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Chapter 1

Elements for the Design
of Embedded Computer Systems

1.1. Introduction

The development of embedded systems is usually done using low-level
languages: namely, assembly language and oftentimes C. The main reason for this is
the need to elaborate programs that have a small memory footprint because they are
usually deployed on very compact architectures1. More costly development
techniques have been gradually created. These development techniques are mainly
based on an in-depth assessment of the requirements, intensive tests as well as very
strict development procedures, which ensure a safety standard satisfying the
expectations of the general public.

However, these systems that often accomplished critical missions frequently
involved very expensive developing strategies, thereby being limited to a specific
usage such as space travel, aeronautics, nuclear use and railroad transportation. Once
these systems emerged in more “mainstream” industries, the approaches in
development had to evolve in a cost-reducing direction. The economic revolution
toward offshore development does not facilitate these aspects of viability/safety, but
these new development approaches could, in the long run, become very competitive.

Chapter written by Fabrice KORDON, Jérôme HUGUES, Agusti CANALS and Alain DOHET.
1 For example, the probe Pioneer 10, launched in 1972, had only six Kbytes of
memory [FIM 74], which did not stop it from transmitting an impressive amount of scientific
data regarding Jupiter and its satellites, before becoming the first man-made object to have left
the solar system.
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The mere use of high-level programming languages is not, in and by itself, the
solution. Embedded systems usually contain sophisticated mechanisms and runtime
libraries. Because the latter cannot be certified, they are very difficult to use. Take the
Ada language as an example of this. It was elaborated in the 1970s with the aim of
developing low-cost embedded systems. Some of its features (usually the
management of parallelism) have seen limited usage in certain fields, largely due to
the code compiled having to be associated with limited runtimes (for instance, not
being able to support the parallelism or the dynamic memory allocation).

One solution to maximising software viability and minimizing the cost of
embedded computer systems is through the use of model-driven engineering (MDE).
It indeed facilitates better interactions between the different languages and models
used throughout the design/development cycle.

More particularly, it allows us to rely on dedicated “models”, which sometimes
facilitate the reasoning process. Thus, engineers can predict certain behavioral aspects
of their programs. The transformation techniques that have been developed by this
community ensure the link between the different development stages.

These new approaches will not suddenly replace the existing procedures. The
actors behind the development of embedded systems (particularly when they carry
out critical missions) cannot afford to take any risks. However, these actors have
gradually taken an interest in these new techniques and their application in adequate
methodological frameworks.

In the long run, the objective is to reach high-performance industrial processes
capable of ensuring trustable software, by providing, for instance, co-simulation and
formal verification and allowing the target code generation to be validated right from
the beginning of the modeling.

It should not surprise us that the three notations presented in this book – systems
modeling language (SysML), unified modeling language/modeling and analysis of
real-time and embedded systems (UML/MARTE), and architecture analysis and
design language (AADL) – are heavily reliant on model engineering. Model
engineering is clearly a “hot topic” in the community at the moment.

Chapter outline. This chapter discusses several elements that are important in the
development of embedded systems in the context we have just touched upon. We pay
particular attention to:

– the modeling activity (section 1.2);

– the presentation of the UML, which serves as the foundation for two of the three
notations presented in this book (section 1.3);
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– the presentation of the MDE (section 1.4);

– an overview of the analysis techniques and, in particular, those used in this book
(section 1.5);

– the methodological aspects of system development (section 1.6).

1.2. System modeling

The modeling operation has been a widespread practice in the history of
humanity. It seeks to explain the behavior of a complex system via a model that
abstracts it. We can cite the different models designed for explaining celestial
movements: the system of the epicycles, the Ptolemaic system, the Tycho Brahe
system, the Copernican system, etc. Their objective was to predict the evolution of
the planets’ position. They represent a process of ongoing fine-tuning of the
understanding of a field, a new system replacing the old system when new evidence
crops up showing that the old system does not correspond to reality. Modeling has,
therefore, been an indispensable tool in experimental sciences for a long time.

In computer science, the big difference lies in the fact that the model does not
reproduce a system we are trying to observe in order to understand its behavior. The
model is placed at an earlier stage, and allows us to realize whether a solution, which
is in the process of being discovered, will respect the properties expected.

Real system
Modeling

System model

Analysis

Model propertiesSystem

properties

Figure 1.1. Relations between the system, its model and their properties

Figure 1.1 represents the relation between different entities of a system at the core
of the modeling operation. The engineer models the system while he or she is in the
process of designing it. The analysis of this model (via simulation or via more formal
methods, see section 1.5.1) allows us to deduce system properties. However, the
relation between the properties of the model and those of the system is by no means a
trivial issue.

First, the expression of the properties may vary greatly in the two cases. Usually
the property of the system will be expressed in a natural language, whereas the
property of the model will have the shape of an invariant or will reference quite
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precisely an entity of the analysis (whose meaning must be known to the users if they
wish to understand it). We must thus anticipate elements of traceability between
the two.

Second, the necessary abstraction of certain system elements during the modeling
process (for instance, changing from discrete types to continuous types) can, when
done poorly, result in a model that does not faithfully represent the system. If it is a
superset, then a property that has not been verified on the model can be verified on the
system; if it is a subset, then a property that has been verified on the model may not
be true for the system.

Modeling is thus a challenging operation that must be carried out carefully. More
particularly, the modeling choices must be documented properly. In the field of
embedded systems, we will introduce several important notions regarding the
concept of a model.

Structural or behavioral modeling. The former defines the structure of a system
(i.e. the class diagrams or the UML instances) whereas the latter describes its behavior.
When examining problematic behaviors, or identifying emerging behaviors, we must
reach the second level, which generally presupposes that the modeling of the system
structure already exists (at least the identification of the interacting actors).

Open or closed models. An open model describes a system. A closed model
describes the system and the environment it interacts with. We can, thus, consider
that the open model is “included” in the closed model.

The reason we need to distinguish between the two is that we are able to subject
the model of a system to different conditions of execution. Each of them is thus
characterized by a dedicated specification of the environment that “closes” the
specification. This notion is particularly useful when we study different execution
modes: a nominal mode, modes that have been degraded as a consequence of certain
conditions, etc.

Notations used in this book. This book deals with embedded systems and only uses
the notations that enable us to describe those systems. Out of these, we have selected
three. Of the three, SysML [OMG 12a] and MARTE [OMG 12b] are UML profiles,
and AADL [SAE 09] is a dedicated notation that integrates, at the same time, the
description of the software part and that of the hardware part of a system.

1.3. A brief presentation of UML

The first version of the UML was version 2.8 of the “unified method”, which was
written by G. Booch and J. Rumbaugh. At the time, in 1995, Y. Jacobson was not yet
part of the adventure, and the letter “M” stood for “method”.
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A year later, the first versions of the UML, namely versions 0.9 and 0.91, were
published, which incorporated the work of Y. Jacobson. This time, the “M” stood for
“modeling”. Indeed, these three “fabulous evangelists”, having not agreed upon one
standard method, had instead focused on the notation.

UML 1.0 and 1.1 were proposed to the Object Management Group (OMG) in
1997. Then came version 1.2 in 1998, 1.3 (a very significant revision) in 1999, 1.4 in
2001 and, finally, 1.5 in 2002. This sequence of different versions is usually called
“UML1.X”. This was followed by UML 2.X, whose first stable version (2.0),
appeared in 2003. This is a major revision now involving 13 diagrams instead of nine
previously. The metamodel was also considerably modified (which is of relevance to
tool designers). The notion of the profile was formalized, which has allowed, for
example, the emergence of “variants”, such as SysML and MARTE, which we will
detail in this chapter.

Let us note that the transition from 1.X to 2.X, which was supposed to facilitate
the use and efficiency of the language, has given mixed results. The industry and the
toolmakers had put a significant amount of time into fully supporting UML 1.X and
the required adaptation has delayed the operational use of UML 2.X, which has only
recently begun to be used effectively in industry.

We will introduce the main UML characteristics (in its current version in 2012, the
2.4.1 version). The 16 UML diagrams are divided into two classes: static and dynamic
diagrams.

Among these 13 diagrams, the four “main” diagrams are considered to be classes,
sequence, use cases and state machines. They are used in the parts dedicated to
SySML and to MARTE but also, systematically, by all the UML users.

UML is a notation. To use it well, we also need a method. Thus, each company
has created its own method usually relying on the “unified” method (UM) or the
rational unified process (RUP) (the two are pretty close). These methods describe
when and how to use this or that diagram, how to organize the model as well as the
documents and the codes that are generated while still respecting the
specification/design processes that are enforced throughout the enterprise such as
traceability, configuration management and quality (rules for a correct usage, coding
rules, etc.).

1.3.1. The UML static diagrams

These diagrams describe the static aspects of a system (relative to their
organization). In this category, we may find the following diagrams: classes,
composites, components, deployment, object and package.
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Class diagrams. They allow us to model the domain (for the sake of
simplification, the data and/or the concepts manipulated by the application), and then
the application itself. We will thus have the classes of the domain, then the
application classes (analysis and design). An average model generally brings about
approximately 100.

Composite diagrams. They allow us to decompose a class (in general an
application class) into smaller parts. This decomposition enables us to show, for
example, which part implements which operation, or how the different parts
communicate with each other.

Let us note that there is a second type of composite diagram, which allows us to
model patterns. Once these patterns are modeled, they can be used in class diagrams.

Components diagrams. They allow us to describe a system via its components
and the interactions between components through their interfaces. A component can
also be decomposed into subcomponents (just like the classes decompose into smaller
parts) by means of a composite diagram.

The difference between a class and a component is the subject of a wide debate.
However, our viewpoint can be summed up as follows:

– A class is the basic building block of a software.

– A component is also a building block but of a different level of abstraction; it
generally groups together a set of classes, but can also group together other artifacts
such as configuration files.

– Classes are interlinked via different relations (heritage, association and
composition) and they propose various interfaces.

– Components are interlinked via interfaces.

– Classes can be decomposed into smaller parts.

– Components can only be decomposed into other components (i.e. components
having a smaller granularity).

Deployment diagrams. They allow us to model the physical architecture
(architectural components) of the application: machines, processes, communication
modes, etc. In general, a process is made up of components (which are composed of
classes and other artifacts) and distributed to one up to n machines.

Object diagrams. They instantiate a class diagram. A class diagram is a generic
model (for instance, the description of the organization of an enterprise) whereas an
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object diagram is a specific model (for instance, the description of the organization of
an enterprise).

In general, we start out by drawing class diagrams and we make sure they concur
with the object diagrams. However, several designers prefer to start with the objects
(of the specific domain) and then generalize in order to find the classes. The final result
is often similar.

Package diagrams. They allow us to organize the model. A package may contain
packages, classes, objects and diagrams. In general, a model is organized in three
packages: needs analysis (use cases), logical architecture (classes) and physical
architecture (machines, processes and components). Depending on the method
applied in the enterprise, each of these packages can be further decomposed.

It is worth noting that a package is not a component (neither software nor
hardware) but rather a model structuring unit.

1.3.2. The UML dynamic diagrams

These diagrams describe the dynamic aspects of a system (i.e. relative to their
execution). In this category, we may find the following diagrams: activity, interactions
(sequence, communication, overview and timing), use cases and state machines.

Activity diagram. This type of diagram (which includes the concepts of
parallelism) facilitates the modeling of an algorithm via concatenation of
activities/events. It proposes an action language allowing us to specify in more detail
all of the algorithmical processing.

Interaction diagrams. (sequence, communication, overview and timing) The
sequence diagrams and communication diagrams allow us to model the collaboration
between the objects (class instances). These two diagrams are almost equivalent even
if they present us with several specificities. The main difference is a visual one: the
sequence diagram shows a sequential view, whereas the communication diagram
shows a spatial one.

The overview diagram allows us to show a concatenation of diagrams in the shape
of an algorithm that is similar to the activity diagram. However, the activities and
actions are in themselves diagrams. This gives us better readability throughout the
specification of complex concatenations.

The timing diagram (derived from electronic engineering) facilitates the modeling
of behaviors that are sequenced by time events (for instance, the time constraints
between different states of several objects).
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Use case. They facilitate the description of the system from an external point of
view: the actors (roles) using the system as well as the services (use cases) offered
by the system. The use cases are, in general, fine-tuned by activity diagrams and/or
sequence diagrams filled in with natural language.

State machines. They model the behavior of an active class (asynchronous events,
communication protocols, etc.). They can equally model the behavior of the system
(its different states, the transition conditions from one state to another, etc.).

We call an “active class” a class that has an autonomous behavior.

1.4. Model-driven development approaches

The UML 2.0 version appeared in the early years of the 21st century; this version
has been progressively integrated in development workshops, which, since then, have
started to provide a very rich array of modeling tools. These tools have been
developed in accordance with norms that synthesize a number of experiences and
industrial expectations in the field of system engineering, thus grouping them
together for the first time in years.

Around the same time, the notion of MDE appeared.

Three predominant approaches were born from this concept:

– the OMG approach: model-driven architecture (MDA), based on UML and Meta
Object Facility (MOF) (the language that allows us to write metamodels in the OMG
world);

– the ECLIPSE approach: Eclipse Modeling Framework (EMF) based on ECORE
(the language that allows us to write metamodels in the ECLIPSE world);

– the Microsoft approach: tools and concepts based on domain specific language
(DSL).

Let us note that the approach proposed by the OMG is not well equipped, contrary
to the other two. Therefore, it is up to the user to make his or her workshop.

1.4.1. The concepts

The MDE mainly consists of using the models in the different phases of the
developing cycle of an application. There are three levels that we will consider:

– the requirements or computation independent model (CIM);

– the analysis and the design or platform independent model (PIM);

– the “pre-code” or platform specific model (PSM).
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The main objective of the MDE is the elaboration of models that are independent
of the technical details of target platforms. This independence must engender, in the
long run, the automatic generation of (via model transformation) a large part of the
code of the applications, besides spurring a gain in productivity.

Another principle that is highly significant in MDE is the allowing of the
transformation of the existing models into the target representation. Thus, whatever
the technology used, it is possible to pass very easily from one technology to another,
provided that we have the necessary transformation tools. These are based on
transformation languages that must follow the query/view/transformation (QVT)
norm proposed by the OMG.

1.4.2. The technologies

It is crucial to know which technology to use. Indeed, for a given domain of
application, there are at least two options:

1) writing a metamodel of the domain of application, and then running adapted
equipment:

2) writing an UML profile of the domain of application before using an existing
“profile” tool.

We will illustrate the advantages and disadvantages of these two techniques using
the “model editor” as an example.

In the first case, there are no modeling tools for the chosen technology. The
approach consists of writing the metamodel of the technology (i.e. a DSL) and then
generating an UML modeling tool (in general 60% of automatic generation with the
EMF tools). Once the UML modeling tool is generated, the engineers create a
“specific” tool, allowing us to carry out technology models.

In the second case, the choice is made to use an existing UML modeling tool. The
approach consists of writing the profile of the technology. Once this profile is created,
the engineers create a profiled generic UML tool, allowing us to carry out technology
models.

In the first case, the graphic range of the editor proposes concepts such as “buffer”
and “task”. In the second case, the graphic range of the editor proposes the usual UML
concepts such as the “class”, but the class can only be stereotyped as a “buffer” or a
“task”.

The two techniques have their advantages and disadvantages. In the first case, the
job engineers have an editor that gives them a job-specific vocabulary, which is an
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advantage. In contrast, in the second case, they must pass through the notion of “class”
before introducing the job concepts, which can be misleading.

In order for these two techniques to be equivalent, we should be able to configure
the UML modelers so they present the job concepts without passing through the UML
concepts, as we could observe it with SysML or the famous block, which is, in fact, a
class stereotyped as block.

For the time being, the two techniques sit along side-by-side in the industry,
belonging to opposite camps, each of them arguing in favor of its advantages.

1.4.3. The context of the wider field

The major objective of the models is to facilitate mutual understanding,
exchanges and the communal work done by the actors of a project. Their
construction and representation must therefore observe certain conventions and rules,
which are turned into several norms and standards.

The modeling language determines the manipulated concepts, their semantic and
their representation under a textual and graphic form. The variety, of the
preoccupations both in the early design/development stages in the domains of
application and in the specialties involved (safety, reliability, human factors...) has
lead to so many languages that it is impossible to enumerate them all. They can,
however, be classified into three large categories:

– The languages with a generic aim: the main language is UML, SysML and
MARTE being seen as its derivatives for system engineering and real-time embedded
systems.

– The more narrow, specialized languages, which are associated with formal
verification methods (automata, Petri nets, B, Lustre, etc.) and allow a mathematical
verification of certain expected properties.

– The non-formal specialized languages, connected to certain domains of
application, specialties or specific preoccupations, whose terminology they integrate
in their construction, as well as incorporating their rules and concepts. The DSL’s
come from this category. Workflow languages, such as the business process modeling
language (BPML), will be useful in describing the needs for interaction between
human beings and the systems.

In the case of embedded computer systems integrated in wider systems, it is
necessary to use dedicated architectural frameworks to master both a global
consistency and a potential evolution in the future. These frameworks structure and
specify how to define the architecture of a system (or the way it will be used by the
end user organization). To do that, they define the different required viewpoints for
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its description, as well as the metamodel necessary to ensure the consistency between
the different viewpoints and for carrying out impact analyses.

In comparison to the diagrams prescribed by languages such as UML, the views of
the architecture frameworks distinguish themselves through the larger spectrum that
they cover (they consider the dimensions that are necessary for the overall governance:
enterprise organization and processes, evolution of the capacities, synchronization of
the projects, etc.) and they are limited to specifying the type of information that must
be provided, this giving a lot of freedom for the actual manner of representation. The
NATO Architecture Framework (NAF) is one of the most recent and most advanced
architecture frameworks. This is why, it is used beyond its military scope.

Name of the standard Role of the standard
Fundamental concepts for modeling

ISO/IEC/IEEE 42010 (2011): System and software
engineering – Description of the architecture

Defines the principles that must be respected and the
fundamental notions (viewpoints, architecture frameworks,
architecture description languages, etc.)

IEEE 1471 (2000): IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems

As a reminder: replaced by ISO/IEC/IEEE 42010

Architectural modeling languages
OMG UML: Unified Modeling Language V2
UML: ISO/IEC 19505 (V2.4.1 - 2012): Information
technologies – Unified modeling language
OMG SysML: System Modeling Language Specification
(V1.3 - OMG, 2012/06)

Extension of the UML to system engineering

UML/SPT: Profile for Schedulability, Performance and
Time (OMG, 2005)

Extension of the UML for the modeling of real-time
systems. Replaced by the MARTE profile

UML/MARTE: Profile for Modeling and Analysis of Real-
Time and Embedded Systems (MARTE 1.1 – OMG,
2011/06)

Extension of the UML for the modeling of real-time and
embedded systems. Replaces the SPT profile

UML/QFTP: Profile for Modeling Quality of Service and
Fault Tolerance Characteristics & Mechanisms (OMG,
2008)

Extension of the UML in order to facilitate the modeling of
aspects such as the quality of service and the tolerance to
application faults

UML Testing Profile (UTP) (V1.1 – OMG, 2012) Extension of the UML with concepts relative to the tests
SAE AS 5506 rev. A (2009): Architecture Analysis &
Design Language (AADL)

Language for the description of the architecture (software +
execution platform) of the real-time embedded systems with
critical performance

IEEE Std 1320.2 (1998) – IEEE Standard for Conceptual
Modeling Language – Syntax and Semantics for IDEF1X97
(IDEFobject)

IDEF is a family of modeling languages for software and
system engineering

OMG BPMN 3.0 (2011): Business Process Modeling and
Notation

Graphic notation standard serving to describe the processes
of the enterprise (as well as the man–system interaction)

The Open Group – ArchiMate 1.0 Specification (2009) Enterprise architecture description language
Architectural frameworks

NATO AC/322-D 0048 (2007): NATO Architecture
Framework V3 (NAF V3)

Architecture framework for large (military) systems

ISO 15704, Industrial automation systems – Requirements
for enterprise-reference architectures and methodologies
The Open Group Architecture Framework (TOGAF) Enterprise architecture
ISO/IEC 10746 (1998): Information technology – Open
distributed processing – Reference model (RM-ODP)

Description of distributed information systems

Table 1.1. The main standards for system modeling

Table 1.1 gives an overview of the main standards used for system modeling. The
main organizations that devise the rules and standards regarding architecture modeling
of embedded systems are:
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– the International Organization for Standardization (ISO);

– the Institute of Electrical and Electronics Engineers (IEEE), which is an
American professional organization; that publishes its own standards via the IEEE
Standards Association;

– the OMG, an American association whose objective is to standardize and
promote the object model in all its forms.

To this list, we may add some so-called “sectoral” actors:

– the International Society of Automotive Engineers (SAE International), which
is a world association covering the aerospatial domain as well as the one of terrestrial
vehicles, having the aerospace standard (AS) standards and ground vehicle (GV)
standards;

– NATO, mainly in the military domain;

– The Open Group, for the enterprise information systems;

– the Electronic Industries Alliance (EIA), which stopped its activity in 2011
and has been replaced by five more specialized associations, among which the
Governmental Electronics and Information Technology Association (GEIA);

– the European Cooperation for Space Standardization (ECSS), which holds a
set of norms dedicated to spatial projects management, organized in three branches:
projects management, product insurance and system engineering;

– the Requirements and Technical Concepts for Aviation (RTCA).

1.5. System analysis

For a long time, systems have been validated via tests and simulations whenever
the executable models were available. However, this exploratory approach does not
guarantee that the set of possible executions is well covered. So-called “shadow areas”
within the execution of the system can still exist, and they can hide various faults. This
is in particular true in the case of embedded systems. Non-functional constraints (such
as energetic consumption and performance) can, indeed, be added to the functional
constraints that are already difficult to verify.

To pass beyond the so-called “horizon”, which is the limit of traditional
simulation and test approaches, we must use formal methods, as shown by numerous
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studies. Only formal methods guarantee that a property is verified because they rely
on mathematical models’ existance and enable us to reason on the basis of the
specification.

In this domain, there are two families of formal verification techniques: theorem
proving and model-checking. Let us briefly recall the principle of the first family that
will not be further explained in this chapter because we will not use it. In the following,
we present in more detail the model-checking approach, which is used in Chapter 8.

1.5.1. Formal verification via proving

The tools and emblematic languages of this family of formal techniques are
Coq [AFF 08], Z [ISO 02] or B [ABR 96]. They all have their own success stories
such as the behavior verification of metro line 14 in Paris, using method B.

The basic principle is to axomitize the system to be verified using a mathematic
notation. Then, properties are theorems to be demonstrated from these axioms,
possibly by means of intermediary intermediate lemmas or theorems. A “proof
assistant” is used to help engineers to explore the “demonstration space”. However,
this assistant cannot perform the proof automatically.

The theorem prooving approach allows us to demonstrate that the system respects
the desired properties. In addition, we know the validity conditions for these proofs,
such as the parameters of the initial state, required for verifying the properties. They,
therefore, are extremely useful data for the system designers.

However, this technique has several drawbacks. The first one is that it is difficult to
put into practice. This approach requires highly qualified engineers mastering both the
considered application domain and the demonstration techniques. Another difficulty
refers to the absence of a diagnosis demonstration that cannot be performed (i.e. the
exploration carried out by the proof assistant fails). Only an extremely high degree of
expertise permits, in certain cases, to understand whether the absence of proof is due
to the system itself or due to a modeling error.

1.5.2. Formal verification by model-checking

The model-checking principle [QUE 82, CLA 86, CLA 00] is very simple. The
system is described using an executable formal notation, where a state is generally
represented as a vector if values (e.g., the state of the variables of a process). This
system is then simulated exhaustively, which can be done because the nature of the
state allows us to tell, for each explored system configuration, whether it has been
encountered before or not. Thus, if the system is finite, we may explore its state space
exhaustively and look for the properties we wish to check (there are also
model-checking techniques dedicated to infinite systems [DEM 11]).
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The main advantage of this technique is that it is completely automatic; its use
does not require the engineers to have any specific knowledge (only the specification
language must be well known). Furthermore, in most cases, the response is either “yes,
the property is verified”, or “the property is not verified, but here is a counter-example
that leads to the violation of the property”. This information is a useful diagnosis,
which can be used directly by an engineer on the basis of his knowledge of the system
only.

Model-checking also suffers from a number of disadvantages. The first one is the
combinatorial explosion of the number of states in complex systems [VAL 98]. This
is particularly true when we introduce parallelism or when we wish to analyze time-
based constraints. To avoid this problem, we must develop specific techniques that
only function in certain cases. The engineer must then adapt their specification or
use certain tools rather than others. Such cases temper the automatic use of model
checking since, a deeper understanding of the underlying techniques is required to
operate them.

The other problem is that the system cannot be verified in a parameterized way, as
in the case of a proof, but only for given an initial configuration. This can make it
difficult to identify the conditions that prompt a system to observe the desired
properties.

Finally even if the counter example is small compared to the system complexity,
the user may recover a trace of the 108 steps that are indeed difficult to analyze.
Despite this, it is a good downsizing factor in comparison with a system that
comprises, say, 1080 states.

In the rest of this section, we will look into the conditions that enable model-
checking to verify systems.

1.5.3. The languages to express specifications

Expressing the specifications is a crucial problem because the verification
algorithms function on the basis of the expression of the specification. In general, we
can distinguish two parts in the system specification: the system itself and the
properties it must respect. Let us note that, in general, the expression of the
properties is harder than it appears.

1.5.3.1. System modeling

To be useful for the verification, we need a language with a formally defined
operational semantic. Thus, the language must not only be executable but the notion
of progression also needs to be formalized. These languages usually require two
elements: the notion of state and the notion of transition between two states. More
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particularly, in order to apply certain algorithms, we need the transition between two
states to be reversible (which is not always the case in the “real world”).

Thus, it is difficult to directly apply model-checking to a programming language
whose semantic is too sophisticated (let us note that there are works aiming at directly
verifying the programs, however this will be tackled later). For example, memory
allocation is typically a complex problem that can be addressed using model-checking.
A priori, automata are the basic language for model-checking, given that the state
space is nothing other than an automaton whose nodes are the configurations (the
states of the system – the vector we mentioned above) and the transitions and the
relations between these states.

Thus, we obtain the state space of a system from a product between the automata
that represent its components. However, given that automata are not necessarily the
easiest model to use, it is often necessary to use “automata generators”, such as Petri
nets [DIA 09], or languages with possibilities restricted to a well-defined behavioral
model such as PROMELA [HOL 97, HOL 04], CSP [HOA 85] and
FIACRE [BER 08].

Finally, recent studies concern the transformation of high-level languages into
formal languages. Let us mention:

– the transformation of C [ZAK 08, JIA 09] programs or Java programs [VIS 05]
(in general, a language subset) into PROMELA;

– the transformation of some UML diagrams into Petri nets [KOR 10];

– the transformation of AADL specifications into Petri nets [REN 09] or
FIACRE [COR 10].

1.5.3.2. The expression of properties

Once we know how to express the state of a system, the properties can be
specified as logical formulas expressing constraints on the components of the vector
that describes a state. We thus obtain an atomic expression allowing us to
characterize a state pattern such as the formula below, which implies three variables
V1, V2 and V3:

V1 < 4 ∧ (V2 > 5 ∨ V3 = 5)

This formula can be assessed throughout the exploration of the state space of the
system. We call these safety or reachability properties because they aim at identifying
a state that observes the given pattern. When such a state is reached, the algorithm
stops the construction and looks for a path between the initial state and the state that is
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being characterized: this is the counter example. If the state space is explored without
encountering the pattern, then the property is not verified. We can thus verify the
absence of the undesired states in the system.

However, atomic expressions cannot express causal relationship between states.
For example:

Mreceived = request ⇒ in the future,Msent = response

This formula relates all of the states that correspond to the reception of a request
to the fact that in the future, the server will necessarily send a response. These are
temporal formulas (in the causal sense of the term). The atomic expressions are
connected to this kind of formulas via temporal logic operators [WIK 12]. There are
several classes of temporal logic, the most well known being the linear temporal
logic (LTL) and computation tree logic (CTL).

For the management of time properties (i.e. involving time), engineers have
developed TCTL or TLTL, which are extensions of CTL and LTL. CTL (and LTL)
operators are then annotated with time intervals. Thus, the previous request, when
timed, becomes, for example:

Mreceived = request ⇒ in less than 10 time units,Msent = response

The formula will not be verified unless the sending of the response follows the
reception of the request in less than 10 time units.

A logic standardized by the ISO was elaborated in the 2000s: property
specification language (PSL) [EIS 06, IEE 10]. It integrates notions coming from
classic temporal logic and allows for time management or probability management.

There are much more than one algorithm required for assessing different types of
formulas which varies in complexity. The reachability is the simplest (complexity in
the size of the state space), then follow the algorithms for temporal logic formulas
and, finally, those concerning timed temporal logic or probabilistic temporal logic. In
certain cases (for instance, for timed systems), properties are undecidable: there is no
algorithm that can systematically solve the problem.

The main difficulty in carrying out the model-checking approach lies in the
capacity of the engineers to easily express the requirements that must be verified on a
system. Temporal logic classes have a large power of expression and allow for a
rigorous expression. However, in practice, they are difficult to handle in an industrial
context because they demand great expertise from engineers. Indeed, a requirement
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can reference numerous events, which are connected to the execution of the model or
of the environment, and it depends on an execution history that must be considered
when at verification time.

One solution to this problem is the use of dedicated languages, which allow us to
express properties and abstract certain details, at the cost of reducing the
expressiveness. Numerous authors have made this observation and some of them
[DWY 99, SMI 02, KON 05] have proposed to formulate properties with the help of
definition patterns. A pattern is a textual syntactic structure that allows a mode of
expression that is closer to the languages used by engineers.

Another way of simplifying the expression of the requirements comes from the fact
that, in the requirement documents, they are often expressed in a given context of the
system execution. The requirements are associated with specific phases of the system
execution. In [KON 05], the authors have proposed to identify the scope of a property
by enabling the user to specify the temporal context of the property with the help of
the operators (global, before, after, between, after-until). These allow us to associate
the requirements to a particular temporal context of the execution of the model to be
validated. The scope indicates if the property must be considered, for example, during
all of the execution of the model, before, after or between some occurrence of events.
The analysis presented in Chapter 8 (Part 3) is inspired from this notion.

Let us note another technique adapted to temporal properties involving the
detection of evens: the approach based on observation models [HAL 93]. The main
idea is to overload the model with elements that are mere observers (non-intrusive),
which observe some particular states of the system. It has been proved that with such
observers, we can express these formulas in the form of an accessibility
property [KUP 99]; therefore, a property can be verified by simpler algorithms.
However, this needs a modification which is sometimes complex in terms of
specification. We must also ensure that this has no side effect on the behavior of the
system (i.e. that the observer must remain neutral and should not hamper certain
behaviors).

This procedure has been popularized with the LUSTRE [HAL 91] language and
has been reused by the UPPAAL tool [UPP 12]. The expression of an invariant
property by means of an observer is simpler, yet its complexity is correlated to the
complexity of the initial property (it can be up to 20 states for realistic observers).

1.5.4. The actual limits of formal approaches

The formal approaches are gradually becoming more present in several industrial
sectors, becoming more and more indispensable for ensuring higher reliability. An
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indicator is the adoption, in the aeronautic standard DO178C, of formal techniques
for system design. However, several questions yet remain open.

The first one considers the connection between the system and the model.
Verification is carried out on a specification and not on the system in itself, often
expressed in inappropriate terms or being too complex. Therefore, we must ensure
consistency between the two, or else properties demonstrated on the model may not
be true on the real system. This means that we need to use a very rigorous
methodology.

To ensure this consistency between the system and the model, model engineering
proposes approaches that involve transformations (several approaches are described
in this book). The formal specification is thus generated from a high-level model that
also serves to produce the code of the final application. This raises two issues:

– The approaches via transformations must preserve the execution semantic
between the source model and the target model, which is difficult to demonstrate.

– The formal specification therefore become too complex: again we meet the
problem of a combinatorial explosion, which is specific to model-checking approaches
(or to their equivalent for proof-based approaches).

Finally, the use of formal methods requiring complex software tools raises the
issue of their certification when they contribute to the elaboration of certified
programs. One such successful experience has been carried out with the SCADE
code generator, which is certified, and produces code that does not require any
further certification efforts. The high licensing cost involved in certifying the code
generator for SCADE, however, makes it rarely used. Specialists are debating about
potentially using methodologies that allow for the use of uncertified tools in the
development of certified software, an analysis of the validity of the results of these
tools thus becoming indispensable. For a code generator, a simplified procedure for
certifying generated programs, therefore, needs to be maintained.

These elements, along with the need for highly qualified engineers, are obstacles
to the adoption of formal methods on a wider scale. It does not, however, stop
progression of formal method use in computer science thanks to the outcome of
research on the one hand and the increasing demand for system reliability, on the
other hand.

1.6. Methodological aspects of the development of embedded computer systems

Since World War II, and then with the big space programs of the 1960s, the
willingness to master the development of systems has grown considerably. To do this,
we must have the various teams as well as the various specialties involved to
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collaborate more efficiently in the design and in the production of these complex
systems. Thus, the actors concerned had to formalize the nature of the activities
required to pass from more or less well defined stakeholders needs to a real system.

Stakeholders

expectations definition
Validation

Conformance

Conformance

Conformance

Technical

requirements definition
Verification

Integration
Architecture

design

Acquisition or development of

constitutive elements

Figure 1.2. V development cycle as proposed by the AFIS

One of the most famous examples is the V development cycle (see Figure 1.2).
This has become a standard in the industry since the 1980s. It distinguishes between:

– a downward specification/design branch, which groups together all the activities
starting from the “need” to the “on paper” definition of the technical solution;

– an upward branch that covers the integration, verification and validation of the
complete system;

– between the two, a horizontal passage corresponding to the acquisition or the
development of constitutive elements (with, if necessary, other overlapped V cycles;
the procedure being iterative).

This vision is of course simplified because it presents a perfectly sequential
succession of activities. In reality, it also goes backward and iterations are inevitable.
They can come from certain gaps or from evolutions of the requirements (certain
aspects will only be emphasized via questions that arise during the design) as well as
from interactions between specialities and/or from the search for better compromises,
not to mention the problems detected during the integration or during tests.

This has led to more sophisticated development lifecycles (incremental, spiral,
evolving, product lines, etc.), in particular for the software intensive systems.
Nowadays, all of standards in engineering implement the following distinction
between two dimensions:
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– the phases, which punctuate the project, relying on an adapted development
lifecycle model and facilitating the understanding of the entire process (for instance,
the specification phase of the system, which results in supplying the technical
specification);

– the process (set of connected activities), which indicates the activities that must
be carried out; they are, essentially, independent of the type of system and the
considered application domain.

The same type of activity may concern several phases. Thus, design activities
may be necessary very early in the process, for instance for designing prototypes to
illustrate and elaborate the requirements. Similarly, the verification and validation
processes obviously apply to the final system, but they can also regard the results of
other phases in order to detect problems or drifts as soon as possible (usually
forgotten requirements/constraints or the impact of an undesirable event). The
objective is to limit the impact of these problems on the production costs (money,
time) of the system. It is the responsibility of the project management to select,
organize and plan the activities that must be carried out.

1.6.1. The main technical processes

The main technical processes considered in engineering standards are,
notwithstanding close variations in scope and terminology, based on the same
pattern. Let us note that these processes indicate what needs to be done, but they do
not suggest how. This is the objective of the methods, which are closely related to
application domains as well as to specialties. In the processes usually considered, we
find the following elements:

– The stakeholder requirement definition: this involves the collection, analysis
and formalization, with the involved stakeholders (clients, users, support), of what the
future system will have to do.

– The requirements analysis: this involves the translation of the stakeholders’
requirements needs into measurable technical terms, without considering any possible
implementation. The system is then seen as a “black box” whose interaction with its
environment is analyzed. It is also in this stage that “non-functional” requirements
(safety, security, reliability, availability, etc.) as well as any potential specific
constraints (regulatory, environmental, etc.) are introduced.

– The functional design: this stage defines the functional architecture of the
system (independent of any technological constraint), the allocation of requirements
to functions as well as the description of their characteristics and behavior.

– The physical design: this stage partitions functions of the system (we speak of
logical architecture), defines the physical architecture of the solution and allocates



Elements for the Design of Embedded Computer Systems 23

functions to the respective elements (hardware, software and, finally, human
elements). We specify here the components to be developed along with their interfaces.

– The system integration: this involves assembling in one single system the set of
components that had been developed and acquired separately.

– The system verification2: this stage concerns the verification actions to be done
by the system designer/developer. They enable the system designer to ensure that his
or her product is “well-made”, with respect to development rules or standards, etc. (he
or she has made the system right).

– The system validation: this involves actions that enable the client and the end
user to ensure that the product responds correctly to the stakeholders’ needs and
requirements identified in the first stage (they have the right system).

1.6.2. The importance of the models

System development requires the collaboration of multiple actors and teams that
are sometimes important and very varied specialties. We need, therefore, means of
support, ensuring a smooth communication among all parties involved. This is the
role of the models, which are abstract and partial representations of the system from
one point of view and with a level of granularity that facilitates the study of some of
its characteristics (properties, behavior, etc.). Each model is, therefore, designed with
one precise objective in mind; however, no model is enough by itself to translate the
complexity of a system.

There are several modeling languages, more or less specialized. This book deals
with the languages adapted to the description and analysis of embedded systems,
which are characterized by strong expectations in terms of response time, safety and
security:

– SysML is a graphic modeling language used for capturing the structural,
functional and behavioral aspects of the systems incorporating hardware, software,
people, and procedures. It can be used in support of specification activities, analysis
activities, design and verification-validation activities.

– UML/MARTE and AADL are modeling and analysis languages dedicated to
real-time embedded systems. They allow us to consider non-functional properties
(time constraints, safety constraints, security constraints, etc.) and to verify properties
such as scheduling, good transmission of messages and the right sizing of the
hardware. Their use takes place rather at the end of the design activities. They are
neither methodology nor tools.

2 Do not mistake with “formal verification” in the sense of section 1.5.
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Assigning a main role to models, model-driven engineering aims to guarantee the
consistency of the elements manipulated by the different stakeholders throughout the
system development lifecycle. The main idea is to gradually refine the models
throughout the requirement definition and analysis, as well as design analysis and to
rely on model transformation techniques in order to guarantee that a global
consistency is maintained and their properties are preserved throughout each stage.

The semantic differences between the modeling languages specific to certain
domains and the limited interoperability between the tools are still significant
obstacles in the way of achieving this aim.

1.7. Conclusion

In this chapter, we have sketched an overview of the modeling and the analysis of
embedded computer systems. Far from being exhaustive, this overview seeks to
show, the richness of these activities: the variety of the description methods, the
analysis techniques and the need to combine them via a rationalized process in
connection with the respective constraints (i.e. domain constraints, normative and
regulatory constraints).

This chapter enables the reader to better contextualize each of the notations
presented. The book is devised around the same plan: the presentation of the
notation, its use for representing a complex problem: a pacemaker, analysis and code
generation. Reading these chapters will also enable the reader to understand when
and how to use the different notations.

At first sight, we could think that SysML is useful in the early phases of the
modeling process. Being a notation for system engineering, we will have to
complement SysML with a notation that is closer to implementation considerations.
We must therefore chose between UML/MARTE and AADL:

– UML/MARTE is an obvious candidate because it is derived from UML, as
SysML is UML/MARTE which allows us to follow the modeling of the system by
explicitizing some aspects of the system. However, it has various limitations connected
with UML: a lack of a clear process, too much room for interpretation and a semantic
that is too large, so that in certain cases we will have to use a subset of it.

– AADL, allows for a more precise modeling, with a semantic that is restricted
to critical embedded systems. Furthermore, it is already connected to several analysis
tools. However, since it is outside of the UML framework, we must build a more
complex traceability between SysML and AADL.

We can thus imagine several combinations: UML/MARTE for allowing us to
model the PIM and then the PSM of the system considered, then AADL in order to
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have a coherent view of all the elements, paving the way for the integration effort, as
well as the verification and validation phases. It is better, if we limit ourselves to only
one notation, UML/MARTE or AADL, to model the system and perform analysis
and/or code generation.

As we have seen, choosing a notation is not a simple matter, and it is, above all,
a choice that must be dictated by the problem we need to solve, by the tools that are
available as well as by how familiar the engineer is with the notation.

This is the overarching goal of this book, enabling you, the reader, to make such a
choice, by analyzing the same case study using these three notations.
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