Chapter 1

Describing Service Architectures

This topic has already given rise to numerous works in the telecoms, Web
and IT communities. In this chapter, our objective is not to scrutinize these
works in exhaustive detail, but to extract the key results and significant
points.

What is the point of service architectures? Through the different sections
of this chapter, we will see that they allow for a response to the concerns of
stakeholders in the design of a service. Early in the process, this is achieved
by aiding the decision-makers to identify the major challenges of the service
(e.g. technical challenges and functional challenges) and their positioning in
relation to each other, including from the perspective of cooperation and cost
control. Later in the process, it is achieved by supplying the service’s
development and deployment teams with a formal and unequivocal
statement of requirements concerning the various features to be
developed/deployed and the relationships between them. The manager of a
development/deployment project can thus reach a clear vision of the tasks to
be completed. A service architecture can therefore be considered as the
setting for deliberation between the various stakeholders in the design of a
service, particularly between the numerous decision-makers (marketing,
technical, financial, etc.) and the many development and deployment teams
(network, service platforms, etc.). Given that each stakeholder has their own
vocabulary, occupation and constraints, this deliberation is publicized by
representations (the service architecture) and by people (the architects of the
service).

2 Architecture and Governance for Communication Services

Let us now specify the content of these service architectures, which we
will find in different forms later in this chapter. The term “architecture” is
usually defined in dictionaries as “the organization of the components that
make up a system”. “Organization” is defined as the “way in which a whole
is constituted for its functioning”. We could therefore define architecture as
the way in which a system is constituted by basic components for its optimal
functioning, taking into account technical and economic constraints.
Architecture is the response to requirements (services rendered, cost, reusing
existing features, etc.); these requirements being fulfilled due to the
identification of the constituent components in connection with each other.
In each section of this chapter, we will therefore return to this search for
constituent components in connection to fulfill requirements.

In this chapter, we will deliberately not deal with the term “service” in
depth. We will point out the significance of the term within each research
community, but we will not seek to analyze it in global terms; this will be
the objective of Chapter 2.

1.1. The telecommunications community
1.1.1. The service and global functional planes of the intelligent network

The world of telecoms has substantial experience of service design. It can
take us back to the concept of service in the 1970s with the switches of the
public switched telephone network (PSTN). The behavior of these switches
is defined by a state machine, defining the basic telephone service. Little by
little, telecoms operators and equipment manufacturers made possible
modifications to this basic behavior, triggered by various factors. These
modifications were called supplementary services. They were first
implemented in the switches’ code. Then since the end of the 1980s, in order
to minimize delays and reduce development costs, the modifications were
also implemented in external entities, through what was called the Intelligent
Network (IN). The first service architectures that were distinct from
telecommunications infra-architectures were introduced in the 1980s with
the concept of the IN, and commercial deployments began at the beginning
of the 1990s for fixed and mobile networks.

The basic principle of the IN is to ask the switch, under certain
circumstances, to interrupt its default processing in a particular point of its
state machine in order to call on another service platform, and then to

Describing Service Architectures 3

interpret the commands received from that platform. The IN thus introduced
a dissociation between network and services, as illustrated in Figure 1.1,
taken from the “standard Q.1201” [ITU 92a].

Customer equipment IN-structured network

Service capabilities
Services G T Services

Access capabilities Access capabilities

Access Access

Access

(Non-IN) Sub-network T1813410-91

Figure 1.1. Separation of service and access

The basic principle of the IN is to separate the call control plane (the
switches) from logic and service data held in a service platform. In the IN
model, a new functional entity is introduced in the switches, the Service
Switching Function (SSF), which has the role of interfacing the switch’s
resources with service logic held in a service platform called Service Control
Function (SCF). The protocol used between the SSF and the service platform
belongs to the Intelligent Network Application Part (INAP) family, and
allows the service platform to have a precise view of the network and to
control it to some extent. Triggering mechanisms allow the service platform
to have call control, or to be notified of certain events.

In separating the control plane from the service logic, the IN architecture
was the precursor to the Next Generation Network (NGN), which we will
discuss later.

To implement this principle in a normalized manner and to facilitate
service designs according to this method, the IN community defined a
“conceptual model” (called INCM, Intelligent Network Conceptual Model,
in ITU-T Q.1201). This model consists of four planes, each plane
corresponding to a different structural view (as discussed in section 1.3.1):

— The service plane [ITU 97a] describes an IN service such that it can be
seen by a user of the service, for example a freephone number, call
forwarding, speed dial or credit card calling.

— The global functional plane [ITU 97b] describes the course of a service,
according to a formal method, through a chain of formal components called
Service Independent Building Block (SIBs).

4 Architecture and Governance for Communication Services

— The distributed functional plane [ITU 93a] no longer describes the
course the service rendered, but the service’s software implementation. A
service’s implementation architecture defines the entities that have been
implemented, linked by protocols and their behavior.

— The physical plane [ITU 93b] describes the implementation of the
distributed functional plane on physical machines.

The service and global functional planes allow for the definition of
services; the distributed functional and physical planes allow for the definition
of their logical and physical fulfillment in a particular environment. Let us
discuss in detail the planes that are specifically dedicated to service
architecture: the service functional plane and the global functional plane.

In the service plane, there is a composition of service features. For
example, a freephone number service could be composed of a “call
distribution” service and a “queuing” service. The service plane is presented
in the following way in “standard Q.1202”, defined as:

The service plane illustrates the fact that services guaranteed
by the IN can be described to the final user or subscriber with
the help of a set of generic blocks called ‘service features’. (...)
A service feature is a specific aspect of a service which can
equally be used in conjunction with other services or service
features within the framework of a commercial offer. It is either
an essential part of a service or an optional section offered in
order to improve the service. The service plane represents a
view exclusively oriented towards services. This view does not
contain any information about the implementation of services in
networks (for example, an IN-style implementation cannot be
seen). All that we perceive of it is the behavior of the network
linked to the service, in the way that this behavior will appear,
for example, to a user of the service. [ITU 97a] (author’s
emphasis in italic)

As the last sentence indicates, the architecture of an IN service is
incorporated in the service plane from an external view of the service, and
not from the internal functioning of networks or platforms. In this first plane,
it is the perception of the service by its users that is fundamental. The
proposed architecture is summarized in Figure 1.2.

Describing Service Architectures 5

Service

Service feature

User

sreawes®| | Service feature | — o Intelligent
Network

Service feature

Figure 1.2. Architecture of service features

The IN’s standardization effort is largely based on network mechanisms,
both in fixed networks [Q.1214, Q.1218] and the mobile network
[GSM 03.78, GSM 09.78]. In both cases, standards define the behavior of
network features such as switches, service platforms and the relationships
between these.

In the 1990s, the deployment of second-generation mobile networks gave
rise to new demands regarding the IN. One of the fundamental ideas of the
Global System for Mobile Communications (GSM) is roaming, which
allows a mobile user to use coverage from a network other than his/her usual
operator, as is the case with international roaming, for example. The
interface between switch and service platform which was until then
half-open — that is, open but not specified — therefore had to become fully
specified and open. Operators whose network consisted of switches from
different manufacturers also expressed the same need to deploy a
homogeneous service in a heterogeneous network. The protocols (of the
INAP family) and procedures have since been specified in great detail in the
standard CAMEL [GSM 03.78], allowing any switch to be controlled by any
service platform. This description is primarily based on a Specification and
Description Language (SDL, [ITU 92b]) formalism adapted by the European
Telecommunications Standards Institute (ETSI). These works have,
however, remained at the level of interface between the service and
functional planes, defining the interactions between the service platform and
networks. In the majority of cases, services or service features are not
defined in this case in mobile networks. One reason for explaining this
absence is the necessity for the builders of these standards, manufacturers
and operators, not to reveal their strategy of service development.

6 Architecture and Governance for Communication Services

Following on from [MAG 07], we can still consider this model as a
precursor to the approaches to service composition that is currently in
fashion, for example through the so-called Web 2.0 services.

However, this breakdown of services into service features has never been
fully exploited in the IN community. First, the Q.12x2 specifications remain
silent on how to identify service features beyond the criterion of common
sense (i.e. trying to identify common points from known services). Second,
these same standards do not describe how to use service features in lower
planes to arrive at a logical architecture, particularly how to transmit service
composition in lower planes. Third, manufacturers have not used support
from these service features to specify their services from the point of view of
users. As N. Simoni highlights in [SIM 07]:

The standard cites [service features] almost as an example,
without defining the rules of architecture, nor those of service
composition.

Work on the service plane has ultimately concentrated to a large extent
on the problem of service interactions, as brought to light, for example, in
[KEC 98] — a service interaction designating an undesired behavior
occurring when several services are triggered during the same
communication. Starting from the definition of teleservices (such as the
basic call), and of supplementary services that are compatible with
teleservices but whose compatibility is to be determined case by case, formal
mechanisms of service description have been developed, for example in
SDL. These service descriptions have been strongly oriented toward the
detection, in principle, of the incompatibility between services, but have had
mixed results as detailed in [GOU 06]. These descriptions have therefore
weighed little on the service plane, where only highly visible cases of
incompatibility can be detected, but have concentrated on the other planes.

Let us move on to the global functional plane. On this plane, a service is
described as a chain of components, the SIBs. This plane is defined by the
“standard Q.1203” [ITU 97b]:

The global functional plane models the functionality of the
network from a global point of view. (...) In this plane, services
and service features are redefined in terms of large network
functions that are necessary for their support. These functions

Describing Service Architectures 7

are not specific to services or service features (SF) and are
called service independent building blocks (SIB).

SIBs are not a refinement of service features. They are independent of
services and they model, as indicated in the first sentence of the above
definition, the “large functions” rendered by the network (i.e. the switches,
IN platforms and associated resources).

A SIB is therefore a function of the technical system that supports
services, a function that we seek to isolate as unitary and combinable with
other functions to meet service needs (described in the service view). A total
of 13 SIBs are defined in “standard CS1” [ITU 93c], including, for example,
a charge for determining the charging for a call, the screen for comparing a
value with others on a list or queue for call queuing. These 13 SIBs would
have to suffice for describing all possible services from the service features
of the service plane. However, with SIBs being defined as the abstraction of
a network’s functionalities, the specificities of different manufacturers have
given rise to an excessive number of proprietary SIBs on top of standardized
SIBs. Furthermore, the standardized SIBs were only approved in
standardization after the first IN implementations, while proprietary SIBs
were already in use, thus considerably reducing their impact. Finally, given
the significant fixed costs related to the IN, there was probably a limited
number of profitable services that could be implemented.

One of the big questions left open by the conceptual model of the IN is,
without doubt: How to move from the service plane to the global functional
plane, that is how to translate a description of the behavior of a service as
perceived by the user into a description of the behavior of the network? In
the case of the IN, this translation was left to the service developer’s
expertise. Through the global functional, distributed functional and physical
planes, the intended move was from the specification of a service to the
software code. In fact, several examples of both industrial and academic
works, for instance as described in [NAJ 99], have focused on a service
creation environment allowing for the transcription of a specific service in
the form of an SIB sequence code that can be used on IN platforms. Such a
perspective has, of course, led to a more complex global functional view, as
SIBs must not only describe a service’s architecture but also accurately
specify its behavior in order to derive an implementation. Ideally, service
development work would also have been taken to the global functional plane
level. The value added by the service developer was then precisely within

8 Architecture and Governance for Communication Services

the transition from service plane to global functional plane, and in theory the
other transitions could be automated. In practice, this approach has never
been made operational. On the one hand, as we have said, the aim of
automation requires the service description to become more complex,
making it a de facto service code and also the IN expert’s prerogative; on the
other hand, this automation has never been fully achieved since manual
recovery/transfer of the final code is always necessary.

In this work, we will retain the distinction between service description in
the service plane and network behavior modeling in the global functional
and distributed functional planes of the IN. We will not go into detail here
about service creation, for example by the generation of a code from a
service architecture description, but will limit ourselves to the consideration
of several viewpoints to describe service architectures, which will constitute
a reference to development teams.

1.1.2. From TINA to the NGN

The Telecommunications Information Networking Architecture
Consortium (TINA-C) initiative, described, for example, in [INO 98],
attempted to surpass the IN’s limitations but did not address the issue of the
transition from service plane to global functional plane. The concept of a
generic service session, independent of the executed services!, has instead
been defined — a session being a temporary relationship between objects for
the completion of a task within a given time (these objects will be both an
abstraction of features perceived by users and of technical features). The first
requirement of TINA-C is as follows:

1: Support of a wide range of services. The TINA service
architecture has to support telecommunication, management
and information services and should be open to allow the
introduction of new classes of services. The service architecture
addresses the evolution of services, and should be able to
support new requirements and business needs. [INO 98]

To fulfill this requirement, several roles and several session types have
been defined, as illustrated in Figure 1.3.

1 In doing so, it may have announced the NGN, which will be specified without an explicit
vision of service as we will see in Chapter 2.

Describing Service Architectures 9

Domain Domain

Domain Access Access Domain
Access Session Session Access

Session || || Session

Access Session Access Session

Service Session

Usage Service Session Usage Service Session

: . Provider . .
Domain Domain Service Domain Domain
Usage Service sage Service| Session s?e Servic sage Servic
ession Ssion ession ession

Communication Session

Figure 1.3. TINA-C session architecture

These works are doubtlessly closer to the definition of a service
marketplace than of a service architecture. It is also surprising to note,
following [MAG 07], that these concepts did not lead to the deployment of
applications in the telecoms world, but in fact found solid application in the
IT world with service-oriented architectures (SOA). TINA-C also opened the
path for the consideration of the IT world’s methods in telecoms services,
particularly object methods and software components.

On the International Telecommunication Union — Telecommunication
Standardization Sector (ITU-T) side, work has been carried out on the
Global Information Infra-architecture (GII) in order to bring the
telecommunications, information and entertainment industries closer
together, as presented, for example, in [ASA 96] or [MOR 98]. As far as
services are concerned, the Y.110 standard [ITU 98a] defines a typology in
layers of service, classified according to the functions that support them. In
this standard, we can distinguish:

— baseware functions, including information transportation functions and
processing and storage functions;

10 Architecture and Governance for Communication Services

—middleware functions, based on baseware functions, including
application/service creation functions.

Users and their applications

applications
mlddleware services;
Middleware functions

telecommunlcatlons serwces processmg and storage services
. : Processing and storage
Transportation functions .
functions

Figure 1.4. Typology of GII functions

In Figure 1.4, the arrow from function A to function B means that
function A supplies a service to function B, and therefore that function B
uses function A. Information transportation functions are, for example, those
of an Integrated Services Digital Network (ISDN), PSTN or the Internet.
Processing and storage functions can include those of a PC, STB (set-top
box), file server or video server. Middleware functions include security,
format conversion, authentication, billing and conference bridges. However,
this model does not come with instructions on the conditions of its validity
and lifespan, and progress in telecoms services in recent years would require
its modification. It is probably lacking in uniformity between baseware
(abstraction of transport resources and processing/storage of information)
and middleware (which are transverse functionalities between services and
resources) functions. This division could therefore be used to describe a
service, but it cannot really describe a service architecture.

The ETSI has also distinguished different service types. In the technical
specification TS 22.101, the last version being [3GPP 09], communication
services are divided into conversational services, messaging services,

Describing Service Architectures 11

retrieval services and broadcasting services, whether this is controlled by the
user (e.g. with video on demand) or not (e.g. with television). However, this
distinction remains high level and there is a lack of explanation of its origin
and conditions of validity.

More recently, as part of the NGN, which will be described at the
beginning of Chapter 2, several initiatives have grown around services.
There have been debates [COC 02] to determine whether the NGN should
standardize services, or whether the services should remain exclusively the
responsibility of service providers who use the NGN. The economic model
of European operators as service providers (not just providers of network
infrastructures) and their wish to distinguish between themselves through
services, linked with the desire to “cash in” the NGN deployments with
services, has led several standardizing bodies to take a greater interest in
services.

1.1.3. The OMA and the concept of the enabler

The Open Mobile Alliance (OMA)® is a consortium, founded in 2002,
that brings together telecoms and IT industries with the following aim:

The mission of the Open Mobile Alliance is to facilitate
global user adoption of mobile data services by specifying
market driven mobile service enablers that ensure service
interoperability across devices, geographies, service providers,
operators, and networks while allowing businesses to compete
through innovation and differentiation.

This objective is a good summary of the position of standardization
organizations in relation to services. To avoid standardizing services and
facilitate the possibility of a differentiation between operators in terms of
something other than tariffs, the OMA, and also the ETSI and ITU-T, opted
to standardize service capabilities, called service capabilities by the 3rd
Generation Partnership Project (3GPP), service support capabilities by the
ITU-T and service enablers by the OMA. The ITU-T’s service support
capabilities typically include [CAR 05] presence, localization, group
management, message management, broadcast/multicast or equipment
management. The ETSI’s service capabilities are, for example, presence

2 http://www.openmobilealliance.org/

12 Architecture and Governance for Communication Services

[3GP 07a], messaging [3GP 07b] or conference calling [3GP 07c]. The
OMA’s service enablers bring together [OMA 07b] data synchronization,
equipment management, electronic rights management, downloading, email
notification, instant messaging, presence or mobile localization. These
features, which for the sake of simplicity we will collectively call enablers,
are reusable application modules, whose behavior toward their environment
is fully specified. Theoretically, an enabler from one manufacturer could
even be used by another manufacturer’s service platform. This approach
allows for greater interoperability between equipment, operators and service
providers. It also creates the possibility of an improved user experience.
Effectively, each enabler has a clearly defined responsibility, for example for
data such as user presence or preferences, which means that the user only
has to enter this information once for all the services that need it. Indeed, if
each service requiring user presence as information were to implement a
function to capture and publish it, the user would have to publish his/her
presence (or install client presence software) as many times as the services.
With a presence enabler, the enabler centralizes this information and
distributes it to all the relevant services, simplifying interaction with the user
and reducing the network load generated by the use of presence. In more
technical cases, such as the synchronization of data between mobile terminal
and service platform, the service will not reuse an information but will reuse
a synchronization mechanism between the service and the terminal.

Enablers can be seen as building blocks for the construction of services,
as presented in the article [BER 04]. While SIBs must be considered as
logical operators (e.g. SIB Compare, SIB Screen and SIB Translate), entirely
independent of services specified by their sequence’, enablers are not
independent of the offered service but constitute a feature of it, which is
reusable in other services. An enabler can be approximated in this sense by a
service feature of the IN’s service plane. The difference with a service
feature lies in the fact that an enabler prescribes not only the service
rendered but also its technical fulfillment and the application interface to
access it, as shown in the OMA’s definitions:

(an enabler is) A technology intended for use in the
development, deployment or operation of a service; defined in a
specification, or group of specifications, published as a package
by OMA. [OMA 07a]

3 This aspect is also highlighted by the fact that they are called “service independent”.

Describing Service Architectures 13

An enabler should specify one or more public interfaces.
[OMA 07b]

An enabler can be seen as a variation in the telecoms world principal
of the reusable software component of SOA, which we will introduce
in the following section. Work on enablers continues in the
Application Programming Interface (API) specification movement for
telecommunication networks, notably on the initiative of the Parlay group,
founded in 1998. Parlay’s initial aim was to specify application interfaces over
telecoms call control equipment to allow third-party service providers to fulfill
simple services, for example click-to-dial. The group then aligned itself more
with the ETSI’s Open Service Access (OSA) initiative. Common
specifications have therefore been published, most notably for call control,
messaging and presence APIs [MOE 03].

An enabler differs nevertheless from an API as from an SOA service, as
it is specified not only by its interface but also by its place in an
environment, constituted by other enablers, network resources and services,
all linked by reference points. Unlike SOAs, it does not have a unique access
protocol such as http, but integrates into a complex protocol environment.
Furthermore, while the semantics of operations to be fulfilled by an SOA
service is unique to that service, this semantics will be induced by the
protocol. The behavior of an enabler is also specified in more detail than that
of an API. Finally, an enabler is based on precise technology (such as
syncML for data synchronization), whereas an API is generally regarded as
independent from the underlying technology, but with this often being
reflected through the API’s input parameters.

In addition, as indicated in the OMA’s definition above, an enabler
presents a normative character (defined in a specification). Ultimately, a
component or a technology constitutes an enabler through standardization.
The ITU-T, the ETSI and the OMA therefore do not propose criteria for
determining the coverage of an enabler, but a method “standardization”, and
a concerted standardization between enablers. In effect, if they were
specified independently from one another, there would be a risk of the
enablers partially overlapping, i.e. that they would offer redundant functions.
Service providers would therefore have difficulty combining different
enablers to make a service. As shown by the OMA, we would be in the
following situation:

14 Architecture and Governance for Communication Services

Integration and deployment of services is complicated and
expensive; high implementation efforts for applications wanting
to use several capabilities; there is no common integration of
the different services from the point of view of the end-user
(e.g. no common group management or user profile across
multiple services). [OMA 07b]

To avoid this, the OMA has introduced the notion of the intrinsic
function, which is defined as:

those functions that are essential in fulfilling the intended
task of the specified enabler. For example, the Position
Calculation function is intrinsic to Secure User Plane Location;
Authentication is intrinsic to Single Sign On; Encryption is an
intrinsic function of Digital Rights Management. [OMA 07b]

The OMA specifies that an enabler should only contain intrinsic
functions:

any requirements or features that are not intrinsic to an
enabler should not be specified within the enabler’s
specification.

This requirement gives assurance that different enablers will not offer the
same function. This guarantees that, for example, there will not be an
authentication function in every enabler, although most do require one. This
idea of intrinsic function does not, however, fully deal with the question of
the functional coverage of enablers. First, an intrinsic function can mean
either a service functionality, perceived by the user — such as a contact group
management or user profile function — or the abstraction of a technology —
such as a push or watermarking function. Furthermore, the separation of
intrinsic functions is not clear. It remains ultimately subjective, as
recognized by the OMA:

The classification of intrinsic and non-intrinsic is subjective
and needs to be done on a per enabler basis.

OMA enablers, ETSI service capabilities and ITU-T service support
capabilities are important tools for the convergence of services that we will
discuss in Chapter 2. They effectively allow different telecoms services to

Describing Service Architectures 15

share and reuse data and functions. But their construction method is heavily
linked to standardization. It is due to the contradicting arguments on
standardization that their functional coverage (their intrinsic functions) can
be determined and legitimized.

How can this method for building converging services be extended within
service providers or operators? Can an operator structure his/her services by
building his/her own enablers? How? One solution is to implement instances
of “standardization” inside service providers, with the same role as in
organizations such as the OMA in constructing non-redundant and legitimate
enablers. But due to the hierarchical nature of businesses, the debate will
probably be less controversial than in the case of standardization that has
been developed taking into account different viewpoints and interests.
Another solution, which could support the first solution, is to implement
rules and procedures — conforming to the functioning methods of big
business — on the one hand to identify the service functions that could be the
subject of an enabler, and on the other hand to help service development
teams to identify the relevant enablers for their projects, and allow them, in
principle, to validate the consistency of a service created in this way. In
Chapters 3 and 4, we will present an approach that can provide the basis for
such rules and procedures.

To conclude this exploration of the notion of service in the telecoms
world, let us emphasize two points. First, we need to consider the service
plane of the IN and the related notion of service features. These service
features are a first step toward reusable service components for the
fulfillment of different services. Second, the notion of the enabler, which has
extended the service component concept by coupling the service rendered
with an effectively reusable implementation. This pairing between service
rendered and implementation makes service architectures uniform by
imposing just one technical solution to respond to service needs. This in fact
leads to a complete standardization of enablers, which restricts their
lifecycles (an enabler will take time to be specified and to be implemented).
It therefore also restricts the services’ lifecycles, if they are supposed to be
based as much as possible on the enablers.

We will now examine the description of service architectures in the Web
community.

16 Architecture and Governance for Communication Services

1.2. The Web community
1.2.1. Web services as fundamental structural units

From an architectural point of view, the Web can be seen as a group of
resources that is accessible via hypertext links. These resources are the
fundamental architectural units of the Web. The term “resource” is to be
understood in the following way, according to the RFC 3986 Uniform
Resource Identifier (URI): Generic Syntax:

The term ‘resource’ is used in a general sense for whatever
might be identified by a URI. Familiar examples include an
electronic document, an image, a source of information with a
consistent purpose (e.g. ‘today’s weather report for Los
Angeles’), a service (e.g. an HTTP-to-SMS gateway), and a
collection of other resources. A resource is not necessarily
accessible via the Internet; e.g. human beings, corporations, and
bound books in a library can also be resources. Likewise,
abstract concepts can be resources, such as the operators and
operands of a mathematical equation, the types of a relationship
(e.g. ‘parent’ or ‘employee’), or numeric values (e.g. zero, one,
and infinity).

In the Web community, a service is thus seen as a resource among others,
in the same way as an electronic document or an image, the service being,
like any resource, accessible by a URI. Once the fundamental mechanisms of
the Web were in place, the Web community started becoming more
specifically interested in services in the early 2000s, by specifying
mechanisms dedicated to services. The World Wide Web Consortium
(W3C) defines a Web service in the following way:

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format
(specifically WSDL, Web Services Description Language).
[http://www.w3.org/TR/ws-gloss/]

More precisely, a Web service is an application or a software component
with the following properties:

— It is identified by a URI.

Describing Service Architectures 17

— Its interfaces and links (binding) can be defined in Extensible Markup
Language (XML), particularly in WSDL.

— Its definition (interfaces and service links) are discoverable by other
Web services, for example by a Universal Description Discovery and
Integration (UDDI) registry.

— It can interact directly with other Web services via XML and the use of
Internet Protocol.

A technical reference architecture for Web services has emerged rapidly
[CHA 03]. This architecture is made up by the Web service’s requester,
provider and registry. The Web service provider publishes the services
he/she is offering in a Web service registry. The Web service requester
consults this registry to find the right service, and then makes contact with
the corresponding provider.

As shown, for example, in [KAR 07], these concepts can work in
conjunction with those of TINA-C’s broker and retailer or with Parlay’s
framework [MOE 03].

Web service registry

find publish

Web service requester Web service provider

bind (access)

~
0

Figure 1.5. Reference architecture in Web services

Web services are described by their interface, usually in WSDL, which
specifies the service’s features, i.e. its input and output parameters. In the
Web community, therefore, a service architecture consists of a group of Web
services interacting in the pattern shown in Figure 1.5. A broader reflection
on the links between services has been conducted, particularly in the context
of the semantic Web community.

18 Architecture and Governance for Communication Services

1.2.2. Semantic description of resources

The term Semantic Web, attributed to Tim Berners-Lee [BER 01], covers
a vision rather than precise tools. This vision can be summarized in the
following aim: enable machines to consider Web-based information sources
and take higher level information from them in order to respond to requests.
For example, automatically creating a list of French neo-classical painters, or
of the works of a particular author, starting out from the raw information
available on the Internet. Methods based solely on keyword searching or
textual proximity to keywords are not sufficient for these tasks. They do not
allow for a distinction to be made between, for example, books by Albert
Camus and books about Albert Camus, or between a painter working within
a trend or rejecting that trend, as textual proximity to the search terms could
come up in both cases. This kind of data manipulation by machines creates a
need for an information architecture that can be accessed via the Internet in a
formalism allowing for the automatic processing of numerous and varied
sources. For this purpose, the semantic Web community has adopted the
concept of metadata, a metadatum being a piece of data used to describe
another data [BER 01]. All informational resources can be described by
metadata. Unlike basic data, metadata follow a semantics that is
comprehensible to machines. These metadata are not keywords, but are
rather structures. Thus, a painter and his/her alignment with an artistic trend
could be indicated by metadata attached to a painting. In order to be efficient
metadata will, of course, have to use keywords such as “neo-classical”. The
Resource Description Framework (RDF) model, published in 1999, allows
for the description of resources with the help of metadata, as well as the links
between metadata’. Artificial intelligence software called inference engines
can then conduct logical reasoning using metadata.

An agreement on a selective and coherent list of the metadata to use to
describe resources is, however, unrealistic in an environment as broad and
open as the Web. The Semantic Web community has therefore also worked
on models of knowledge representation. This work has produced ontology
languages like the Ontology Web Language (OWL); an ontology being
understood, according to T.R. Gruber’s [GRU 93] famous definition, as:

4 A metadatum or a link can also be considered as a resource and described with the aid of
other metadata.

Describing Service Architectures 19

The specification of a conceptualization of a field of
knowledge.

An ontology therefore defines a set of metadata for the description of a
domain, and the relations between these metadata through preconditions. An
ontology can therefore take into account the relationships between metadata.
They are usually intended to be created and shared by several people
working in the same knowledge field. Someone wishing to describe a
resource can therefore attach the metadata he/she uses for this to an existing
ontology, by indicating the relationships between the metadata and the
ontology concepts to which they refer. An ontology can be constructed, and
also automatically generated, from a set of representative structured
documents, but this can give mixed results as discussed, for example, in
[BED 08].

1.2.3. Semantic description of Web services

The Semantic Web community has sought to apply these principles to
Web services. It has also taken an interest in service description, launching
initiatives for the addition of a semantic description to Web services, as
shown, for example, in [ZEN 01, ZHI 07] or [ARR 06]. Web services are
thus considered as resources and described by metadata, which we refer to as
service ontology. Two complementary directions were investigated. On the
one side, specifications were proposed for the addition of semantic
annotations to WSDL files, such as Semantic Annotations for WSDL
(SAWSDL) [MEN 07]. On the other side, other specifications aimed, in a
more ambitious but less incremental way, at describing a service in all its
different dimensions rather than just its input and output parameters. Two
Web services with the same signature could effectively perform completely
different services. A service with an input parameter of two telephone
numbers could, for instance, just as well be a click-to-dial service as a call
forwarding service from the first number to the second. Specifications such
as OWL for Services (OWL-S) aim at supporting the construction of Web
service description ontologies. A Web service has three dimensions: the
service profile, the process model and the grounding. The service profile
described what service is rendered, the process model described how the
service is used, and the grounding describes how to interact on a practical
level with the service. The profile and the process model are abstract
characterizations of the service, while the grounding forms the relationship

20 Architecture and Governance for Communication Services

between these abstract descriptions and the concrete messages exchanged by
the producer and the consumer of the Web service, via a given protocol.

Other works have concentrated on the construction of Web service
marketplaces. These works aim to create an environment of discovery and
access to services, which are described semantically according to coherent
ontologies. This would enable the discovery of services from a user’s
statement of requirement, thanks to the inference mechanisms. In addition,
semantic annotations would facilitate the automatic creation of a service to
respond to a certain requirement. Works such as [SHI 08] or [LEC 09]
propose a correspondence algorithm between the input and output
parameters of a Web service, these being described semantically in order to
detect the relationships between them (equivalence, affiliation, etc.). A chain
of Web services can thus be automatically conceived in response to a
statement of requirement in the form of input and output parameters. The
semantic Web community proposes an automatization of services’ discovery
and of service composition tasks, by categorically modelizing the knowledge
of humans who could do these tasks. In a target view, users would be able to
express (in natural language, for example) their requirement so that a service
can be automatically created to respond to it, the marketplace relying for this
on the services it registered. This marketplace would link numerous services
without formerly agreed consistency, the selection of services and their
consistent functioning being assured by semantic technologies (such as
semantic annotations, ontologies and inference engines). The notions
describing each service and the users (preferences, profile and context)
would be defined as ontologies. Reasoning on these ontologies would ensure
coherence between these notions. These approaches aim to resolve the
difficulties (that we will discuss in the following section) for SOA services,
such as service identification, service granularity and service lifecycle
management.

In terms of telecoms architectures, work has been undertaken on ontology
construction for communication services, such as in the IST SPICE project
(http://ontology.ist-spice.org/index.html). Service marketplaces are also the
subject of study for telecoms services, as in the CELTIC Servery project
(http://projects.celtic-initiative.org/servery/). However, these remain
prospective, as they face several obstacles.

Describing Service Architectures 21

Access control
Publication Marketplace

SERVERY

Services,
Resources,
Products

N4

Design
Publication

Discovery
Use

Management

Figure 1.6. Marketplace concept in the CELTIC Servery project

First, a problem of critical mass and industrial maturity, as indicated in
[HAM 07]. Semantic tools are still in the academic development phase, and
ontological construction and inference tools remain largely unused outside of
research projects, as their relevance, reliability and ease of use are not
currently fully adequate. There is also a scaling problem, particularly in
terms of performance and complexity management.

A more fundamental problem is the lifecycle of an ontology. In the
semantic paradigm, the relevance of the response to a given need relies on
the quality of the ontology that enables the linking of metadata describing
services and user needs. How can these ontologies be created and
developed? It could be done centrally, by a team responsible for the
consistent construction and maintenance of an ontology. But this team might
then neglect the problems of completeness, lifecycle, service identification
and service granularity that these mechanisms were supposed to resolve. The
ontological tool therefore holds only a weak advantage over less developed
processes such as the specification of a list of metadata. It could also be done
automatically, by detecting the most commonly used keywords in service
interfaces and linking these together. But as can be seen in [BED 08], such
automatic mechanisms are only relevant if based on a consistent
classification, and otherwise will produce inconsistent ontologies. Semantic
service annotation also poses a problem. If this annotation is created
centrally, by a team responsible for the semantic annotation of new services,
the benefit is minimal compared with a more traditional system such as the
one advocated for the lifecycle management of SOA services. And in the
case of a marketplace providing many services, this team would soon be
overstretched. But requiring service designers to mark up their services

22 Architecture and Governance for Communication Services

themselves by referring to an existing ontology would be extremely
restricting. They would effectively have to be familiar not only with
semantic tools and languages but also existing ontologies, and be able to
form a link between the concepts they handle and those of the ontology,
which practically equates to the task of service specification in the semantic
form. We often see, as shown, for example, in [HEP 07] or [ROC 07], a lag
between the technical vocabulary of service developers and that of service
users. Correspondence between the two is not immediately accessible, as it is
not about translation or finding synonyms but two different perspectives of
the service, without an unequivocal link between the concepts handled by
each.

Furthermore, there is a contradiction that can be revealed between the
approach of SOAs and the semantic approach. In effect, the semantic Web,
as shown, for instance, in [PAT 07], follows a white box or open-world
paradigm, i.e. the universe of discourse tends to encompass all services
offered, including the detail of their properties [ROL 00]. On the other hand,
SOA service platforms, as we will see in the following section, have a black
box or closed-world approach, exposing as little as possible of their internal
functioning, in order to guarantee a loose coupling between different
services.

Finally, the semantic paradigm requires data to be comprehensible to
machines, without doubt to the disadvantage of humans. Like some of the
formal SDL descriptions in the fixed IN, an ontology is not instantly
readable; semantic data are designed first and foremost to be read by
machines. This makes it difficult to generalize these methods for service
architecture design.

What should we retain from this journey? Unlike the telecoms
community, which sought to identify service components independently of
each other and then link them to perform a service, the Web community and
the Semantic Web community emphasize the importance of links as essential
vehicles of knowledge. Services, and even service features or the so-called
unitary services, are not completely independent blocks. There are links,
prerequisites and dependencies between services and with infra-
architectures, which semantic methods seek to accurately capture in
ontologies. In this work, we will not position ourselves explicitly in the
semantic paradigm, but we will try to respond to the above questions, left

Describing Service Architectures 23

open by this paradigm, via a classification of telecoms services and the links
between different perspectives of a service.

1.3. The IT community

The term information technology (IT) refers to the whole of enterprise
computing. The Information Technology Association of America (ITA,
http://www.itaa.org/) defines the term IT as:

The study, design, development, implementation, support or
management of computer-based information systems,
particularly software applications and computer hardware.

1.3.1. Service-oriented architectures

In the IT world, work on services is guided by the needs of information
systems (IS). An IS can be defined as follows [OBR 97]:

An information system is a set of people, procedures and
resources that collects, transforms and disseminates information
in an organization.

Information systems are a key tool in the strategy of a business; their job
is to implement business processes by serving as a support to information
management. The computerized realization of an IS is called an informatics
system. The alignment of the IS with a company’s business is a major
challenge, as detailed, for example, in [HEN 93] or [SIM 07].

However, the business of services companies is evolving toward a
decompartmentalization of organizational entities in order to respond to
client needs. This evolution is especially observable in the economic sector
of services, as we will see in Chapter 2. IS should therefore evolve from a
very compartmentalized “vertical” organization, where each organizational
entity manages its IS autonomously as they do not need to communicate or
exchange (the business processes they support being unique to one
organizational entity), to a more “horizontal” organization, where the IS of
the different organizational entities continually make exchanges to support
transverse processes between the company’s various functions, in order to
respond to client needs. Let us consider, for example, the domain of banking

24 Architecture and Governance for Communication Services

insurance. If, 15 years ago, a banking network could make a client change
their account number when they changed branch, today that same client
could not only keep their account number but also use it to access various
financial and insurance products via multiple distribution channels (branch,
call center and Web). This decompartmentalization is also the rule in the
e-commerce sector, as shown, for example, in [MOR 03].

The IT world created the SOA concept to facilitate this
decompartmentalization. In the SOA paradigm, IS applications are broken
down into software services, i.e. independent application units that fulfill a
fixed and limited business function, accessible via an open and defined
interface; this concept of software service was essentially implemented with
the aid of Web services, seen previously. SOA has been defined by its initial
proponents, IBM, in [CHA 03] as:

an application architecture within which all functions are
defined as independent services with well defined invokable
interfaces which can be called in defined sequences to form
business processes.

In the methods of analysis of business processes, such as [SIM 04],
following [BOO 99], a business process is understood as:

a sequence of management actions carried out by a
company, which produces a result whose value is perceptible
and measurable value to an individual subject of the modeled
domain [SIM 04].

In the SOA paradigm, this sequence of management actions can be
carried out by a chain of calls to software services, at least when these
management actions are computerized. Business processes can also be
specified in appropriate language, such as the Business Process Modeling
Language (BPML), and this description can be translated into a script of the
software services to be linked, expressed in Business Process Execution
Language (BPEL), for example.

As well as this concept of software services, the SOA approach also
specifies architecture principles. Software services must be:

Describing Service Architectures 25

— highly cohesive, i.e. all the functions offered by one software service
must be consistent and not incongruous;

— loosely coupled, i.e. a software service must only handle data from
outside its area of responsibility via other software services, and not do so
directly.

Different software services can then be put together, i.e. used one after
another to create a more complex service. For example, a software service
for automatic translation followed by one for sending text messages would
give the possibility of sending a translation via a text message. Linking
service A and service B is possible as long as service A has an output
parameter that is of the same type as an input parameter of service B.
Languages such as BPEL allow for the specification of such links, including
logical conditions. These scripts or software services are a means of
automating business processes.

But in attempting to achieve business processes with the aid of software
services, the IT community found that the principle challenge was not
technical. Technically, invocation protocols or specification languages for
the sequencing of software services are operational. But the main challenge
resides in the identification of software services to be built. How can the
boundary of these independent application units be defined? Should a
software service be fine-grained, with a service identifiable by function, or
more coarse-grained, with a set of consistent functions performing a business
objective? With fine-grained services there is a risk of overabundance; it
could be impossible to manage the lifecycles of every service, and difficult
for a designer to determine what services to use. With coarse-grained
services there is a risk of a lag between the business objectives that
historically governed the establishment of a service and the current
objectives. These objectives vary depending on the business strategy and the
external environment (regulation, legislation, competition, market, etc.)’.
And how can independence between services be maximized when the
services are coarse-grained? These issues are, in fact, quite similar to those
of enablers that we encountered earlier.

5 A section of the IT community has studied the alignment between the strategy of a
company, its business processes and its information system, for example [HEN 93, BLE 06]
or [SIM 07].

26 Architecture and Governance for Communication Services

Transposition of the SOA paradigm to communication services is
efficient to a certain extent. It makes it possible to provide reusable access to
some functions of platforms and telecommunications networks; these
functions often being those identified by Parlay, such as click-to-call,
geolocation or the sending of text messages. This transposition does,
however, face a major pitfall. Software services in the IT world are initially
designed to access IS functions, classically data processing functions.
Invoking a service means either requesting data or requesting the processing
of data. The value of a communication service in itself lies not in its capacity
to process data but in its capacity to put things in relation to each other. The
heart of a communication service cannot therefore be reduced to a series of
requests/responses between machines, as different stakeholders will be
implicated in the service, for instance the maker and the receiver of a call in
a telephone service. Protocols, such as Session Initiation Protocol
(SIP, [IET 02]) or Simple Mail Transfer Protocol (SMTP), which structure
exchanges between parties are essential for communication services, but are
not included in the SOA paradigm, where protocols are not seen as a support
for the invocation of software services. Furthermore, the SOA paradigm
does not consider essential aspects of communication services, such as the
quality of the human—machine interface, or the network effect (or network
externality) based on the use of a given protocol, carrying a given semantics.

In this work, we will propose a method of describing communication
services that responds to the concerns raised. The identification of the scope
of services from a non-software point of view related to the business of the
service provider, then the construction of an application architecture that can
take into account both the software services and the usual protocols of the
telecoms world. We will now see how the IT community has formalized this
notion of a point of view to describe the architecture of a system.

1.3.2. The concept of view

Faced with the complexity of informatics systems, the software
engineering community has gradually developed concepts to master this
complexity. In the 1990s, notably under the impetus of the Object
Management Group (OMG), it adopted the concept of view. The “standard
IEEE 14717 [IEE 00], for example, defines the concepts of view and point of
view in the following way:

Describing Service Architectures

A view is a representation of a whole system from the
perspective of a related set of concerns.

A point of view is the specification of the mode of constructing a view:

A viewpoint is a specification of the conventions for
constructing and using a view, a pattern or template from which
to develop individual views by establishing the purposes and
audience for a view and the techniques for its creation and

analysis. [IEE 00]

The standard also introduces the attributes of a view:

Each viewpoint shall be specified by a viewpoint name, the
stakeholders to be addressed by the viewpoint, the concerns to
be addressed by the viewpoint, the language, modeling
techniques, or analytical methods to be used in constructing a
view based upon the viewpoint. [IEE 00]

27

Each view of a system must therefore respond to the concerns of the
stakeholders in a system. For an IS, these stakeholders will be, for example,
the final user of the system, the architect, the developer or the manager.

This concept of point of view has been employed in numerous
frameworks. One of the most famous is without doubt the 4 + 1 framework

proposed by Kruchten [KRU 95]. As the name suggests, it proposes four

points of view on the system, linked by scenarios illustrating the system’s

essential functionalities.

End-user
Functionality

Programmers
Software management

Logical View

Process View

| I Scenar

i;:

Development
View

Physical View

Integrators
Performance
Scalability

System engineers

Topology
Communications

Figure 1.7. Points of view in the 4 + 1 framework [KRU 95]

28 Architecture and Governance for Communication Services

The attributes of these views (as presented) are described in Table 1.1.

Point of view | Logic Process Development | Physical Scenarios
Objective Indicate the Indicate the Describe the Describe the Discover the
service that the | competition and | static implementation | key concepts of
system is to synchronization | organization of software onto | the design and
provide aspects of the of the hardware validation
design software
Stakeholders Architect, user | Architect, Architect, Architect, Architect, user,
designer, developer, designer developer
integrator manager
Concerns Functionalities | Performance, Organization, | Scalability, Comprehension
availability, etc. | reusability, performance
portability,
etc.
Modelization | Classes, Events, Subsystems, Machinery, Classes, events,
concepts associations, messages components bandwidth stages
heritage

Table 1.1. Points of view in the 4 + 1 framework

Following this work, the concept of the point of view will play a key role.
It is comparable with the IN’s plane concept, but clarifies it. While the IN
planes can be seen as a layered architecture, with designers only considering
the plane above theirs, the concept of view is more flexible and specifies the
criteria for the constitution of a view, as a tool for responding to the concerns
of the stakeholders in a system. We will now examine how this concept of
view has been applied to IS.

1.3.3. Enterprise architecture and urbanization

Enterprise Architecture (EA) and urbanization methods emerged before
SOA methods, as a variation of the concept of view in the framework of
business IS. But these methods remain relevant for implementing SOAs, as
they aim to take on the major difficulty discussed above, i.e. the
implementation of software services that are consistent with the company’s
strategy.

Describing Service Architectures 29

EA methods aim to facilitate the evolution of business IS. They offer a
representation of the IS through different views, in order to make it
comprehensible to the decision-makers while also ensuring a certain amount
of consistency between the decision-makers’ view, the development teams’
view and the hosting teams’ view. They generally work within four key
steps, as shown in [SIM 09] or [URB 06]:

— mapping what exists, i.e. identifying and describing the company’s
resources (human or software) and their positioning in the IS, as well as their
responsibility for the information handled by the IS;

— defining an ideal target that fully conforms with the company’s
strategy;

— moving toward the target, i.e. setting tasks to achieve within a certain
time in order to move the existing IS closer to the target;

— itemizing these tasks in development projects. The architecture that is
implemented in these projects must therefore fit in with the target.

In the British and American works, numerous EA methods have been
proposed, including frameworks by Zachman [ZAC 87], the Department of
Defense Architecture Framework (DoDAF, http://dodcio.defense.gov/
Portals/0/Documents/DODAF/DoDAF Volume [.pdf) [DoD], The Open
Group Architecture Framework (TOGAF, http://www.opengroup.org/togaf/)
and the Information Technology Infra-architecture Library (ITIL,
http://www.itil-officialsite.com/home/home.asp). There is, thus, such an
abundance of EA methods that some [SCH 03] describe this as a jungle.
These different methods are generally defined with a liberal perspective.
They are relatively unrestrictive (for the modelization of points of view, for
example) and do not seek to hierarchize and systemize this modelization, the
most important thing being the dynamics that are sparked in the company
[SAL 08].

In France, a more constrained framework has been born with the
urbanism of IS. Urbanization emerged in big businesses during the 1990s,
particularly in the banking sector, faced with controlling their IS. Jacques
Sassoon, the first urbanization project manager at Crédit Agricole and later
the Société Générale popularized the application of the city metaphor to IS
[SAS 98]. From this perspective, an IS can be structured, like a Haussman-
style town, into zones, districts and blocks, linked by communication routes.
This division into blocks, as well as the rules of construction applicable to

30 Architecture and Governance for Communication Services

each block, can be rationally documented in the image of a British Local
Development Plan (formerly the Local Plan). A validation committee can
then authorize or not authorize each modification project of an IS depending
on whether or not it respects the rules that apply to the block in which it is
located. These principles were completed, notably by Christophe Longépée,
who was in charge of urbanization at Sema and then at the Société Générale,
by formalizing views, with a model and rules associated with each view. He
also distinguishes four viewpoints on the IS in [LON 06], the division into
blocks being essentially the prerogative of functional and applicative views:

— “The business process view, that describes the business processes and
also the relationships between them;

— the functional view, that describes the functions that the information
system has to support;

— the applicative view, that describes all the software elements of the
computer system that automates the information system;

— the technical view, that describes the overall technical architecture.”

In other words, the business view responds to the question of “why”, the
functional view responds to the question of “what”, the technical view
responds to the question of “with what” and the applicative view responds to
the question of “how” [SIM 09]. Urbanization is therefore defined as the
process of applying these principles to a particular business.

Urbanization is to organize the gradual and continuous
transformation of the information system, to simplify it, to
optimize its added value and to make it more responsive and
flexible towards strategic business changes, while relying on
technical opportunities of the market. It defines rules and a
coherent, stable and modular context, in which different
stakeholders are referring to any investment decision in the
Information System. [Urba-EA]

As highlighted by Contini [CON 02], urbanization rests, unlike EA
methods, on the presupposition that sufficiently stable invariants can be
identified to hierarchize the blocks and enforce rules that will endure, if not
forever then for a long time. In fact, in his first urbanization plan for the
Sociéte Générale, J. Sassoon considered bank products, basic units offered
by a bank, to be sustainable. C. Longépé formalizes this concept by

Describing Service Architectures 31

considering several types of invariants: those coming from the business
view, called concept classes; those linked to the aims of a business IS (an
exchange zone, a data repository zone, a referential zone for data and rules, a
steering zone, an operations zone and a resource zone); those coming from
the technical view, such as the three-tier model of technical architecture.
This concept of the invariant is not immediately compatible with the agile
enterprise model, constantly adapting to external developments to maximize
its profits. A problem, but also without doubt an interest, of urbanization lies
in the identification of these invariants in the company’s business, beyond
tactical developments. By applying this process to telecoms services in
Chapter 3, we will further discuss this question of invariants for
communication services.

The principles of EA and urbanization have already been applied by
telecoms operators — not to telecoms services, but to the internal activities of
operators or telecoms service providers. In other words, the task of defining
a framework and the organization of an IS was carried out on services’
fulfillment, billing and supervision, but not on the use of these services.
Importantly, to telecoms operators the term “information system” denotes
systems that carry out these actions of fulfillment, billing and supervision,
but not the service platforms that provide the service. Historical reasons
explain this. Operators have long provided only network services, i.e. the
establishment of a connection. The key challenge was therefore the
implementation of this connectivity at the network equipment level (via their
provisioning), billing and supervision’. In their urbanization processes,
operators therefore focused on their internal processes, and not on the
processes that they shared with their clients.

These tasks have been notably executed by a standardization organization
called the TeleManagement Forum (TMF). The key areas addressed by the
TMF in this sector are the definition of a reference framework of business
processes, the definition of a set of standard business processes, the
definition of systems for the realization of business processes and
the implementation of solutions. The TMF has therefore formalized the
enhanced Telecom Operation Map (eTOM) model, summarized in
Figure 1.8. For more details, see eTOM (http://www.tmforum.org/
BestPracticesStandards/BusinessProcessFramework/1647/Home.html).

6 Recent work has, however, applied the principles of urbanization to network services,
notably F. Menai in [MEN 05]

32 Architecture and Governance for Communication Services

Operations

support and Fulfillment Assurance Billing
readiness

Customer management and relationship

Supplier/partner relationship management

L T 1 T 1 | [|

Figure 1.8. eTom reference framework

The rows and columns in Figure 1.8 constitute the invariants that we just
mentioned for telecoms service management. The rows represent the main
domains of the IS, which can be compared to areas of urbanization. These
are the customer relationship, service management, resource management
and supplier management. The columns represent the main groups of
business processes internal to telecoms operators:

— fulfillment, to sell and implement a service;
— assurance, to guarantee the quality of the desired service;
— billing, to invoice the service that has been provided;

— operations support and readiness, to ensure the smooth running of all
the above processes.

As we have indicated, this work has not addressed what the value of a
service brings to its users, i.e. the use of this service. Service platforms are
seen as resources, in the same way as a router or a switch. But service
platforms are stakeholders in a system. They support interactions with users.
And they interact with other service platforms and with networking
equipment, so that a service is guaranteed from end to end. The usual
questions concerning the urbanization of IS, such as arranging in blocks,

Describing Service Architectures 33

dividing functional responsibilities between these blocks and the means of
communication between themselves, fully apply to current service platforms,
of which the architecture needs to be structured and streamlined. We will
see in Chapter 2 how this need of the architecture arises from the evolution
of communication services to user-centric services, centered on the user.
Unlike the approach proposed, for example, in [VUD 03], an extension of
eTOM to take service use into account does not seem relevant. The
invariants of services are not effectively the same as those of internal service
management processes, which are summarized in the columns and rows in
Figure 1.8. In Chapter 3, we will determine what is stable in rapidly evolving
services.

1.4. Summary

At the beginning of this chapter, we defined architecture as the way in
which a system is constituted by basic components for its optimal
functioning. What are these basic components in the telecoms, Web and IT
communities? They are, without doubt, network functionalities for IN
services, service platforms for NGN services, resources for the Web and
software services for SOAs.

If these components are defined case by case and without a fixed method,
we could soon fall into the traps of over-abundance, confusion and lack of
control. With urbanization and EA methods, we have seen that to orient the
conception of these features toward a company’s strategy, we must identify a
target, as well as invariants to use as a basis for identifying these
components, to describe their relationships. The search for these invariants is
not the prerogative of urbanization, but crosses the telecoms, Web and IT
communities. These are the service features and SIBs for IN services,
enablers for NGN service platforms, ontology concepts for Web resources
and business process activities for SOA services. For communication
services, the search for invariants often lacks method, partly due to not
showing how to manage their lifecycle (why and how to introduce or remove
them?) and partly due to not always clearly distinguishing between the
different aspects of a service (functional, technical and applicative). We will
now see in Chapter 2 what the basic features that make up telecoms
services are.

