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Introduction to Non-local Elasticity 

Recently, interest in nanotechnology is growing rapidly. The inventions 
of carbon nanotubes (CNTs) by Iijima [IIJ 91, IIJ 93] and successful 
extraction of graphene sheets [GEI 07] have motivated this interest. Because 
of its novel potential applications, recently nanomaterials have gained 
considerable attention among experimental, computational and theoretical 
research communities. As compared to more conventional materials, these 
nanomaterials possess superior mechanical, thermal, electrical and electronic 
properties [MOO 11]. Now, it is possible to arrange atoms into 
nanostructures that are only a few nanometers in size. For utilization and 
engineering of these nanoelements, proper experimental, computational and 
continuum mechanics-based methodologies are needed for future analysis in 
nanoengineering. One of the updated continuum mechanics methods for 
analysis of nanostructures is the non-local elasticity theory. In this chapter, 
we introduce some fundamental aspects to illustrate why nanostructures and 
non-local elasticity theory are important. 

1.1. Why the non-local elasticity method for nanostructures? 

The understanding of the mechanical response of nanoscale structures 
(small-scale structures of nanometer dimension), such as bending, vibration 
and buckling, is indispensable for the development and accurate design of 
nanostructures such as carbon nanotubes (CNTs) and graphene-based 
nanodevices. Figure 1.1 shows a single-walled CNT and single-walled 
graphene sheets. The dots in the figure represent carbon atoms. So far,  
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2     Non-local Structural Mechanics 

experimentation on the study of actions of structures at the nanoscale is 
achievable, but quite difficult. Handling each and every parameter at the 
nanometer scale is a complicated task. Furthermore, computer simulation 
methods such as molecular dynamics (MD) modeling and simulation of 
nanostructures is computationally very expensive and time-consuming for 
macroscale material systems. Also, from an engineer’s perspective, we may 
not be expertise in MD as it involves more of a chemistry dealing with 
atoms, molecules, bonds and interatomic forces.  

 

Figure 1.1. Schematic diagrams of a) single-walled carbon nanotubes and  
b) single-walled graphene sheets. The mechanical behavior of these nanoscale 
structures can be analyzed by non-local elasticity theory along with molecular 
dynamics and experimental work. For a color version of the figure, see 
www.iste.co.uk/murmu/non-local.zip 

The experimentation and MD simulation for CNTs graphene and 
graphene-based systems are not always straightforward. So, how can these 
potential material nanostructures be effortlessly predicted in terms of 
bending, vibration, buckling and other studies for designing nanodevices 
(say in nanoelectromechanical systems, NEMS)? One approach is to utilize  
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the enriched knowledge of available classical continuum mechanics. The 
continuum structural mechanics models continue to play an essential role in 
the mechanical study of CNT and graphene-based systems. Theories and 
design modules of macroscale structures, facilitated by engineers, are based 
on classical continuum models. The conventional local elasticity theory 
underpins the majority of application of continuum mechanics in applied 
science and engineering since its inception in the early 19th Century. 
However, the application of the local elasticity theory in the context of 
nanoscale objects has been repeatedly questioned in various research articles 
over the past decade. Classical continuum mechanics is a scale-effect-free 
theory and cannot be used in a nanoscale environment. Conventional 
continuum mechanics fails to predict size effects, which are present at small-
length scales. At small scales, a material’s microstructure becomes 
increasingly significant and its influence can no longer be ignored. The size 
effects are related to atoms and molecules and their interactions. Thus, 
updated size-dependent continuum-based methods are required in modeling 
graphene as they offer much faster solutions than MD simulations, while 
being capable of incorporating size effects due to the discontinuous and non-
homogeneous nature of real materials. One popular size-dependent method 
frequently used to model bending, vibration and buckling behavior of CNTs 
and graphene sheets is the non-local elasticity theory. Local elasticity is 
based on the behavior of localness (point) irrespective of the surrounding, 
while non-local elasticity takes into account the influence of the surrounding. 
This effect is more prominent and intuitive at the atomic scale (nanoscale) 
where an atom is affected by other surrounding atoms. The beauty of the 
non-local method is that it can capture atomistic effects at the nanoscale and 
yet impart results for the whole body. 

The new structural non-local method can bridge the gap between MD and 
scale-effect-free continuum mechanics to provide a viable means of studying 
such important nanoscale objects beyond CNTs and graphene. 

1.2. General modeling of nanostructures 

Modeling and simulation of nanostructures such as CNTs, buckyballs, 
graphene and nanoelectromechanical systems are important for an optimum 
design. It is the scientific and engineering work involved in the analysis  
and design of nanostructures that support or oppose loads. By loads,  
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we mean the forces (atomic or non-atomic), deformations or accelerations 
applied to the structure or its components. Load on nanostructure elements 
can be static as well as dynamic and its understanding is crucial. Examples 
of elementary nanostructural components which build up the complex 
structural systems (nanorobots, nanomachines and nanoelectro mechanical, 
nanocolumns, nanoplates (graphene sheets), nanoshells (CNTs), etc. The 
reliable structural modeling of nanoscale models will depend on the 
application of physical laws (e.g. quantum mechanics), correct mechanics 
(e.g. non-local mechanics), theories of materials science (e.g. lattice 
dynamics) and applied mathematics. This structural model will then be able 
to predict how nanostructures would support and resist imposed loads. The 
structural model will help in understanding its reliable performance over 
time and failure criterion under practical loads. 

1.3. Overview of popular nanostructures 

A nanostructure is a small object of intermediate size between molecular 
and microscopic (micrometer-sized) structures. The remarkable properties of 
nanostructures are the cause of intense research around the world. Therefore, 
these days an increasing number of nanoscale structures are being fabricated 
worldwide and are being employed as the building blocks in the emerging 
field of nanotechnology. Some of the nanoscale structures include 
nanoparticles, nanowires, nanobeams, nanorings, nanoribbons, nanoplates, 
nanotubes (CNTs), and components of nanomachines:  

– Nanoparticles: these are small nano-objects considered as a whole unit 
with respect to its transport and properties. These particles exhibit size-
dependant properties and have dimensions in the range of 1–100 nm. These 
nanoparticles can be incorporated into parent material to form advanced 
nanocomposites. 

– Nanobeams and nanorods: these small-scale structures are categorized 
as one-dimensional nanostructures. These have applications in 
microelectromechanical systems (MEMS) and nanoelectromechanical 
systems (NEMS). Figure 1.2(a) shows the typical atomic force image of a 
nanorod of nanometer dimensions [WON 97]. 
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– Nanowires: these are one-dimensional nanostructures with diameters in 
the range of nanometers. These nanowires generally have an aspect ratio, i.e 
length-to-diameter of 1,000 or more. They can be used to build the next 
generation of computing devices, improve solar cell devices, etc. A typical 
image of nanowire is shown in Figure 1.2(b). 

– Nanoplates: these are recognized as two-dimensional nanostructures. 
The nanoplates are a new subgroup of bottom-up grown nanostructures with 
a two-dimensional shape. Examples of thin nanoplates are graphene sheet, 
gold nanoplates [AH 05], etc. A typical image of nanoplate is shown in 
Figure 1.2(c). The two-dimensional nanostructures have potential application 
in information storage, catalyst, transducers, solar cells, MEMS/NEMS and 
components in nanomachines, etc.  

  

 

Figure 1.2. a) An atomic force microscope image of nanorod with 35.3 nm diameter 
around 600 nm in length (courtesy of [WON 97]; b) nanowires (image from 
www.efocuss.com); c) high-magnification scanning electron microscope of single-
crystalline gold nanoplates [AH 05]; d) scanning electron micrographs of nanorings 
made of 100 nm diameter (courtesy of [ZHU 04]). For a color version of the figure, 
see www.iste.co.uk/murmu/non-local.zip  
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a)                                                         b) 

Figure 1.3. a) Scanning electron microscope of SWCNT grown on conical Si tip,  
b) MWCNT forest on glass substrate. Each rod-like element is the image of  

MWCNT with diameter of the order of tens of nanometers [DAI 02] 

– Nanorings: a nanoring is a small ring-formed crystal. The diameter is 
between 50 nm and 1 μm. The nanorings could serve as nanometer-scale 
sensors, resonators and transducers. These small-scale structures could 
provide a unique platform for studying piezoelectric effects and other 
phenomena at the small scale. Figure 1.2(d) shows an image of nanorings 
taken from scanning electron microscope [ZHU 04]. 

– Nanoribbons: these are thin strips of nanosheets or unrolled single-
walled CNTs. Nanoribbons such as graphene nanoribbons may be a 
technological alternative to silicon semi-conductors due its semi-conductive 
properties. 

– Nanotubes: among several nanoscale structures, nanotubes have 
aroused great interest in the scientific community because of their 
exceptional mechanical, electronic, electrochemical and electrical properties. 
Nanotubes are long and thin cylinders of macromolecules composed of 
carbon atoms in a periodic hexagonal arrangement. Generally, two varieties 
of these tubes have been distinguished, the single-walled CNT denoted as 
SWCNT (Figure 1.3(a)) and the multi-walled CNT denoted as MWCNT 
(Figure 1.3(b)), the latter consisting of a set of concentric single-walled tubes 
nested inside. A double-walled CNT is shown in Figure 1.4. 
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1.5. Experimental methods 
Some of the earlier and present day investigations on nanomaterials and 

nanostructures, such as CNTs and grapheme, are carried out by the 
experimental methods [HAN 11]. The details of experimental methods used 
are beyond the scope of this chapter. An experimental approach at the 
nanoscale is obviously a better way to analyze the behavior of grapheme as it 
is more realistic. However, in experimental study, controlling every 
parameter in nanoscale is a difficult task.  

1.6. Molecular dynamics simulations 

Due to the physical drawbacks and lack of scope for experimental 
method, many scientists and engineers resorted to atomistic-level simulation 
techniques. The behavior of graphene at atomistic levels can be simulated 
via the molecular dynamics (MD) [HAN 10, TAN 08]. MD simulation refers 
to expensive computer simulations depicting physical movements of atoms 
and molecules at the nanoscale. In an MD simulation, the motion of 
individual atoms within an assembly of N atoms or molecules is modeled on 
the basis of either a Newtonian deterministic dynamic or a Langevin-type 
stochastic dynamic, given the initial position coordinates and velocities of 
the atoms. Applying Newton’s equations of motion, the trajectories of 
molecules and atoms are determined. Potential functions are defined 
according to which particles will interact. In MD simulations, the forces 
between the particles and potential energy are defined by molecular 
mechanics force fields. The molecular simulation methods, however, suffer 
from the disadvantage that these are sophisticated, require larger 
computational resources, require solving large number of equations and are 
highly expensive and time-consuming [MUR 12b]. 

1.7. Continuum mechanics approach 

Because the experimental and atomistic computational approach, though 
realistic, suffers from the drawback that it is computationally expensive, 
time-consuming and requires greater expertise, one alternative is to utilize 
the available knowledge of classical continuum mechanics. Can classical 
continuum mechanics deal with structures of nanoscale dimensions? To 
answer this, classical continuum modeling (e.g. classical Kirchhoff’s plate 
theories) of nanostructures such as graphene has thus received an increasing 
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amount of attention. These continuum mechanics theories [AND 04] have 
thus started to play an important role in characterizing overall mechanical 
responses of nanoscale materials that are fundamental structural and 
functional building blocks in engineering nanostructures.  

In continuum mechanics, the mechanical behavior of graphene is 
modeled as a continuous mass rather than as discrete particles and it is 
assumed that there is no empty space between particles (atoms). Theories of 
structures constructed on the foundation of continuum mechanics include 
Euler–Bernoulli beam theory, Timoshenko beam theory, Kirchoff’s plate 
theory, Mindlin plate theory, and classical shell theory, etc. Using Euler–
Bernoulli beam theory and Timoshenko beam theory, modeling and 
prediction of mechanical response of CNTs have been attempted. The 
continuum (local elasticity) theory is based on the constitutive relation that 
stresses a point which depends on the strain at that point only.  

1.8. Failure of classical continuum mechanics 

Though the elastic continuum models described earlier could provide 
quick and approximate predictions of the mechanical behavior of graphene, 
these classical elasticity models fall short of addressing important issues 
such as “surface effects” and “size effects” when dealing with 
nanostructures. The source of these discrepancies becomes clear when 
considering the physics of atomic-scale interactions and stress production at 
the atomic scale. A lot of experimental evidence shows the presence of size 
effects in nanostructures [BAU 11, KIA 98, TAN 09, TAN 08, XIA 06,  
ZIE 10] which we can call small-scale effects. This implies that the effects 
arising in the behavior of nanostructures due to their small size cannot be 
ignored if we need to create cutting-edge and accurate design. The classical 
theory of elasticity being the longwave limit of the atomic theory excludes 
the size effects at nanoscale.  

According to continuum mechanics, graphene particles (carbon atoms) 
completely fill the space they occupy. Modeling objects in this way ignores 
the fact that matter is made up of atoms, and so is not continuous. However, 
on length scales much in the order of interatomic distances, such 
conventional continuum models are questionable. Thus, there is a need to 
upgrade the conventional continuum theory to account for discreteness or  
size effects in graphene sheets. A way to upgrade the conventional 
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continuum theory to account for the small scale or size effects in graphene 
sheets is by introducing the concept of surface effects, coupled stress and 
non-localness.  

Non-local elasticity theory [ERI 83] is one popular size-dependent 
method frequently used to model bending, vibration and buckling behavior 
in graphene. Local elasticity is based on behavior of localness (point) 
irrespective of the surrounding. While non-local elasticity emphasizes the 
effects of the surrounding (e.g. neighboring atoms), this effect is more 
prominent and intuitive at atomic scale (nanoscale) where an atom is 
affected by other surrounding atoms. The application of other size-dependent 
theories such as couple stress theory and modified couple stress theory 
(MCST) for analyzing microstructures, graphene and nanotubes is an area of 
open research, and will be discussed elsewhere. In this chapter, we look into 
the concept of non-local elasticity and how it is utilized to develop non-local 
plate theories to investigate the structural response of graphene sheets. 
Various reports devoted to non-local elastic theories for the bending, 
vibration and buckling analysis of graphene nanoplates are found in the 
scientific literature [AKS 11, ANS 11a, ANS 10, BAB 11, MAL 11,  
MUR 09a, MUR 09b, MUR 09c, PRA 10, SHE 10, SHI 11]. A good review 
on the work on non-local elasticity theory applied to CNTs and graphene 
sheets can be found in [ARA 12]. 

1.9. Size effects in properties of small-scale structures 

Ruud et al. [RUU 94] reported that the mechanical properties of thin 
films decrease with smaller characteristic lengths. They conducted 
experiments on nanoindentation of multilayered thin films. The hardness and 
the elastic modulus were measured experimentally on Ag and Ni thin layers. 
The characteristic lengths of the nanoelements were used from 1.3 to 2.3 nm. 
Wong et al. [WON 97] showed that the moduli of small structures change 
depending on the diameter of the nanobeams. They presented a discussion 
on research in Young’s modulus, strength and toughness of nanotubes and 
nanorods. Li et al. [LI 03] reported the size effects on Young’s modulus of 
ultra-thin silicon in the range of 12–170 nm. Their study of nanocantilevers 
showed that Young’s modulus decreases monotonously as the cantilevers 
become thinner. The phenomenon of size effects was shown to be in line 
with the atomistic simulation results. Furthermore, their results showed that  
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there is a monotonous change of resonant frequency for a 38.5 nm thick 
nanocantilever with the increase of length. Sun and Zhang [SUN 03] used a 
semi-continuum model to study the size effects in plate-like nanomaterials. 
They observed that the mechanical properties of the nanoplates, such as the 
stiffness and the Poisson’s ratio, are size-dependant at nanoscale. Cuenot  
et al. [CUE 04] investigated the effects of reduced size on the elastic 
properties nanomaterials using atomic force microscopy (AFM). The elastic 
modulus was measured on silver and lead nanowires and on polypyrrole 
nanotubes. Their research showed that the elastic properties of the 
nanomaterials are significantly affected by size. Smaller sizes of 
nanomaterials exhibited higher modulus values than that of larger ones. 
Furthermore, they interpreted that at nanometer scales, the surface effects 
become prominent and significantly modify the macroscopic properties. Gua 
and Zhao [GUA 05] showed that mechanical properties such as stiffness and 
Poisson’s ratio are size-dependent (changes with atomic layers). For the 
investigation, a three-dimensional lattice model was used considering 
surface relaxation with size-dependent elastic constants of a nanofilm. 
Various other cross-references on the size-effects dependence are discussed 
in detail in the paper. Wang et al. [WAN 06] discussed the size dependency 
of properties at the nanoscale. They identified the intrinsic length scales of 
several physical properties at the nanoscale. Further, they showed that for 
nanostructures whose characteristic sizes are much larger than these scales, 
the properties obey a simple scaling law. Recently, Olsson et al. [OLS 07] 
carried out atomistic simulations of mechanical properties of iron 
nanobeams. Both tensile and bending stiffnesses have been determined 
employing molecular static simulations. From the molecular simulations,  
it was observed that there is strong size dependence in Young’s  
modulus. The size dependence was attributed to the surfaces and edges 
deviating elastic properties, which can be stiffer and more compliant than the 
bulk. 

1.10. Evolution of size-dependent continuum theories 

To incorporate the size-dependence phenomenon, Miller and Shenoy 
[MIL 00] developed a continuum model for nanosize structural elements. 
The phenomenon of surface elasticity is accounted for in the continuum 
model. They found that the important length scales are the ratio of the 
surface elastic modulus to the bulk elastic modulus. He et al. [HE 04] 
extended the work of Miller and Shenoy [MIL 04] to develop a  
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two-dimensional size-dependant continuum approach. The size-dependant 
continuum model was based on surface elasticity. The continuum model was 
developed for analyzing the static response of ultra-thin elastic films of 
nanoscale-thickness. They interpreted that the size-dependence is due to the 
dependence of surface stress on strain. Park and Gao [PAR 06] developed a 
continuum mechanics model based on MCST containing an internal length-
scale parameter for capturing the size effects. A variational principle based 
on the principle of minimum potential energy is employed. The model was 
used for bending analysis of micro Euler–Bernoulli beam. A multi-scale 
continuum model based on micromorphic theory was developed by Vernerey 
et al. [VER 07]. The characteristic lengths of the microstructure were 
incorporated into the constitutive relation. The model has the capability of 
capturing the size effects arising from the microstructure and the behavior of 
the material across various scales. Kong et al. [KON 08] proposed MCST 
for dynamic analysis of microbeams. The governing equations were derived 
based on Euler–Bernoulli beam theory and Hamilton’s principle. They found 
that the natural frequencies predicted by their new model are larger than that 
predicted by the classical beam model. They interpreted that due to intrinsic 
size dependence of materials, the stiffness increases and hence the frequency 
increases. The conclusions were presented for both simply-supported and 
cantilever microbeams. Furthermore, Kong et al. [KON 09] assessed the size 
effects on the microbeam bending response and its natural frequencies 
employing strain gradient elasticity theory. Chandraseker et al. [CHA 09] 
introduced an atomistic-continuum Cosserat rod model for the simulation of 
single-walled CNTs. A literature review on these continuum theories is 
highlighted in the paper. Recently, Tsiatas [TSI 09] proposed a modified 
Kirchoff’s plate model for the static analysis of isotropic microplates based 
on MCST. The theory is able to capture the size effects. The size-dependent 
plate theory used for small-scale structures is the MCST. How well the 
theory can be applied to graphene sheets is not known, as the theory was 
originally used for microscale plates. However, recently, the theory is being 
applied to nanotubes and graphene sheets. It predicts that the frequencies and 
buckling load increase with the increase in scale parameter (equivalent to 
non-local parameter). Consequently, there is hardening of bending stiffness 
(contradictory to non-local elasticity). The difference arises due to the 
consideration of different extrinsic lengths, i.e. for the MCST it is thickness 
of the plate, whereas in non-local elasticity theory it is the length of the 
specimen (Figure 1.7). 
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Figure 1.7. Extrinsic lengths in plates at different scales 

1.11. Concept of non-local elasticity 
It is well known that one of the basic principles of classical continuum 

mechanics is that it eliminates the influence of strains field of distant points 
on the reference point. Non-local continuum theory, or non-local elasticity 
theory, on the other hand, incorporates these distant effects known as non-
local effects. The essence of the non-local elasticity theory is that the stress 
field at a reference point  in an elastic continuum depends not only on strain 
at that point but also on the strain at every other point  in the domain  
[AMA 10, BES 11, ECE 07, ERI 83, HEI 10, RED 08]. This is in 
accordance with the atomic theory of lattice dynamics and experimental 
observations on phonon dispersion [ERI 83]. When the effects of strain at all 
other points are neglected, we obtain the classical elasticity theory. One of 
the advantages of non-local solutions is that it eliminates singularities 
predicted by the classical (local) theory of elasticity. It has been successfully 
applied on the problems of dispersion of waves, dislocations, fracture 
mechanics, etc. The most general form of the constitutive relation for  
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non-local elasticity involves an integral over the whole body. The integral 
contains a kernel function that portrays the influences of strains at various 
locations on the stress at a given location. The kernel function is also 
referred to as influencing function or non-local modulus. In mathematical 
concept, classical elasticity is recovered when the non-local moduli become 
Dirac delta functions. By non-local elasticity, relations are established 
between the non-local constitutive moduli based on the continuum and 
atomic lattice dynamics. 

The small-scale effects are accounted for in this non-local theory by 
considering internal size as a material parameter allowing working with non-
local variables conceived. The interatomic forces and atomic length scales 
directly come to the constitutive equations as material parameters. The basic 
idea of the non-local elasticity is to establish a relationship between 
macroscopic mechanical quantities and nanoscale physical quantities within 
the framework of continuum mechanics. The general non-local elasticity 
continuum theory is generally depicted by a set of integropartial differential 
equations. The constitutive equations of non-local elasticity appear as 
integral equations, in terms of strain tensor, either the Fredholm equation of 
first kind or second kind. The non-local elasticity approach can be qualified 
as “integral” or “strongly” non-local when it expresses the stress at a point of 
a material domain as a weighted value of the entire strain field. It can be 
qualified as “gradient” or “weakly” non-local when the stress is expressed as 
a function of the strain and its gradients at the same points. For development 
of non-local models associated with different problems and applications, 
proper non-local kernels are to be selected.  

In a nutshell, the non-local theory of Eringen [ERI 83] has the ability to 
predict behavior of the large nanosized structures, while avoiding solving the 
large number of equations. Non-local elasticity has great potential 
applications in closing the gap between the classical continuum limit and the 
atomic theory of lattices.  

1.12. Mathematical formulation of non-local elasticity 

1.12.1. Integral form 

The following assumptions are considered for the non-local elasticity 
equation: elastic, linear, homogenous and isotropic solid. The basic concept 
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of non-local elasticity without body forces is represented by the following 
set of equations: 

  

  

  

 [1.1] 

The terms , , ,  are non-local stress, classical stress, 
classical strain and fourth-order elasticity tensors, respectively. The terms  
and  are Lame’s first and second parameters, respectively. The volume 
integral is over the region V occupied by the body. The kernel function 

 is known as the non-local modulus or influencing kernel 
function. The non-local modulus acts as an attenuation function 
incorporating into the constitutive equations the non-local effects at the 
reference point x produced by local strain at the source . The term  
represents the distance in the Euclidean form and  is a material constant 
that depends on the internal (e.g. lattice parameter, granular size and distance 
between the C-C bonds) and external (e.g. crack length and wave length) 
characteristic lengths. The non-local modulus reaches its maximum at  
attenuating with . The non-local modulus has the dimension of 
(length)-3.  

The single parameter  based on non-local elasticity is expressed as: 

 [1.2] 

where  is the constant appropriate to each material and  and  denote the 
internal characteristic length and the external characteristic length, 
respectively. Examples of the internal characteristic length are lattice 
parameter, granular size and distance between C-C bonds. While the external 
characteristic length includes crack length, wave length and sample size of 
the nanostructure, length of CNTs and graphene sheets (sample size) is 
generally used as external characteristic length. In other size-dependent 
continuum mechanics such as MCST, thickness of the structure is considered 
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as external characteristic length (Figure 1.2). According to Eringen [ERI 83], 
the value of 0.39, was obtained by matching the dispersion curves 
from Born–Karman model of lattice dynamics and non-local theory. 

If the non-local term (parameter) approaches zero, i.e. ,  reverts 
to the Dirac delta measure. Consequently, classical elasticity is included in 
the limit of vanishing internal characteristic length. When , non-local 
theory approximates atomic lattice dynamics. 

1.12.2. Non-local modulus 

For a given material, the non-local modulus H can be determined by 
matching the dispersion curves of plane waves with those of atomic lattice 
dynamics or experiments. By defining different forms of non-local modulus, 
various approximate models of non-local elasticity can be obtained. One 
such important example of two-dimensional non-local modulus is expressed 
as [ERI 83]:  

 [1.3] 

where  is the modified Bessel function. From equation [1.3], it can be seen 
that the integral of the equation over the domain yields unity. Further, one 
advantageous property of non-local modulus  is that when , the non-
local elasticity reduces to classical elasticity. The non-local modulus 
function of equation [1.3] is popularly used for the analysis of graphene 
sheets (and also for CNTs). 

1.12.3. Differential form equation of non-local elasticity 

Since the governing relation of non-local elasticity, equation [1.1], is an 
integro-partial differential equation, it is generally difficult to solve. To 
simplify the governing non-local relation, we assume that the  
non-local modulus  as Green’s function of linear differential 
operator: 

 [1.4] 
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where  is the linear differential operator and  is the Dirac-delta function. 
Green’s function is chosen in conjunction with the properties of non-local 
modulus. By applying  to equation [1.1], we obtain: 

 [1.5] 

The differential operator  has different forms for different expressions 
of non-local modulus. For the non-local modulus depicted in equation [1.4] 
by combining with equation [1.5] would yield: 

 [1.6] 

where  is the Laplacian operator. Therefore, according to equations [1.5] 
and [1.6], the non-local constitutive relation [1.1] can be expressed in 
differential form as: 

 [1.7] 

Equation [1.7] can be written in a simplified manner as [AYD 09,  
ERI 83, RED 08]: 

 [1.8] 

where  is the fourth-order elasticity tensor. 

1.13. Non-local parameter 

The material parameter  is a constant appropriate to each material. The 
parameter  is estimated such that the relations of the non-local elasticity 
model could provide satisfied approximation of atomic dispersion curves of 
plane waves with those of atomic lattice dynamics. Furthermore, the value of 
key parameter e0 can be found by comparing non-local results with MD 
simulation results and atomistic-based techniques. The terms ,  and  

 are referred to as the non-local parameters or the scale coefficient. 
In many of the scientific literature,  and are denoted by the symbol a and 
l, respectively. The common terms of nonlocal parameters are  
and . Some different non-local parameter values proposed and used 
by some researchers are highlighted below.  



Introduction to Non-local Elasticity     19 

Non-local parameters Magnitudes Researchers 

a 0.142 nm [SUD 03] 

 0.39 [ERI 83] 

 0.288 [WAN 05] 

 0–19 [DUA 07] 

 0.7 nm [WAN 08] 

 0–2nm [WAN 07] 

 0–2 nm [DUA 07] 

 <2.1 nm [WAN 05] 

 0–0.8 [LU 06] 

Table 1.1. Non-local parameter proposed by various researchers 

1.14. Non-local elasticity theory versus molecular dynamics 

Non-local elasticity theory has the potential to predict the vibration 
response and buckling phenomenon of graphene sheets under certain 
assumptions. The non-local elasticity theory has also been successfully 
applied to the prediction of CNTs. According to some recent works, non-
local elasticity theory applied to CNTs has been compared with MD 
simulations, and a good agreement is found. However, this theory of non-
local elasticity strongly depends on the optimized value of the non-local 
parameter. In this chapter, we mentioned the range of non-local parameter as 
0–2 nm because the exact value of non-local parameter is not known. Details 
on the various values of non-local parameter as reported by various 
researchers are discussed in [NAR 11].  

Various non-local beams and shell theories for studying free vibration 
response of single-walled and double-walled carbon nanotubes (SWCNTs, 
DWCNTs) were compared with MD simulation results [ANS 11b, ANS 12] 
and a good agreement was found. The two approaches match at some non-
local parameter values. According to Hu et al. [HU 08], MD simulations 
indicate that the wave dispersion predicted by the non-local elastic 
cylindrical shell theory shows good agreement with that of the MD 
simulations in a wide frequency range up to the terahertz region. 
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Khademolhosseini et al. [KHA 12] demonstrated the superiority and 
accuracy of the non-local elasticity model over classical theories in 
predicting the size-dependent dynamic torsional response of SWCNTs by 
comparing their results with MD simulations. According to Murmu and 
Adhikari [MUR 11], the frequency results of a cantilever SWCNT from non-
local theory match very well with the frequency from MD simulation 
for 1.0 nm.  

Furthermore, according to Murmu and Adhikari [MUR 12a], the 
frequency from non-local elasticity theory matches very well with MD 
simulations for CNT-based nanoscale biosensors for some optimized values 
of non-local parameter.  

Similarly, the validity of non-local plate theory has been addressed by 
comparing with the MD simulation. MD simulations for the free vibration of 
various graphene sheets using non-local plate theory with different values of 
side length and chirality can be found to be equivalent to the non-local plate 
model [ANS 10]. Using some optimized non-local parameters, the non-local 
plate model can predict the resonant frequencies with great accuracy. 
Furthermore, it is also shown that the non-local plate models as compared 
with MD simulation can provide a remarkably accurate prediction of the 
graphene sheet behavior under nonlinear vibration in thermal environments 
[SHE 10]. Thus, non-local plate theory presented in this chapter can be a 
reliable theory to predict the mechanical behavior of graphene considering 
that optimized non-local parameter or scale coefficient is used. 

In the following chapters, we introduce the non-local elasticity theory for 
the formulation and analysis of nanoscale structures. Explicit expressions of 
buckling and vibration of nanoscale structures are obtained.  


