial membership in classes. It has better convergence
properties and is in general preferred to fuzzy k-means.

The self-organizing map (SOM) or Kohonen map
[KOH 82] was first inspired by the adaptive formation of
topology-conserving neural projection in the brain. Its aim is
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to generate a mapping of a set of high-dimensional input
signals onto a one- or two-dimensional array of formal
neurons. Each neuron becomes representative of some input
signals, such that the topological relationship among input
signals in the input space is reflected, as faithfully as
possible, in the arrangement of the corresponding neurons in
the array (also called output space). When using this method
for clustering, it is possible either to match each neuron with
a unique cluster or to match many neurons to one cluster. In
the latter case, the Kohonen algorithm produces a reduced
representation of the original data set, and clustering
algorithms may operate on this new representation. In the
SOM literature, we refer to the clusters by the nodes or
neurons, each of which has a weight in Rd. The weights refer
to the cluster means. The principal advantage of SOM is that
it preserves the topology clustering. Generally, the neurons
are arranged as a one- or two-dimensional rectangular grid
preserving relations among the objects, also referred to as
units. SOM is therefore a useful tool for visualizing clusters
and evaluating their proximity in a reduced space. The
Kohonen map can be viewed as an extension of the on-line
k-means algorithm and, like k-means, requires the number of
clusters (nodes of the grid) to be fixed and initial values to be
selected. Different strategies can be used but initialization
using principal component analysis (PCA) would appear to be
an attractive and interesting approach.

High-dimensional data present a particular challenge to
clustering algorithms. This is because of the so-called curse of
dimensionality that leads to the sparsity of the data: in
high-dimensional space, all pairs of points tend to be almost
equidistant from one another. As a result, it is often
unrealistic to define distance-based clusters in a meaningful
way. Usually, clusters cannot be found in the original feature
space because several features may be irrelevant for
clustering, owing to correlation or redundancy. However,
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clusters are usually embedded in lower dimensional
subspaces, and different sets of features may be relevant for
different sets of objects. Thus, objects can often be clustered
differently in subspaces varying from the original feature
space. Different approaches have been proposed. Subspace
clustering seeks to find clusters in different subspaces within
a data set. An example of this kind of approach is the
CLIQUE algorithm [AGR 98]. It is a density-based method
that can automatically find subspaces of the highest
dimensionality such that high-density clusters exist in those
subspaces. Subspace ranking aims at identifying all
subspaces of a (high-dimensional) feature space that contain
interesting clustering structures. The subspaces should be
ranked according to this interestingness. Projected clustering
is a method whereby the subsets of dimensions selected are
specific to the clusters themselves. We can also cite the
high-dimensional data clustering (HDDC) approach of
Bouveyron [BOU 07]. In this approach, a family of Gaussian
mixture models designed for high-dimensional data
combining the ideas of subspace clustering and parsimonious
modeling are used to develop a clustering method based on
the EM algorithm.

Kernel clustering methods have attracted much attention
in recent years [FIL 08]. They involve transforming a
low-dimensional input space into a high-dimensional
kernel-deduced feature space in which patterns are more
likely to be linearly separable [SCH 02]. They have certain
advantages when handling nonlinear separable data sets. We
can also cite spectral clustering techniques that make use of
the spectrum of the similarity matrix of the data to perform
dimensionality reduction for clustering in fewer dimensions,
and more generally, graph clustering techniques.

In this section, different approaches to clustering,
essentially classical and generally based on numerical
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criteria, have been reviewed. Unfortunately, defining these
criteria and using them successfully is not always easy. To
overcome these difficulties exist other approaches, such as
the mixture model approach, which is undoubtedly a very
useful contribution to clustering. It offers considerable
flexibility, gives a meaning to certain criteria and sometimes
leads to replacing criteria with new criteria with fewer
drawbacks. In addition, it provides solutions to the problem
of the number of clusters. The next section describes this
approach.

1.3. Model-based clustering and the mixture model

The clustering methods described in the previous two
sections are mainly heuristic techniques derived from
empirical methods, usually optimizing measurement criteria.
Implementing these solutions entails choosing not only a
metric reflecting the dissimilarity among the objects in the
set to be segmented, but also a criterion deriving from this
metric capable of measuring the degree of cohesion and
separation among classes. A rapid perusal of the lists of
metrics and criteria proposed in the clustering literature will
be enough to convince most readers that these are not easy
choices. A number of different probabilistic clustering
methods have been proposed, but the use of finite mixture
densities, which provides a sensible statistical model for the
clustering process, is now widespread.

Since their first use by Newcomb in 1886 for the detection
of outlier points, and then by Pearson in 1894 to identify two
separate populations of crabs, finite mixtures of distributions
have been employed to model a wide variety of random
phenomena. These models assume that measurements are
taken from a set of individuals, each of which belongs to one
of a number of different classes, while any individual’s
particular class is unknown. We might, for instance, know
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the sizes of fish in a sample, but not their sex, which is
difficult to ascertain. Mixture models can thus address the
heterogeneity of a population, and are especially well suited
to the problem of clustering. This is an area where much
research has been done. McLachlan and Peel’s book [MCL 00]
is a highly detailed reference for this domain that has seen
considerable developments over the last few years. We will
first briefly recall the model and the problems of estimating
its parameters.

Finite mixture models, which assume that every class is
characterized by a probability distribution, are highly flexible
models that can take account of a variety of situations
including heterogeneous populations and outlier elements.
Because of the EM algorithm, which is particularly well
suited to this kind of context, a number of mixture models
have been developed in the field of statistics, and the use of
mixture models in clustering has been studied by authors
including Scott and Symons [SCO 71], Marriott [MAR 75],
Symons [SYM 81], McLachlan [MCL 82] and McLachlan and
Basford [MCL 88]. The mixture model approach is attractive
for several reasons. It corresponds to our intuitive idea of a
population composed of several classes, it is strongly linked to
reference methods such as the k-means algorithm and it is
able to handle a wide variety of special situations in a more
or less natural way. It is this approach that forms the subject
of this chapter.

In a finite probability mixture model, the data
x = (x1, . . . ,xn) are taken to constitute a sample of n
independent instances of a random variable X in Rd. The
productivity density function (pdf) can be expressed as

f(xi) =
�
k

πkfk(xi), ∀i ∈ I,
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where g is the number of components, fk are the pdf of each
component and πk are the mixture proportions (πk ∈]0, 1[ ∀k
and

�
k πk = 1). The principle of a mixture model is to

suppose, given the proportions π1, . . . , πg and the distributions
fk of each class, that the data are generated according to the
following mechanism:

– z: each individual is allotted to a class according to a
categorical distribution with parameters π1, . . . , πg;

– x: each xi is assumed to arise from a random vector with
pdf fk.

In addition, it is usually assumed that the components’ pdf
fk belong to a parametric family of pdf f(.,α). The pdf of the
mixture can therefore be written as

f(xi,θ) =
�
k

πkf(xi;αk), ∀i ∈ I,

where θ = (π1, . . . , πg,α1, . . . ,αg) is the parameter of the
model. For example, the pdf of a mixture model for two
univariate Gaussian distributions of variance 1 in R is
written as

f(xi;π, μ1, μ2) = πϕ(xi;μ1, 1) + (1− π)ϕ(xi;μ2, 1),

where ϕ(.;μ, σ2) is the pdf of the univariate Gaussian
distribution of mean μ and variance σ2. Figure 1.1 uses the
pdf obtained from a mixture of three Gaussian components in
R2 to illustrate this concept of a probability mixture.

Much effort has been devoted to the estimation of
parameters for the mixture model, following the work of
Pearson, whose use of the method of moments to estimate the
five parameters (μ1, μ2, σ

2
1, σ

2
2, π) of a univariate Gaussian

mixture model with two components required him to solve
polynomial equations of degree nine. There have been a
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number of studies [MCL 88, TIT 85] and different estimation
methods have been envisaged. Apart from the method of
moments, we also find graphic methods, the maximum
likelihood method and Bayesian approaches. In this chapter,
we will restrict ourselves to examining the maximum
likelihood method using the EM algorithm, which is
currently the most widely used. Before examining this
method in section 1.4, we first draw the reader’s attention to
certain difficulties which the estimation of parameters of a
mixture model presents.
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Figure 1.1. Gaussian mixture in R2

In certain situations, such as in the case of the crabs data
previously described where the idea of the component has a
precise physical basis, the number of components may be
completely determined. Most often, however, the number of
components is not known and must itself be estimated. It
should be noted that if the number of components is taken to
be an additional parameter, the mixture model may be seen
as a semi-parametric compromise between a classical
parametric estimation problem, when the number of
components corresponds to a fixed constant, and a
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non-parametric estimation problem, in this case via the
kernel method, when the number of components is equal to
the size of the sample. We assume from here onwards that
number g of components is known, and later we will look at
the proposed solutions for making this difficult choice.

If the problem is to be of any interest, the pdf of the
mixture needs to be identifiable, which means that any two
mixtures whose densities are the same must have the same
parameters. A number of studies have addressed this
problem and several difficulties arise. The first difficulty is
due to the numbering of the classes. For example, in the case
of a mixture with two components, the parameters
((π1, π2), (α1, α2) and ((π2, π1), (α2, α1), although different,
obviously yield the same pdf: a mixture is consequently never
identifiable. The difficulties to which this situation gives rise
will depend on the estimation algorithms. In the case of the
EM algorithm that we will use, it simply does not matter,
however, this cannot be said of the Bayesian approach, where
this situation is known as the “switching problem”. The
second, considerably more awkward, difficulty may arise from
the very nature of the component pdf. It may easily be
established that a mixture of uniform or binomial
distributions is not identifiable. Mixtures of Gaussian,
exponential and Poisson distributions, however, are
identifiable.

1.4. EM algorithm

Maximizing the log-likelihood of a mixture model

L(θ) = log


�
i

�
k

πkf(xi,αk)

�

leads to likelihood equations that usually have no analytical
solution. It may, nevertheless, be shown that if the parameter
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αk is a vector of real numbers αkr, the solution of these
likelihood equations must satisfy

πk =
1

n

�
i

�zik ∀k and
�
i

�zik ∂ log fk(xi,αk)

∂αkr
= 0 ∀k, r [1.2]

with �zik =
πkfk(xi,αk)�
k� πk�fk�(xi,αk�)

. [1.3]

These equations suggest the following iterative algorithm:
(1) start from an initial solution θ; (2) calculate the values �zik
from this parameter using equation [1.3]; (3) update the
parameter θ on the basis of these values �zik using equations
[1.2]; continue from (2). If this algorithm converges, therefore,
the fixed point obtained will satisfy the likelihood equations.
The procedure corresponds, in fact, to the application of the
Dempster et al. [DEM 77] EM algorithm to the mixture
model. Before describing this algorithm, we will define the
concept of complete data on which it relies.

1.4.1. Complete data and complete-data likelihood

At the outset, we consider that the observed data x
correspond to what is merely a partial knowledge of unknown
data y that are termed complete data, the two being linked by
a function x = T (y). The complete data might, for instance,
be of the form y = (x, z), in which case z is known as missing
information. This idea of complete data may either be
meaningful for a model, which is the case for the mixture
model, or it may be completely artificial. The likelihood
f(y;θ) calculated from these complete data is termed
complete-data likelihood or, in the case of the mixture model,
classification likelihood. Starting from the equation
f(y;θ) = f(y|x;θ)f(x;θ), we obtain the equation

L(θ) = LC(θ, z)− log f(y|x;θ) [1.4]
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between the initial log-likelihood L(θ) and the complete-data
log-likelihood LC(θ, z).

1.4.2. Principle

The EM algorithm is based on the hypothesis that
maximizing the complete-data likelihood is simple. Since this
likelihood cannot be calculated – y is unknown – an iterative
procedure based on the conditional expectation of the
log-likelihood for a value of the current parameter θ
 is used
as follows: first, calculating the conditional expectation for
the two members of equation [1.4], we obtain the
fundamental equation of the EM algorithm

L(θ) = Q(θ,θ
)−H(θ,θ
),

where Q(θ,θ
) = E(LC(θ, z)|x,θ
) and H(θ,θ
) =
E(log f(y|x;θ)|x,θ
).

Introducing the parameter θ
 allows us to define an
iterative algorithm to increase the likelihood. Using Jenssen’s
inequality, it can be shown that for fixed θ
, the function
H(θ,θ
) is the maximum for θ = θ
. The value θ that
maximizes Q(θ,θ
), therefore, satisfies the equation

L(θ) � L(θ
). [1.5]

The EM algorithm involves constructing, from an initial
solution θ(0), the sequence θ(p) satisfying
θ(q+1) = argmaxQ(θ,θ(q)). Equation [1.5] shows that this
sequence causes the criterion L(θ) to develop.
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1.4.3. Application to mixture models

For the mixture model, the complete data are obtained by
adding the original component zi to each individual member
of the sample

y = (y1, . . . ,yn) = ((x1, z1), . . . , (xn, zn)).

Coding zi = (zi1, . . . , zig) where, let us recall, zik equals 1
if i belongs to component k and 0 otherwise, we obtain the
following equations

f(y;θ) =
�
i

f(yi;θ) =
�
i

�
k

πkf(xi;αk),

LC(θ, z) = log(f(y;θ)) =
�
i,k

zik log (πkf(xi;αk)) ,

Q(θ|θ
) =
�
i,k

E(zik|x,θ
) log (πkf(xi;αk)) .

Denoting as �zik the probabilities of belonging E(zik|x,θ
) =
P (zik = 1|x,θ
), the EM algorithm takes the following form:

– initialize: arbitrarily select an initial solution θ;

– repeat the following two steps until convergence:
- step E (expectation): calculate the probabilities of

xi belonging to the classes, conditionally on the current
parameter

�zik =
πkf(xi, αk)�
k� πk�f(xi, αk�)

;

- step M (maximization): maximize the log-likelihood
conditionally on �zik; the proportions are therefore obtained
simply by the equation πk =

�
i �zik/n, while the parameters αk

are obtained by solving the likelihood equations that depend
on the mixture model employed.
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1.4.4. Properties

Under certain conditions of regularity, it has been
established that the EM algorithm always converges to a
local likelihood maximum. It shows good practical behavior,
but may, nevertheless, be quite slow in some situations. This
is the case, for instance, when classes are very mixed. This
algorithm, proposed by Dempster et al. in a seminal paper
[DEM 77], often simple to implement, has gained widespread
popularity and given rise to a large number of studies that
are thoroughly covered in McLachlan and Krishnan’s book
[MCL 97].

1.4.5. EM: an alternating optimization algorithm

Hathaway [HAT 86] has shown that the EM algorithm
applied to a mixture model may be interpreted as an
alternating algorithm for optimizing a fuzzy clustering
criterion. We make use of this fact below when we examine
the links between estimating the parameters of a mixture
model and fuzzy clustering. To obtain this result, Hathaway
defines the criterion

FC(�z,θ) = LC(θ,�z) + H(�z), [1.6]

where H(�z) = −�
i,k �zik log �zik is the entropy of the

distribution �z. Moreover, if we denote as �zθ the posterior
distribution P(z|x, θ), it can be shown, using equation [1.4],
that the criterion FC can also be expressed as

FC(�z,θ) = L(θ)−KL(�z,�zθ), [1.7]

where KL is the Kullback–Liebler divergence between two
distributions.

The alternating algorithm for optimizing the criterion FC,
therefore, becomes simple to implement:
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– minimizing for fixed θ: equation [1.7] implies that �z must
minimize KL(�z,�zθ) and consequently �z = �zθ;

– minimizing for fixed �z: equation [1.6] shows that θ must
maximize the expectation LC(θ,�z).

Therefore, we are dealing with what are precisely the two
steps of the EM algorithm. In addition, after each first step,
we have FC(�z,θ) = FC(�zθ,θ) = L(θ), demonstrating that the
EM algorithm increases the likelihood.

1.5. Clustering and the mixture model

1.5.1. The two approaches

Mixture models may be used in two different ways to obtain
a partition of the initial data.

– The first, known as the mixture approach, estimates the
parameters of the model and then determines the partition
by allocating each individual to the class that maximizes the
a posteriori probability �zik computed using these estimated
parameters; this allocation is known as the maximum a
posteriori probability (MAP) method.

– The second, the classification approach, was first
presented by Scott and Symons [SCO 71] and developed
further by Schroeder [SCH 76]; this approach involves
creating a partition of the sample such that each class
k is made to correspond to a sub-sample respecting the
distribution f(.,αk). This requires simultaneous estimation of
the model parameters and the desired partition.

In this section, we describe the criterion that the latter
approach optimizes, as well as the optimization algorithm
usually employed in this situation. We then briefly compare
the two approaches and examine links between these types of
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methods and the more classical metrical approaches to
clustering. We conclude the section by looking at how the
mixture model may be interpreted in terms of fuzzy
clustering.

1.5.2. Classification likelihood

Introducing the z partition in the likelihood criterion is not
an obvious step, and various ideas have been proposed. Scott
and Symons [SCO 71] defined the criterion

LCR(θ, z) =
�
k

�
i|zik=1

log f(xi, αk)

in which the proportions do not appear. Symons [SYM 81],
realizing that this criterion tends to yield classes of similar
proportions, modified it so as to use the complete-data (or
classification) log-likelihood described above

LC(θ, z) =
�
k

�
i|zik=1

log πkf(xi, αk) =
�
i,k

zik log πkf(xi, αk)

linked to the previous criterion by the equation

LC(θ, z) = LCR(θ, z) +
�
k

z.k log πk,

where z.k is the cardinal of the class k. The quantity�
k z.k log πk is a penalty term that disappears if all the

proportions are made to be identical. The criterion LCR(θ, z)
can, therefore, be seen as a variant of classification
likelihood, restricted to a mixture model where all classes
have the same proportion.
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1.5.3. The CEM algorithm

When seeking to maximize classification likelihood, it is
possible to use a clustering version of the EM algorithm,
obtained by adding a clustering step. This yields the very
general clustering algorithm known as classification EM
(CEM) [CEL 92], defined as follows:

– step 0: arbitrarily select an initial solution θ;

– step E: compute �zik as in the EM algorithm;

– step C: obtain the z partition by allocating each xi to the
class that maximizes �zik (MAP); this is equivalent to modifying
the �zik by replacing them with the nearest 1 or 0 values;

– step M: maximize the likelihood depending on the zik;
the estimations of the maximum likelihood among the πk and
the αk are obtained using the classes of the partition z as
sub-samples, where the proportions are given by the formula
πk = 1

nz.k, the αk being computed according to the particular
mixture model selected.

Here, we have an alternating dynamic cluster methods
[DID 79] type optimization algorithm, where the E and the C
steps correspond to the allocation step, and the M step
corresponds to the representation step.

It can be shown that this algorithm is stationary and that it
increases the complete-data likelihood at each iteration, given
some very general assumptions.

1.5.4. Comparison of the two approaches

The clustering approach, which determines the
parameters at each iteration using truncated mixture model
samples, yields a biased and inconsistent estimation, since
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the number of parameters to be estimated increases as the
size of the sample increases. Different authors have studied
this problem and shown that it is usually preferable to use
the mixture approach.

However, when the classes are well separated and
membership relatively small, the clustering approach can
sometimes give better results [CEL 93, GOV 96]. Moreover,
the CEM algorithm is considerably faster than the EM
algorithm, and it may be necessary to use it when
computation time is limited, for example in real-time
operations, or for very large volumes of data.

Finally, the clustering approach has the advantage of
being able to present a large number of clustering algorithms
as special cases of the CEM algorithm, which allows it to
incorporate them into a probabilistic clustering approach. We
will see in section 1.6.3, for example, that the k-means
algorithm can be seen as a simple special case of the CEM
algorithm. In particular, we will show that the optimized
criteria, the within-group sum-of-squares criterion for
continuous data and the information criterion for qualitative
data correspond to the classification likelihood of a particular
mixture model. These correspondences, studied in [GOV 89]
and [GOV 90b], can be formalized by the following theorem.

THEOREM 1.1.– If the clustering criterion can be expressed as

W (z,λ, D) =
�
i,k

zikΔ(xi,λk),

where z is a partition of the set to be segmented,
λ = (λ1, . . . ,λg) and λk are representatives of the class k, and
Δ is a measure of the dissimilarity between an object x and
the representative of a class, and if there exists a real r such
that the quantity

�
r−Δ(x,λ)dx is independent of λ, this

criterion is therefore equivalent to the classification
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likelihood criterion of a mixture model with densities of the
form f(x,λ) = 1

sr
−Δ(x,λ), s being a positive constant.

This theorem may be used equally well for continuous data
as for discrete (binary or qualitative) data – either a
Lebesgue measure or a discrete measure will be used
accordingly. This theorem is important insofar as a great
many clustering criteria can be put into this very general
form; for example, it is the case for the intraclass inertia
criterion, whose class representative is its center of gravity
and where the distance D is the square of the Euclidean
distance. It can also help us to fix the fields of application of
these criteria and to suggest others.

1.5.5. Fuzzy clustering

In fuzzy clustering, it is no longer the case that an object
either belongs or does not belong to a particular class.
Instead, there are degrees of belonging. Formally, fuzzy
clustering is characterized by a matrix c with terms cik
satisfying cik ∈ [0, 1] and

�
k cik = 1. Bezdek’s “fuzzy k-means”

[BEZ 81], one of the most commonly encountered, involves
minimizing the criterion

W(c) =
�
i,k

cγikd
2(xi,gk),

where γ > 1 is a coefficient for adjusting the degree of
fuzziness, gk is the center of the class and d is the Euclidean
distance. It is required that γ be different from 1, otherwise
the function W is minimal for values of cik = 0 or 1 and thus
we have the usual within-group sum-of-squares criterion. The
values usually recommended are between 1 and 2. Minimizing
this criterion is achieved using an algorithm that alternates
between the two following steps:
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1) compute the centers: gk =
�

i c
γ
ikxi�

i cik
;

2) compute the fuzzy partition: cik = Ci

�xi−gk�
2

γ−1

with Ci =
�

k�
1

�xi−gk��
2

γ−1
.

Validating this kind of approach and, in particular,
choosing the coefficient γ can be tricky. Therefore, estimating
the parameters of a mixture model is an alternative, more
natural, way of addressing this problem. The estimation of
the a posteriori probabilities �zik of objects belonging to each
class directly provides a fuzzy clustering, and the EM
algorithm, applied to the mixture model, may be seen as a
fuzzy clustering algorithm.

As mentioned above, Hathaway [HAT 86] went even
further and showed that seeking to obtain a fuzzy partition
and the parameter θ using an optimization alternated with a
fuzzy clustering criterion leads precisely to the two steps of
the EM algorithm, which can therefore be considered as a
fuzzy clustering algorithm. One may obtain the same result
simply by applying the results from section 1.4.5 to the
mixture model. Given that here the probability distribution �z
is defined by the vector (cik) and that we simply have
Ec(LC(θ, z)) = LC(θ, c), we show that the EM algorithm
alternately maximizes the criterion

W(c,θ) = LC(θ, c) + H(c),

where LC is the complete-data log-likelihood function where
the partition z has been replaced by the fuzzy partition c

LC(θ, c) =
�
i,k

cik log (πkfk(xi;α))
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and H is the entropy function

H(c) = −
�
i,k

cik log cik.

It is easy to show that if the entropy term of the criterion
W is removed, then, “hard” partitions are obtained at each
step. The resulting algorithm is simply the CEM algorithm:
the difference between the EM and CEM algorithms is the
presence of the entropy term. If, when EM converges, the
components are highly separated, the fuzzy partition z(θ) is
close to a partition and we have

H(z(θ)) ≈ 0

and

L(θ) = W (z(θ),θ) = LC(θ, z(θ)) +H(z(θ)) ≈ LC(θ, z(θ)).

1.6. Gaussian mixture model

We will now examine what happens to this approach when
each class is modeled by a Gaussian distribution, which is a
classical solution for continuous data.

1.6.1. The model

The pdf of the mixture can be written as
f(xi;θ) =

�
k πkϕ(xi;μk,Σk), where ϕ is the pdf of the

Gaussian multivariate distribution

ϕ(xi;μk,Σk) =
1

(2π)
d
2 |Σk| 12

exp{−1

2
(xi − μk)

tΣ−1
k (xi − μk)}

and θ is the vector (π1, . . . , πg,μ1, . . . ,μg,Σ1, . . . ,Σg) formed
by the proportions πk and the parameters μk and Σk, which
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are, respectively, the mean vector and the covariance matrix
of class k.

When the sample size is small, or when the dimension of
the space is large, the number of parameters must be reduced
so as to obtain more parsimonious models. To this end, the
spectral decomposition of the matrices [BAN 93, CEL 95]
may be used, allowing the covariance matrices to be
parameterized uniquely as Σk = λkDkAkD

t
k, where the

diagonal matrix Ak with determinant 1 and decreasing
values defines the shape of the class, the orthogonal matrix
Dk defines the direction of the class and the positive real
number λk represents the volume of the class. Thus, the
mixture model is parameterized by the centers μ1, . . . ,μg, the
proportions π1, . . . , πg, the volumes λ1, . . . , λg, the shapes
A1, . . . ,Ag and the directions D1, . . . ,Dg of each class.

For example, when the data are in a plane, D is a rotation
matrix defined by an angle α and A is a diagonal matrix with
diagonal terms a and 1/a. Figure 1.2 shows the equidensity
ellipse of this distribution depending on the values α, λ and a.

aλ

a

λ

μ

α

Figure 1.2. Parameterization of a Gaussian class in the plane

Using this parameterization, it becomes possible to
propose solutions that can be seen as a middle way between,
on the one hand, restrictive hypotheses (covariance matrices
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proportional to the identity matrix, or covariance matrices
identical for all classes) and, on the other hand, very general
constraint-free hypotheses [BAN 93, CEL 95].

This parameterization also highlights two distinct notions
that are often conflated under the rather vague heading of
size: these are, first, the proportion of individuals present
within a class and, second, the volume that a class occupies
in space. It is quite possible for a class to have a small volume
and a high proportion or, alternatively, a large volume but a
low proportion.

We will now look at what happens to the CEM algorithm
and the classification likelihood criterion in the case of the
Gaussian mixture model. It should be noted that a similar
approach could be applied to the EM algorithm.

1.6.2. CEM algorithm

1.6.2.1. Clustering step

Each xi is allocated to the class that maximizes the
probability of membership �zik = πkϕ(xi;μk,Σk)/
(
�

k� πk�ϕ(xi;μk� ,Σk�)), that is to say πkϕ(xi;μk,Σk) or,
equivalently, the class that minimizes − log(πkϕ(xi;μk,Σk)),
which can be written as

d2
Σ−1

k

(xi,μk) + log |Σk| − 2 log πk, [1.8]

where d2
Σ−1

k

(xi,μk) is the quadratic distance (xi−μk)
tΣ−1

k (xi−
μk).
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1.6.2.2. Step M
Here, for a given partition z, we have to determine the

parameter θ that maximizes LC(θ, z), which is equal
(ignoring one constant) to

−1

2

�
k


�
i

zik(xi − μk)
tΣ−1

k (xi − μk) + z.k log |Σk| − 2z.k log πk

�
.

The parameter μk is thus necessarily the center of gravity
xk = 1

z.k

�
i zikxi and the proportions, if they are not

constrained, satisfy πk = z.k/n. The parameters Σk must then
minimize the function

F (Σ1, . . . ,Σg) =
�
k

z.k
�
trace(SkΣ

−1
k ) + log |Σk|

�
, [1.9]

where

Sk =
1

z.k

�
i

zik(xi − xk)(xi − xk)
t

is the covariance matrix of the class k. We now examine three
particular situations.

1.6.3. Spherical form, identical proportions and
volumes

We now look at the most straightforward situation where
all classes have a Gaussian spherical distribution with the
same volume and the same proportion. The covariance
matrices are written as Σk = λDkIdD

t
k = λId ∀k, and formula

[1.8] shows that individuals can be allotted to the different
classes simply by using the usual Euclidean distance
d2(xi,μk). Function F , therefore, becomes

F (λ) =
1

λ

�
k

z.k trace(Sk) + nd log λ =
1

λ
n trace(SW ) + nd log λ,
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where SW = 1
n

�
k z.kSk is the within-group covariance matrix,

thus giving us λ = trace(SW )
d . The classification likelihood is

written as

LC(θ, z) = −nd

2
log trace(SW ) + cst.

Maximizing the classification likelihood is therefore
equivalent to minimizing the within-group sum-of-squares
criterion trace(SW ). Moreover, the CEM algorithm is simply
the k-means algorithm. This means that to use the
within-group sum-of-squares criterion is to assume that
classes are spherical and have the same proportion and the
same volume.

1.6.4. Spherical form, identical proportions but
differing volumes

We now take the model described above and modify it
slightly to include classes with different volumes. The
covariance matrices are now written Σk = λkIp, and formula
[1.8] shows that individuals are allotted to classes according
to the distance

1

λk
D2(xi,μk) + d log λk.

The distance from a point to the center of a class has been
modified by an amount that depends on the volume of the
class. This modification has important repercussions; for
example, the regions of separation, which in the previous
case were hyperplanes, become hyperspheres. It may be
shown that the minimized criterion can be written as�

k

log trace(Sk).
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With this model, we can very easily recognize situations
such as the situation shown in Figure 1.3. Here, the two
classes have been simulated with two spherical Gaussian
distributions which have the same proportions but widely
differing volumes. The result obtained using the classical
intraclass inertia criterion corresponds to a separation of the
population by a straight line and therefore bears no relation
at all to the simulated partition. With the variable-volume
model, the obtained partition, shown by the circle, is very
close to the initial clustering.

-40 -30 -20 -10 0 10 20 30-30

-20

-10
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Figure 1.3. Example of classes with different volumes

It will be noted that without the help of the mixture model,
it would have been difficult, on the basis of a simple metrical
interpretation, to come up with the distance and the criterion
used in this approach.

1.6.5. Identical covariance matrices and proportions

Our final example is where all classes have the same form
and the same proportion. The covariance matrix of each class
can thus be written as Σk = Σ. It can be shown that
individuals are now allotted to classes on the basis of the
distance d2

Σ−1(xi,μk) and that the criterion to be minimized
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may be written as |SW |, which serves to justify the use of this
criterion, sometimes proposed in a metrical context [FRI 67],
without reference to the Gaussian model.

1.7. Binary data

We now turn, still within a broad discussion of clustering
methods based on probability distribution mixture models, to
the clustering of sets of individuals measured using binary
variables.

1.7.1. Binary mixture model

As the Gaussian model is often chosen to model each
component of the mixture when variables are continuous, the
log-linear model [AGR 90, BOC 86] is a natural choice when
variables are binary. The complete or saturated log-linear
model, where each class has a multinomial distribution with
2d values, is not really applicable in the case of a mixture.
Instead, we use a log-linear model with sufficient constraints.
The simplest example is the independence model that
assumes that, conditionally on membership of a class, the
binary variables are independent. From this, we obtain the
latent class model [GOO 74, LAZ 68], which we will now
examine.

In the binary case, each xij has a Bernoulli distribution
whose probability distribution takes the form

f(xij ;αkj) = (αkj)
xij (1− αkj)

1−xij where αkj = P (xij = 1|k).

Therefore, the distribution of the class k is

fk(xi;αk) =
�
j

(αkj)
xij (1− αkj)

1−xij where αk = (αk1, . . . , αkp),
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and the mixture model chosen considers that the data
x1, . . . ,xn constitute a sample of independent instances from
a random {0, 1}d probability vector

f(xi;θ) =
�
k

πkf(xi; θk) =
�
k

πk
�
j

(αkj)
xij (1− αkj)

1−xij ,

where the parameter θ is constituted by the proportions
π1, . . . , πg and by the parameter vector α = (α1, . . . ,αg) of
each component.

The problem that arises is how to estimate these
parameters, and possibly the origin class as well. As in the
case of the Gaussian model, the estimation may be obtained
using the EM or the CEM algorithms described above. The
only differences concern the computation of the parameters
αkj that becomes αkj =

�
i �zikxj

i�
i �zik for the first, and

αkj =
�

i zikx
j
i

z.k
= % of 1 for the second. Intensive comparisons

between the two algorithms EM and CEM were performed by
Govaert and Nadif [GOV 96].

1.7.2. Parsimonious model

The number of parameters of this latent class model is
equal to (g − 1) + g ∗ d, where g, it will be recalled, is the
number of classes and d is the number of binary variables. In
the case of the complete log-linear model, however, the
number of parameters is equal to 2d. For example, when g = 5
and d = 10, the number of parameters for the two models is,
respectively, 54 and 1,024. Given that one of the
identifiability conditions of the model is that the number of
states is greater than the number of parameters, there is a
clear interest in being able to propose even more
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parsimonious models. To this end, the model may be restated
as follows

f(x;θ) =
�
k

πk
�
j

(εkj)
|xij−akj |(1− εkj)

1−|xij−akj |,

where
�
akj = 0, εkj = αkj if αkj < 0.5
akj = 1, εkj = 1− αkj otherwise.

The parameter αk is, thus, replaced by the two following
parameters:

– a binary vector ak representing the center of the class and
which is the most frequent binary value for each variable;

– a vector εk belonging to the set ]0, 1/2[d that defines the
dispersion of the component, and represents the probability of
any particular variable’s having a value different from that of
the center.

We are, thus, led to the parameters used by Aitchinson
and Aitken [AIT 76] for discrimination with non-parametric
estimation via the kernel method. Starting from this
formulation, we arrive at parsimonious situations by
stipulating certain constraints: the [ε] model is defined by
stipulating that the dispersion should not depend either on
the component or on the variable, the [εk] model by
stipulating that it should depend only on the component, and
the [εj ] model by stipulating that it should depend only on the
variable.

For example, in the simplest case, the [ε] model, given
identical proportions (πk = 1/g), the clustering approach
results in the complete-data log-likelihood being maximized

LC(θ, z) = log
ε

1− ε

�
i,k

zikd(xi, ak) + nd log(1− ε),
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which is to say that the criterion

W(z,θ) =
�
i,k

zikd(xi,ak) where d(xi, ak) =
�
j

|xij − akj |

is minimized.

Step E of the CEM algorithm, therefore, consists simply of
allotting each individual to the class k that minimizes
d(xi, ak). At step M , the parameters akj for each variable j
correspond to the majority binary values in each class k. A
class, therefore, corresponds to a binary vector, and the
criterion is easy to interpret: it is simply the number of
differences among individuals and their representative in the
partition z. To use this binary clustering criterion proposed
by different authors [GOW 74, GOV 90a] is therefore to
assume that the data come from a particular latent class
model.

1.7.3. Examples of application

To illustrate this approach, we have taken the
Stouffer-Toby data set [STO 51], analyzed within the
framework of the latent class model by Goodman [GOO 74].
Table 1.1 contains the reactions, classed as one of two
possible attitudes, shown by 216 subjects placed in four
different conflict situations. We compare the latent class
model (here requiring nine parameters) with the log-linear
model, with an interaction of order 2, and a very similar
number of parameters (11). It is interesting to note that for
these data the deviance drops from 7.11 in the case of the
linear model to a value of 2.72 in the case of the latent class
model. The parameters obtained for the latent class model
are shown in Table 1.2.
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S1 S2 S3 S4 Frequencies

1 1 1 1 42

1 1 1 0 23

1 1 0 1 6

1 1 0 0 25

1 0 1 1 6

1 0 1 0 24

1 0 0 1 7

1 0 0 0 38

0 1 1 1 1

0 1 1 0 4

0 1 0 1 1

0 1 0 0 6

0 0 1 1 2

0 0 1 0 9

0 0 0 1 2

0 0 0 0 20

Table 1.1. Stouffer-Toby data

– pk ak1 ak2 ak3 ak4

1 0.279 0.993 0.940 0.927 0.769

2 0.721 0.714 0.330 0.354 0.132

Table 1.2. Results obtained by EM for the latent class model

1.8. Categorical variables

We now extend the results of the previous section to
categorical data.

1.8.1. Multinomial mixture model

As for binary data, we will examine the latent class model
and therefore assume that the d qualitative variables are
independent, conditionally on their membership to a class. If
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αh
kj is the probability that the jth variable takes the modality

h when an individual belongs to the class k, therefore the pdf
of the mixture can be written as

f(xi;θ) =
�
k

πkf(xi;αk) =
�
k

πk
�
j

mj�
h=1

(αh
kj)

xh
ij ,

where the parameter θ is defined by the proportions π1, . . . , πg
and by the parameters αk = (αh

kj ; j = 1, . . . , d;h = 1, . . . ,mj) of
the pdf of each component.

As before, estimating the parameter θ, and possibly
estimating the native class of each of the xi, may be achieved
by maximizing the likelihood L(θ;x) using the EM algorithm,
or by maximizing the complete-data likelihood LC(θ, z) using
the CEM algorithm. In the case of the EM algorithm, the
computation of the parameters αk at step M is defined by the
equation αh

kj =
�

i �zikxhij/�i �zik, where �zik are the
probabilities obtained in the usual fashion at step E. In
the case of the CEM algorithm, the computation of the
parameters αk becomes αh

kj =
�

i zikx
h
ij/z.k, where z is the

partition obtained by the MAP from the probabilities �zik.

We now look at what happens to the complete-data
likelihood criterion when the clustering approach is used
with the assumption that the proportions πk are constant. If
we denote skij =

�
i zikx

h
ij , s

jh
. =

�
i x

h
ij , s

..
k =

�
j

�mj

h=1 s
k
ij and

s... =
�

i,j

�mj

h=1 x
h
ij = nd, we can easily show that the equation

LC(z,θ) =
�
k,j

mj�
h=1

skij logα
h
kj

is obtained.
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Given that, at convergence, αh
kj = skij/z.k, it can be shown

[CEL 91] that the CEM algorithm maximizes the information
criterion [BEN 73a]

H(z, J) =
�
k,j

mj�
h=1

skij
s...

log
s... sjkk
s..ks

jh
.

which represents the information from the initial table,
retained by the partition z, and yielding results very close to
the χ2 criterion

χ2(z, J) =
�
k,j

mj�
h=1

(s... skij − s..ks
jh
. )2

s... s..ks
jh
.

.

Therefore, it follows that to seek a partition into g classes
maximizing the information criterion or the χ2 criterion
(approximately equivalent) is to assume that the data derive
from a latent class model.

A parallel may be drawn here with the analysis of multiple
correspondences. It is not difficult to see that with the
geometrical representation used in this factorial analysis, the
χ2 criterion is quite simply the familiar criterion of intraclass
inertia.

1.8.2. Parsimonious model

The number of parameters (g − 1) + g ∗ �
j(mj − 1)

required by the latent class model that we have just
described is usually considerably smaller than the number of
parameters

�
j mj required by the complete log-linear model.

For example, for a number of classes g is equal to 5 and a
number of qualitative variables d are equal to 10, and where
the number of modalities mj is 4 for all the variables, the
number of parameters for the two models is, respectively, 154
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and 106. In many cases, this number will be quite excessive,
and more parsimonious models are called for.

To this end, we begin by remarking that if, for each
variable j, the modality of highest probability is denoted as
h∗, the model may therefore be re-parameterized as follows

f(xi;θ) =
�
k

πk
�
j

⎛⎝(1− εh
∗

kj )
1−d(xij ,akj)

�
h�=h∗

(εhkj)
|xh

ij−ajhk |
⎞⎠ ,

where akj = (a1kj , . . . , a
mj

kj ) with ahkj = 1 if h = h∗ and 0
otherwise, εkj = (ε1kj , . . . , ε

mj

kj ) where εhkj = 1 − αh
kj if h = h∗

and αh
kj otherwise, and δ(xij , akj) = 0 if xij and akj take the

same modality and 1 otherwise. Like for binary data, the
vector ak = (ak1, . . . ,akd) may be interpreted as the center of
the class k and the vectors εjk as dispersions. For example, if
the parameter αkj is equal to the vector (0.7, 0.2, 0.1), the new
parameters become akj = (1, 0, 0) and εkj = (0.3, 0.2, 0.1).

With the model restated in this way, it is possible to
introduce simple constraints, such as requiring non-majority
modalities to have the same dispersion�

εh
∗

kj = εkj
εhkj = (1− εkj)/(mj − 1) for h �= h∗.

This gives us a model used in discrimination, where the
number of parameters has been reduced from (g − 1) + g ∗�

j(mj − 1) to (g − 1) +
�

j(mj − 1).

Even more parsimonious models may be obtained if
additional constraints are placed on dispersions, for example
by requiring that εh

∗
kj should not depend on the variable

(model [εk]), on the class (model [εj ]) or on neither the
variable nor the class (model [ε]). If we restrict ourselves to
this last model [ε], and if we require proportions to be equal,
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the complete-data log-likelihood can be expressed quite
simply

LC(z,θ) = log
ε

1− ε

�
k

n�
i=1

zikd(xi, ak) + nd log(1− ε),

where d(xi, ak) is a distance reflecting the number of
different modalities between the vector xi and the center ak.
At the clustering step of the CEM algorithm, the individuals i
are thus allotted to the class k that minimizes d(xi, ak), and
at step M, the co-ordinates akj of the centers ak are obtained
by taking the majority of modalities. Furthermore, Jollois
and Nadif [JOL 02] considered the clustering of categorical
data under the classification maximum likelihood approach.
In this setting, with a parsimonious multinomial mixture
model, they defined a generalization of the k-modes criterion
[HUA 98]. They showed that k-modes is just a particular
version of CEM and the k-modes criterion is associated with a
multinomial mixture model [ε] with supplementary
constraints that are too restrictive: the proportions are
assumed to be equal and the variables to have the same
number of categories. They conducted experiments showing
the superiority of CEM with the model on k-modes when
these assumptions are not verified.

In practice, we suggest taking very simple models by class,
for example latent class models with a single parameter, and
then increasing the number of components if necessary.

When the qualitative variables are ordinal, it is possible
either to convert the data into binary data or to use an
approach similar to the approach we have just described,
taking into account the order that exists among the
modalities.
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1.9. Contingency tables

To measure the information provided by a contingency
table, we need to evaluate the links existing between the two
sets I and J as discussed in the Introduction. Several
measures of association exist, and one of the most frequently
employed is the phi-squared criterion φ2 (see Introduction
and Chapter 4). This criterion, used, for example, in
correspondence analysis (CA), is defined as follows

φ2(I, J) =
�
i,j

(pij − pi.p.j)
2

pi.p.j
.

The phi-squared criterion can be used to evaluate the
quality of a partition z of I: to this end, we associate the
partition z with the phi-squared φ2(z, J) of the contingency
table with g rows and d columns obtained from the initial
table in computing the sum of the rows of each cluster. It can
be shown that

φ2(I, J) ≥ φ2(z, J) [1.10]

and therefore the proposed regrouping necessarily leads to a
loss of information. The objective of classification is to find
the partition z that minimizes this loss, i.e. which maximizes
φ2(z, J). We notice that when the row profiles are equal for
each cluster, inequality [1.10] becomes φ2(z, J) = φ2(I, J), and
in this particular case, there is no loss of information. In
addition, the problem is meaningful only when the number of
clusters is fixed. Otherwise, the optimal partition is simply
the partition where each element of I forms a cluster.

1.9.1. MNDKI2 algorithm

The MNDKI2 algorithm is based on the same geometrical
representation of a contingency table as that used in CA. This
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representation is justified for several reasons, in particular,
because of the similar role played by each of the two
dimensions in the analyzed table, and also because of the
property of distributional equivalence, which implies stable
results when agglomerating elements with similar profiles. In
this representation, each row i corresponds to a point vector
Rd defined by the profile piJ weighted by the marginal
frequency pi.. The distances among profiles is not defined by
the usual Euclidean metric, but instead by the weighted
Euclidean metric, known as the chi-squared metric D2,
defined by the diagonal matrix diag( 1

p.1
, . . . , 1

p.d
).

If z is a partition of the rows, we can define the frequencies
pkj =

�
i zikpij and the average row profile of the kth cluster

pkJ =

�
pk1
pk.

, . . . ,
pkd
pk.

�t

,

where pk. =
�

j pkj . With this representation, we can show
after some calculation that the total of squared distances T ,
the between-cluster sums of squares B(z) and the
within-cluster sums of squares W (z) can be written as

T =
�
i

pi.D
2(piJ , pJ) = φ2(I, J),

B(z) =
�
k

pk.D
2(pkJ , pJ) = φ2(z, J),

and

W(z) =
�
i,k

zikpi.D
2(piJ , p

k
J).

The traditional equation between the total of squared
distances, the within-cluster sums of squares and the
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between-cluster sums of squares T = W(z) +B(z) leads to the
following equation

φ2(I, J) = W(z) + φ2(z, J).

The term W(z), therefore, represents the information lost
when grouping the elements according to the partition z, and
φ2(z, J) corresponds to the information which is preserved.
Consequently, since the quantity φ2(I, J) does not depend on
the partition z, looking for the partition maximizing the
criterion φ2(z, J) is equivalent to looking for the partition
minimizing criterion W (z). To minimize this criterion, it is
possible to apply k-means to the set of profiles with the χ2

metric. An iterative algorithm, known as MNDKI2, is thus
obtained, locally maximizing φ2(z, J).

The question that naturally arises is: which probabilistic
model does the criterion φ2(z, J) minimized by the MNDKI2
algorithm correspond to? The answer to this question will not
only shed some light on this criterion, but it will also help us
to propose other criteria. This is a question that we will focus
on. Unfortunately, unlike the standard k-means algorithm,
the MNDKI2 algorithm does not correspond to the
classification approach associated with a mixture model
[GOV 89]. However, using a mixture of multinomial
distributions, examined in the following section, we will
obtain approximately similar properties.

1.9.2. Model-based approach

1.9.2.1. Multinomial mixture

A contingency table can be obtained using a mixture
of multinomial distributions by the following process of
simulation [GOV 07]:
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– z: each individual is allotted to a class according to a
multinomial distribution with parameters (π1, . . . , πg);

– xI = (x1., . . . , xn.): generate each row sum xi. according
to a discrete distribution ψ such as a Poisson or a binomial
distribution;

– x: each xi is assumed to arise from a multinomial
distribution with parameters xi. and αk1, . . . , αkd.

Thus, if θ = (π1, . . . , πg, α11, . . . , αgd) denotes the parameter
of the model and ϕ is the multinomial distribution of the kth
component, the pdf of this model is written as

f(xi;θ) = ψ(xi.)
�
k

πkϕ(xi;xi., αk1, . . . , αkd)

= ψ(xi.)
�
k

πk
xi.!

xi1! . . . xis!
αxi1
k1 . . . αxid

kd

= A
�
k

πkα
xi1
k1 . . . αxid

kd ,

where A = ψ(xi.)
xi.!

xi1!...xid!
does not depend on the parameter θ.

The log-likelihood (without the additional constant logA) can
therefore be written as

L(θ;x) =
�
i

log
�
k

πkα
xi1
k1 . . . αxid

kd , [1.11]

and the complete data log-likelihood is as follows

L(θ;x, z) =
�
i,k

zik

⎛⎝lnπk +
�
j

xij logαkj

⎞⎠ . [1.12]

The classical problem is, therefore, to estimate the
parameter θ from the sample. In the clustering context, the
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mixture model serves to find the component from which each
row arises. Next, we see how the EM and CEM algorithms
allow us to achieve this goal.

1.9.2.2. EM algorithm

For this multinomial mixture model, the application of the
EM algorithm described in section 1.4.3 to the sample x =

(x1, . . . ,xn) leads in the M-step to αkj =
�

i �zikxij�
i �zikxi.

. The different
steps of EM are then expressed in algorithm 1.1.

Algorithm 1.1 Multinomial EM
input: x, g
initialization: z, πk = z.k

n , αkj =
�

i zikxij�
i zikxi.

repeat
E-step. �zik ∝ πkα

xi1
k1 . . . αxid

kd

M-step. πk = �z.k
n , αkj =

�
i �zikxij�
i �zikxi.

until convergence
return π, α

In the maximum likelihood approach of the classical
mixture model, after we have estimated the parameter θ, we
can give a probabilistic clustering of the n rows in terms of
their fitted posterior probabilities of component membership,
and obtain a partition using a classification step that assigns
each object to the component of the mixture to which it has
the highest posterior probability of belonging.

1.9.2.3. CEM algorithm

Recall that in this classification approach, a C-step that
converts the posterior probabilities �ziks to a discrete
classification is included prior to performing the M-step. The
different steps of the CEM algorithm are then expressed in
algorithm 1.2.
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Algorithm 1.2 Multinomial CEM
input: x, g
initialization: z, πk = z.k

n , αkj =
�

i zikxij�
i zikxi.

repeat
E-step. �zik ∝ πkα

xi1
k1 . . . αxid

kd

C-step. zi = argmaxk �zik
M-step. πk = z.k

n , αkj =
�

i zikxij�
i zikxi.

until convergence
return π, α, z,

Having established an estimate of the parameters, and
denoting pkj =

xkj

xk.
, we can express the criterion as

L(θ;x, z) =
�
k

z.k lnπk +
�
k,j

xkj log
xkj
xk.

=
�
k

z.k lnπk + n
�
k,j

pkj log
pkj
pk.p.j

+ n
�
j

p.j log p.j .

[1.13]

Note that the term
�

k,j pkj log
pkj

pk.p.j
is the mutual

information I(z, J) quantifying the information shared
between z and J . This can easily be shown using the
definition in terms of entropies

I(z, J) = H(z) + H(J)−H(z, J),

where H(.) is the entropy. This mutual information can be
linked to the φ2 criterion as follows: first, using the equalities�

k,j pk.p.j = 1 and
�

k,j pkj = 1, we have the equation

�
k,j

(pkj − pk.p.j)
2

pk.p.j
=

�
k,j

pk.p.j


�
pkj
pk.p.j

�2

− 1

�
.
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Second, using the approximation x2− 1 ≈ 2x log x, excellent
in the neighborhood of 1 and good in the interval [0, 3], the
approximation

�
k,j

pk.p.j


�
pkj
pk.pj.

�2

− 1

�
≈ 2

�
k,j

pkj log
pkj
pk.p.j

can be obtained [BEN 73b]. Finally, we have the following
approximation

�
k,j

pkj log
pkj
pk.p.j

≈ 1

2

�
k,j

(pkj − pk.p.j)
2

pk.p.j
, [1.14]

and therefore,

I(z, J) ≈ 1

2
φ2(z, J).

Therefore, from equations [1.13] and [1.14], when the
proportions are fixed, the maximization of LC(θ; z) is
equivalent to the maximization of the mutual information
I(z, J), and approximately equivalent to the maximization of
the phi-squared criterion φ2(z, J): the use of the two criteria
φ2(z, J) and I(z, J), therefore, is based on the implicit
assumption that the data arise from a mixture of
multinomial distributions.

1.9.3. Illustration

To illustrate the results obtained by MNDKI2, we will use
a CA representation. Let us recall that CA is an exploratory
multivariate technique that converts a contingency table into
a particular type of graphical display in which the rows and
the columns of the matrix are depicted as points
[BEN 73b, GRE 88b, LEB 84]. It can be used on any two-way
table, sparse or not, as the case may be. It projects the rows
and columns of a data matrix into points within a graph in a
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Euclidean space. The graph is, therefore, used to gain some
understanding of the data and to extract information from it.
To show the links between MNDKI2 and CA, we will use a
comparison of time-budgets as an example [JAM 76]. We
have a data matrix where xij represents the amount of time
spent on a variety of activities i by a population j during a
given time period. The set I comprises 10 activity clusters:
prof (professional), tran (transport), home (housework), child
(activities pertaining to childcare), shop (shopping), wash
(washing and personal care), meal (mealtime), sleep, tv
(television) and leis (other leisure activities). The set J is
composed of 28 types of population characterized by gender,
country, professional activity and marital status. The vector
of letters identifying each population can be interpreted as
follows: m or w (man or woman), a or na (active or not active
professionally), s or ns (single or not single), us, we, ea or yu
(USA, western country, eastern country or Yugoslavia); for
instance, mnsyu corresponds to a man, not single and from
Yugoslavia. We have presented the data in Table 1.3.

Here, we present the best result obtained by MNDKI2 from
among 10 random initial positions when the number of
clusters in partition z is 3. The initial φ2(I, J) value is
9658.38 and the resulting φ2(z, J) value is 8386.83. The
percentage of φ2 accounted for by the partition is very good in
this small example: more than 86% of the φ2 is preserved.
The clusters in the obtained partition z are the following:
cluster 1: home, child; cluster 2: prof, tran; and cluster 3:
sleep, wash, leis, meal, shop, tv.

The column profiles pij
pi.p.j

(with a multiple coefficient fi.)
reorganized according to z are reported in Table 1.4. We
observe the similarity of the profiles belonging to each cluster.
The most interesting values are those that are a long way
from the mean 1. They characterize the partition: for
example, the category wnaus is a characteristic of the clusters
1 and 2.
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prof tran home child shop wash meal sleep tv leis
maus 610 140 60 10 120 95 115 760 175 315
waus 475 90 250 30 140 120 100 775 115 305
wnaus 10 0 495 110 170 110 130 785 160 430
mnsus 615 141 65 10 115 90 115 765 180 305
wnsus 179 29 421 87 161 112 119 776 143 373
msus 585 115 50 0 150 105 100 760 150 385
wsus 482 94 196 18 141 130 96 775 132 336
mawe 652 100 95 7 57 85 150 807 115 330
wawe 510 70 307 30 80 95 142 815 87 262
wnawe 20 7 567 87 112 90 180 842 125 367
mnswe 655 97 97 10 52 85 152 807 122 320
wnswe 168 22 529 69 102 83 174 825 119 392
mswe 642 105 72 0 62 77 140 812 100 387
wswe 389 34 262 14 92 97 147 848 84 392
mayu 650 140 120 15 85 90 105 760 70 365
wayu 560 105 375 45 90 90 95 745 60 235
wnayu 10 10 710 55 145 85 130 815 60 380
mnsyu 650 145 112 15 85 90 105 760 80 357
wnsyu 260 52 576 59 116 85 117 775 65 295
msyu 615 125 95 0 115 90 85 760 40 475
wsyu 413 89 318 23 112 96 102 774 45 409
maea 650 142 122 22 76 94 100 764 96 334
waea 578 106 338 42 106 94 52 752 64 228
wnaea 24 8 594 72 158 92 128 840 86 398
mnsea 652 133 134 22 68 94 102 762 122 310
wnsea 434 77 431 60 117 88 105 770 73 229
msea 627 148 68 0 88 92 86 770 58 463
wsea 433 86 296 21 128 102 94 758 58 379

Table 1.3. Transposed time-budget data matrix

To illustrate the relationship between CA and MNDKI2,
we have shown in Figure 1.4 the representation of I on the
first two axes that account for 84% of φ2. We can observe that
clusters 1 and 2 are strongly opposed and cluster 3 is the
middle cluster.

1.10. Implementation

There are a number of software developments
implementing the methods described in this chapter, not least
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among them is the MIXMOD1 program. In this section, we
give a quick overview of the problems that software
implementations need to address.

prof tran home child shop wash meal sleep tv leis

maus 1359 1624 216 300 1103 1000 985 968 1758 903

waus 1058 1044 901 899 1286 1263 856 987 1155 874

wnaus 22 0 1785 3297 1562 1158 1113 1000 1607 1232

mnsus 1370 1635 234 300 1056 947 984 974 1807 874

wnsus 399 336 1518 2607 1479 1179 1019 988 1436 1069

msus 1304 1334 180 0 1378 1105 856 968 1507 1103

wsus 1074 1091 707 539 1296 1369 822 987 1326 963

mawe 1454 1161 343 210 524 896 1285 1029 1156 947

wawe 1137 813 1108 900 736 1001 1217 1039 875 752

wnawe 45 81 2047 2611 1030 949 1543 1074 1257 1053

mnswe 1461 1127 350 300 478 896 1303 1029 1227 918

wnswe 362 247 1844 1999 906 845 1440 1015 1155 1086

mswe 1432 1220 260 0 570 812 1200 1035 1006 1111

wswe 882 401 961 427 860 1039 1280 1099 858 1143

mayu 1448 1624 433 450 781 947 899 968 703 1046

wayu 1248 1218 1352 1349 827 947 813 949 603 674

wnayu 22 116 2560 1648 1332 895 1113 1038 603 1089

mnsyu 1449 1683 404 450 781 948 899 968 804 1024

wnsyu 579 603 2077 1768 1066 895 1002 987 653 845

msyu 1370 1450 343 0 1057 947 728 968 402 1361

wsyu 928 1041 1156 695 1037 1019 880 994 456 1182

maea 1448 1648 440 659 698 990 856 973 964 957

waea 1310 1251 1239 1280 991 1006 453 974 654 665

wnaea 53 93 2142 2158 1452 969 1096 1070 864 1141

mnsea 1454 1544 483 660 625 990 874 971 1226 889

wnsea 974 899 1564 1810 1082 933 905 987 738 661

mnsea 1397 1717 245 0 809 969 736 981 583 1327

wsea 983 1017 1088 641 1199 1094 820 984 594 1107

Table 1.4. The 1, 000× pij
pi.p.j

profiles reorganized according
to the partition z

1 www.mixmod.org.
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Figure 1.4. Projection of the columns into the factorial plane
spawned by the first and second axes

1.10.1. Choice of model and of the number of classes

Clustering methods are often justified heuristically, and
choosing the “right” method or the “right” number of classes
can be a problem that is difficult, and often badly stated. The
use of clustering methods based on mixture models allows us
to place the problem within the more general framework of
the selection of probabilistic models.

In the Bayesian context, choosing the most probable model
calls for frequently used selection criteria such as Schwarz’s
[SCH 78] BIC criterion comprising two terms: the first is
likelihood, which tends to favor the more complex model, and
the second is a penalizing term, an increasing function of the
number of the model’s parameters. Worth mentioning is the
ICL criterion [BIE 00] which, taking the objective of the
clustering into account, generally provides good solutions.

1.10.2. Strategies for use

Maximizing the likelihood criterion via the EM algorithm
or maximizing the clustering likelihood via the CEM
algorithm always involves obtaining a series of solutions that
see the criterion increase to a local maximum, and which are
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therefore dependent on the initial position selected by the
algorithm. The strategy usually adopted for obtaining a
“good” solution is to run the algorithm several times from
different starting points and to retain the best solution. For
example, see [BIE 03], where some subtle and effective
strategies are examined, including an initial phase in which
the algorithm is run a large number of times without waiting
for complete convergence.

1.10.3. Extension to particular situations

We have seen that the mixture model in clustering can
cope with a variety of situations (spherical or non-spherical
classes, equal or unequal proportions, etc.) and deal with both
continuous and binary data. In this section, we briefly list
some clustering problems that the mixture model approach
addresses quite naturally, illustrating its adaptability to
particular situations.

Noisy data: atypical or outlier data (measurement errors,
etc.) generally perturb clustering methods quite considerably.
Getting mixture models to take account of noise can be a
simple matter, for example by adding a uniformly distributed
class or by using distributions less sensitive to atypical
elements, such as Laplace distributions.

Incomplete labeling in discrimination: in discrimination we
often have, in addition to the learning sample whose class is
known, a (sometimes large) set of observations whose class is
not known. Making use of these unlabeled observations,
which can significantly improve the results of the
discrimination, can be easily accomplished by introducing
observations whose membership to a class is not brought into
question during the iterations of the algorithm to the EM and
CEM algorithms.
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Spatial data: the mixture model is based on the hypothesis
that the vector z = (z1, . . . , zn) grouping the classes of the
different observations is an independent sample. There are,
however, more complex situations, such as the segmentation
of pixels in image processing, where this hypothesis must be
rejected. In these cases, the mixture model may be extended
to the clustering of geographically localized multivariate
observations such as hidden Markov fields, so as to include
this type of data.

Block clustering: the clustering methods described thus far
were all designed to classify individuals, or occasionally
variables, but there are other methods, often known as block
or simultaneous clustering methods, which process the two
sets simultaneously and organize the data into homogeneous
blocks. Here too, it is possible to extend the use of mixture
models [GOV 02] by using a latent block model generalizing
the mixture model [GOV 03, GOV 05, GOV 06, GOV 08]. In
the following chapters, we will focus on this model.

1.11. Conclusion

In this chapter, we have attempted to show the advantages
of using mixture models in clustering. This approach provides
a general framework capable of taking into account
specificities in the data and in the problem. Moreover, a
probabilistic model means being able to harness the entire
set of statistical results in proposing solutions to difficult
problems such as the choice of the model or the number of
classes.

Obviously, one of the difficulties with this approach is in
deciding whether the selected mixture model is realistic for
the data in question. However, as Everitt [EVE 93] has
rightly observed, it is not a difficulty specific to this approach.
We cannot avoid choosing a method’s underlying hypotheses
simply by “concealing” them.


