
Chapter 1

Positive Systems: Discretization with
Positivity and Constraints

In this chapter, we discuss the problem of preservation of two properties
pertaining continuous-time systems under discretization, namely the
properties of positivity and sparsity. In the first part of the chapter, the action
of diagonal Padé transformations is studied together with the preservation of
copositive quadratic and copositive linear Lyapunov functions. A variation of
the scaling and squaring method is then introduced and shown to be able to
preserve such Lyapunov functions and positivity for small sampling times. In
the second part, besides positivity, the problem of preservation of the structure
(sparseness) of the continuous-time system under discretization is analyzed.
The action of the standard forward Euler discretization method is discussed
and a new approximation method – mixed Euler – ZOH (mE-ZOH) is
introduced that preserves copositive Lyapunov functions, the sparseness
structure and the positivity property for all sampling times.

1.1. Introduction and statement of the problem

This chapter is devoted to the study of the effects of discretization in the
preservation of two properties pertaining linear systems, namely (1) positivity
and (2) structure. The first property characterizes systems whose inputs, state
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2 Hybrid Systems with Constraints

and outputs take non-negative values in forward time. As part of the more
general class of monotonic systems [ANG 03], such systems characterize the
dynamic behavior of processes frequently encountered in engineering and in
social, economic and biological sciences. A few monographs are now available
where both the mathematical properties and the application interest of such
systems are underlined [BER 94, FAR 00].

The important problem of obtaining reliable discrete-time approximations
to a given continuous-time system arises in many circumstances: in
simulation issues, in control system design, in certain optimization problems
and in model order reduction [ANT 05, FAL 08]. While a complete
understanding of this problem exists for linear time-invariant (LTI) systems
[WES 01], and some results are available for switched linear systems
[ROS 09, SAJ 11], the analogous problems for positive systems are more
challenging since discretization methods must preserve not only the stability
properties of the original continuous-time system, but also physical
properties, such as state positivity. To the best of our knowledge, this is a
relatively new problem in the literature, with only a few recent works on this
topic [BAU 10]. In particular, we stress the importance of this issue in the
framework of switched positive systems, a research field still in its infancy,
but with growing importance in telecommunications, biological networks and
cloud computing (see [SHO 07, SHO 06, BAR 89, HAR 02]). Generally
speaking, we are interested in the evolution of the system:

ẋc(t) = Aσc(t)xc(t), σc(t) ∈ {1, . . . ,m}, xc(0) = x0, [1.1]

where Aσ ∈ Rn are Hurwitz stable Metzler matrices, xc(t) ∈ Rn×1 and
m ≥ 1. We are interested in obtaining from this continuous-time positive
system, a discrete-time representation:

xd(k + 1) = Fσd(k)(h)xd(k), σd(k) ∈ {1, . . . ,m}, xd(0) = x0, [1.2]

where h > 0 is the sampling interval. The first objective of this chapter is to
study diagonal Padé approximations to the matrix exponential. Such a study is
well motivated, as diagonal Padé approximations are methods used by control
engineers. Following [ZAP 12], we deal with two fundamental questions.
First, under what conditions are certain types of stability of the original
positive switched system inherited by the discrete-time approximation?
Second, we also ask if and when positivity itself is inherited by the
discrete-time system. We give sufficient conditions under which the Padé
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approximation is positivity preserving, and identify a new approximation
method that is guaranteed to preserve both stability and positivity.

The second objective of this chapter arises from the need of discretizing
large-scale systems. In this context, we are often interested in discretization
methods that preserve the structure of a dynamic system. We aim to find
efficient discretization methods which preserve, for the elements of Fσc

(h),
the same zero/non-zero pattern of Aσc . The attention here is focused on
positive switched systems only, along the lines traced in [COL 12]. First, we
analyze the properties of the forward Euler transformation, which intrinsically
preserve the zero pattern of the off-diagonal entries of the dynamic matrix.
However, it is well known that the forward Euler transformation can easily
lead to a loss of stability even for short sampling times. We then propose a
novel mE-ZOH discretization method that preserves the structure
independently of the sampling time, with improved performance in terms of
stability preservation.

The chapter is organized as follows: in section 1.2, we study Padé
transformations and their properties, while in section 1.3 we propose the new
mE-ZOH transformation and we analyze some of its properties. Section 1.4
concludes the chapter.

NOTATION. In this chapter, the following notations are used: capital letters
denote matrices and small letters denote vectors. For matrices or vectors, (�)
indicates transpose and (∗) the complex conjugate transpose. For matrices X
or vectors x, the notation X or x > 0 (≥ 0) indicates that X , or x, has all
positive (non-negative) entries and it will be called a positive (non-negative)
matrix or vector. The notation X + 0 (X ≺ 0) or X , 0 (X : 0) indicates
that the matrix X is positive (negative) definite or positive (negative)
semi-definite. The sets of real and natural numbers are denoted by R and N,
respectively, while R+ denotes the set of non-negative real numbers. A square
matrix Ac is said to be Hurwitz stable if all its eigenvalues lie in the open
left-half of the complex plane. A square matrix Ad is said to be Schur stable if
all its eigenvalues lie inside the unit disc. A matrix A is said to be Metzler (or
essentially non-negative) if all its off-diagonal elements are non-negative;
moreover, we say that the diagonal entries are non-positive, with at least one
negative diagonal entry. A matrix B is an M-matrix if B = −A, where A is
both Metzler and Hurwitz; if an M-matrix is invertible, then its inverse is
non-negative [BER 94]. The matrix I will be the identity matrix of
appropriate dimensions. Finally, we denote with Mc the set of Hurwitz stable
Metzler matrices, and with Md the set of Schur stable non-negative matrices.
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1.2. Discretization of switched positive systems via Padé transformations

This section is a summary of the recent work described in [ZAP 12] and
some other related papers. The interested reader is referred to [ZAP 12] for
proofs and examples. Concerning the problem of obtaining a discrete-time
approximation [1.2] to system [1.1], the Padé approximation can be used,
where h is the sampling time. The [L/M ] order Padé approximation to the
exponential function es is the rational function CLM defined by:

CLM (s) = QL(s)Q
−1
M (−s),

where

QL(s) =

L4
k=0

lks
k, QM (s) =

M4
k=0

mks
k,

lk =
L!(L+M − k)!

(L+M)!k!(L− k)!
and mk =

M !(L+M − k)!

(L+M)!k!(M − k)!
.

Thus, given a matrix A, the diagonal Padé approximant to the matrix
exponential eAh with sampling time h is given by taking L = M = p

Cp(Ah) = Qp(Ah)Q
−1
p (−Ah),

where Qp(Ah) =
5p

k=0 ck(Ah)
k and ck = p!(2p−k)!

(2p)!k!(p−k)! . It is known that
diagonal Padé approximations map the open left-half of the complex plane to
the interior of the unit disc, and hence are A-stable [BUT 02].

1.2.1. Preservation of copositive Lyapunov functions

Recently, it was shown in [SAJ 11] that quadratic Lyapunov functions are
preserved for sets of matrices that arise in the study of systems of the form of
equation [1.1]. We now ask whether copositive Lyapunov functions are
preserved when discretizing an LTI positive system using Padé-like
approximations. Since trajectories of positive systems are constrained to lie in
the positive orthant, the stability of these systems is completely captured by
Lyapunov functions whose derivative is decreasing for all such positive
trajectories. Such functions are referred to as copositive Lyapunov functions.
With this background in mind, we observe the following elementary result.
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LEMMA 1.1.– Let A ∈ Mc and let α be a positive real number. Fix any
sampling time h > 0 such that F (h) = (α(h)I +A) (α(h)I −A)

−1 is a
non-negative matrix, where α(h) = α

h . Then the following statements hold.

1) If v(x) = x�Px, with P = P � + 0, is a quadratic Lyapunov function
for A, that is:

x�(A�P + PA)x < 0, ∀ x ≥ 0, x 6= 0,

then v(x) is a quadratic Lyapunov function for F (h), that is:

x�(F �(h)PF (h)− P )x < 0, ∀ x ≥ 0, x 6= 0.

2) If v(x) = w�x, w > 0 is a linear copositive Lyapunov function for A,
that is w�A < 0, then v(x) is a linear copositive Lyapunov function for F (h),
namely w�F (h) < w�.

It is shown in [ZAP 12] that some Padé approximations may result in the
loss of certain copositive Lyapunov functions. In such situations, the usual
approach is to make the sampling rate h smaller to make the approximation
more likely to inherit desired properties. We now summarize some results in
this direction with the following lemma.

LEMMA 1.2.– Let A ∈ Mc, and suppose that λ̂ is a complex number with a
positive real part. For all h > 0, let λ(h) = λ̂

h , and consider the following
matrices:

Θ1 = (λ(h)I +A) (λ∗(h)I +A) ;

Θ2 = (λ(h)I −A) (λ∗(h)I −A) ;

F (h) = Θ1Θ
−1
2 .

Suppose that there exists h0 > 0 such that for all 0 < h ≤ h0,Θ2 is an
M-matrix and F (h) is a non-negative matrix. Then, the following statements
hold.

1) If v(x) = x�Px, with P = P � + 0, is a copositive quadratic Lyapunov
function for A, that is:

x�(A�P + PA)x < 0, ∀ x ≥ 0, x 6= 0,
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then there exists h1 > 0 such that for all 0 < h ≤ h1, v(x) is a quadratic
Lyapunov function for F (h), that is:

x�(F (h)�PF (h)− P )x < 0, ∀ x ≥ 0, x 6= 0.

2) If v(x) = w�x, w > 0, is a linear copositive Lyapunov function for A,
that is w�A < 0, then for 0 < h ≤ h0, v(x) is a linear copositive Lyapunov
function for F (h), namely w�F (h) < w�.

We can now state the following result, which formalizes the intuition that
Lyapunov stability is indeed preserved provided that h is chosen to be small
enough, for diagonal Padé approximations. We then have the following result.

THEOREM 1.1.– Let A ∈ Mc and let Cp (Ah) be the pth-order diagonal Padé
approximation of eAh. Suppose also that there exists h0 > 0 such that for all
0 < h ≤ h0, the following conditions hold:

1) For each real pole α of Cp(·), the matrix (αh I +A)(αh I −A)−1 is non-
negative.

2) For each complex pole λ of Cp(·), the matrix (λhI −A)(λ
∗
h I −A) is an

M-matrix.

3) For each complex pole λ of Cp(·), the matrix (λhI + A)(λ
∗
h I + A)

(λhI −A)−1(λ
∗
h I −A)−1 is non-negative.

Finally, suppose there exists a linear copositive Lyapunov function for the
continuous-time system, that is w�A < 0 with w > 0. Then, for all 0 <
h ≤ h0, the discretized system, with F (h) = Cp(Ah), shares the same linear
copositive Lyapunov function, that is w�F (h) < w�.

An analogous theorem holds for preservation of copositive quadratic
functions, that are preserved, however, for h ≤ h1, where h1 ≤ h0, see
[ZAP 12]. To conclude this section, note that theorem 1.1 can be formulated
so as to cope with preservation of a common copositive Lyapunov function
v(x) = w�x for the switched systems [1.1] and [1.2]. In this case, h0 should
be such that conditions 1 − 3 of the theorem hold for any matrix Ai,
i = 1, 2, · · · ,m defining the switched system [1.1]. This number h0,
however, can be arbitrarily low and even zero in some cases. A notable
exception is for 2× 2 matrices (second-order systems) where the existence of
h0 > 0 is guaranteed.



Positive Systems 7

1.2.2. Non-negativity of the diagonal Padé approximation

Our results in the previous section were concerned with the preservation
of linear and quadratic copositive Lyapunov functions. In this section, we
address the fundamental question of whether Cp(Ah) is non-negative when A
is Metzler and Hurwitz. Our approach will be first to analyze the situation for
some simple, Padé-like, rational functions, then to decompose Cp into a
suitable product of such functions. We begin with the following
straightforward result, which has also been noted in [ALO 10] and [ZAP 10]
in conjunction with preservation of quadratic Lyapunov functions and is a
special case of the main result in [BOL 78].

LEMMA 1.3.– Let A ∈ Mc and denote with aij the (i, j)th entry of A, i, j =
1 . . . , n. Set α0 > 0, set α(h) = α0

h and define F (h) by:

F (h) = (α(h)I +A) (α(h)I −A)
−1

. [1.3]

If

h ≤ min
i : aii �=0

α0

|aii| , [1.4]

then F (h) ∈ Md.

The first-order Padé transformation is obtained by letting α0 = 2 in [1.3].
As a result, see [1.4], if h ≤ mini : aii �=0

2
|aii| , then C1(Ah) is a non-negative

and Schur stable matrix.

We now consider a Padé-like rational function where the numerator and
denominator are both quadratic. Specifically, suppose that λ0 is a complex
number with Re(λ0) > 0. Set λ(h) = λ0

h , and define F (h) via

F (h) = (λ(h)I +A) (λ∗(h)I +A) (λ(h)I −A)
−1

(λ∗(h)I −A)
−1

. [1.5]

Set

Θ1 =
&|λ(h)|2I + 2Re(λ(h))A+A2

-
, [1.6]

Θ2 =
&|λ(h)|2I − 2Re(λ(h))A+A2

-
, [1.7]
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so that F (h) = Θ1Θ
−1
2 . Furthermore we note that taking λ0 = 3+

√
3i, [1.5]

yields C2(Ah). Define A = {aij} and A2 = {bij}, then let P be the set of
indices i, j, i 6= j, such that bij 6= 0.

LEMMA 1.4.– Let A = {aij} ∈ Mc and let F be the matrix achieved through
the transformation [1.5]. If

h ≤ 2Re(λ0) min
i,j∈P

aij
|bij | , [1.8]

then Θ1 of [1.6] is a non-negative matrix, Θ2 of [1.7] is an M-matrix and
F (h) ∈ Md.

Lemmas 1.3 and 1.4 will now yield the following result regarding the non-
negativity of a pth-order diagonal Padé approximation.

THEOREM 1.2.– Let A ∈ Mc and F (h) = Cp(Ah) be the pth-order diagonal
Padé approximation to eAh. Let αl, l = 1, . . . ,m denote the real poles of
Cp(x), and let λk, λ

∗
k, k = 1, . . . , n

2 denote the complex conjugate pairs of
poles Cp(x). If m ≥ 1, we define α̂ = minl=1,...,m αl, and if n ≥ 2, we define
λ̂ = mink=1,...,n2

Re(λk). Then, F (h) ∈ Md for every h ≤ h∗, where

h∗ = min
i ,: aii �=0

α̂

|aii| , if n = 0, m ≥ 1,

h∗ = 2λ̂ min
i,j∈P

aij
|bij | , if m = 0, n ≥ 2,

h∗ = min
i : aii �=0

α̂

|aii| , 2λ̂ min
i,j∈P

aij
|bij | , if m ≥ 1, n ≥ 2,

where aij and bij denote the (i, j) element of A and A2, respectively.

The proof of theorem 1.2 shows that for each complex pole λ of Cp, the
matrix Θ2 is an M-matrix whenever h ≤ h∗. We thus find from theorem 1.1
that if h0 ≤ h∗, the linear copositive Lyapunov functions are preserved. For
switched systems [1.1] and [1.2] this means that a common copositive
Lyapunov function v(x) = w�x is preserved if h0 ≤ mini h

∗
i , where h∗

i are
defined in theorem 1.2 for the generic matrix Ai of the switched
system [1.1].
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1.2.3. An alternative approximation to the exponential matrix

The results in the previous section are somewhat unsatisfactory from the
point of view of stability and positivity. In this section, we present a Padé-like
approximation that has the following properties: we can always find a sampling
time such that positivity is preserved, and in addition, for any h, both linear and
quadratic copositive Lyapunov functions are preserved. This approximation
may have worse numerical properties, but these two basic qualitative properties
are preserved. To do this, we introduce the following approximation to the
exponential matrix eAh:

F (h) =

�'
I +

Ah

2p

.'
I − Ah

2p

.−1
�p

, p ∈ N. [1.9]

Writing F (h) as
$
I + Ah

2p

+p $
I − Ah

2p

+−p

, and applying the binomial
expansion to each of the two factors in that expression, we find readily that
F (h) converges to eAh as p → ∞. Note that if p is chosen as a power of two,
then [1.9] coincides exactly with the scaling and squaring method, where the
Padé approximant computed is the first-order diagonal Padé approximant.
The nice property of this transformation is that, given A ∈ Mc, if I + Ah

2 is
non-negative, then F (h) is non-negative for each positive power p. Then
lemmas 1.1 and 1.3 can be applied with

h < min
i

2

|aii| ≤ min
i

2p

|aii| , ∀p ≥ 1.

We are now in the position to state the main result relative to the
discretization of switched positive linear systems [1.1].

THEOREM 1.3.– Let {A1, . . . , Am} be such that Ai ∈ Mc for all
i = 1, . . . ,m and let Fi(h) = Cap(Aih) be the pth-order approximation to
the exponential matrix eAih defined in equation [1.9]. Then the following
properties hold:

1) Fix an i between 1 and m, and suppose that

0 < h ≤ hi = min
j

2

|ai,jj | , [1.10]

where ai,jj are the elements on the main diagonal of the matrix Ai. Then,
Fi(h) ∈ Md.
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2) Consider the continuous-time switching positive system [1.1] Suppose
that [1.10] holds. Then, the discretized system [1.2] is positive. Moreover, if
there exists a common quadratic or linear copositive Lyapunov function for
system [1.1], then the origin x = 0 is globally uniformly exponentially stable
for system [1.2].

1.3. Discretization of positive switched systems with sparsity constraints

In this section, the main objective is to discuss a novel discretization
method, previously presented in [COL 12], which is denoted as as mE-ZOH
discretization (mE-ZOH). The properties of this new method are manyfold:
(1) it conserves positivity, (2) it conserves asymptotic stability in case of LTI
positive systems for all sampling times and (3) it conserves the matrix
sparsity, that is the zero/non-zero pattern of the elements of A, which can be
extremely useful to unveil the so-called system’s structural properties (in the
sense defined in [SIL 91] and [LUN 92]). In particular, we will say that
matrix F in [1.2] belongs to the same class S of A if its entries fij are fij = 0
if aij = 0 for all j 6= i.

Besides guaranteeing the preservation of the system’s structural properties
[SIL 91], the conservation of the sparsity of the system allows minimizing the
number of communication links (corresponding to non-zero terms aij)
needed for digital distributed control of large-scale interconnected
continuous-time systems (see [VAD 03, FAR 12, SCA 09]).

1.3.1. Forward Euler discretization

Consider system [1.1] and a sampling time h > 0. Considering matrix
A ∈ Rn×n, the standard forward Euler approximation for the exponential
matrix eAh is given by:

F (h) = I + hA. [1.11]

The first result below deals with:

1) the preservation of stability for positive systems when using the forward
Euler approximation [1.11];

2) the proof that F (h) in [1.11] and A share the same zero pattern of the
off-diagonal entries, that is A ∈ S → F ∈ S;

3) the preservation of Lyapunov functions when applying the forward Euler
approximation [1.11].
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THEOREM 1.4.– Let A ∈ Mc∩S . Then, under [1.11], F (h) ∈ Md∩S if and
only if:

h < h? = min
i

1

|aii| . [1.12]

Furthermore, if v(x) = maxi

$
xi

wi

+
, w > 0, is a copositive linear

Lyapunov function for A, that is Aw < 0, then, for h < h?, v(x) is a
copositive linear Lyapunov function for F (h), namely F (h)w < w.

PROOF.– First note that the (i, j)th entry fij(h) of F (h) can be written as:

fij(h) = haij , i 6= j,

fii(h) = 1 + haii.

If aij = 0, i 6= j, then fij(h) = 0. This means that F (h) ∈ S for all h > 0.
Moreover, since A is Metzler, the entries aij , i 6= j are non-negative and hence
fij(h) are non-negative for all h > 0. In order fii(h) to be non-negative, it is
necessary and sufficient that fii(h) are non-negative. Recalling that aii < 0
for all i = 1, . . . , n (due to stability), it means h < h?. Let now w be a strictly
positive vector such Aw < 0 (it exists due to stability). Then, for it follows
that F (h)w < w, this means that if F (h) is non-negative, then it is also Schur
stable, and this concludes the proof.

1.3.2. The mixed Euler-ZOH discretization

Consider system [1.1] and a sampling time h > 0. Considering matrix
A ∈ Rn×n with entries aij , we define the mE-ZOH approximation F (h) of
eAh as follows:

F (h) = I + hD(h)A, [1.13]

and

hD(h) =

⎡⎢⎢⎢⎢⎣
" h

0
ea11tdt 0 · · · 0

0
" h

0
ea22tdt · · · 0

...
...

. . .
...

0 0 · · · " h

0
eammtdt

⎤⎥⎥⎥⎥⎦.
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REMARK 1.1.– Note that the continuous-time system [1.1] can be decomposed
into n differential subsystems:

ẋi = aiixi +
4
j �=i

aijxj . [1.14]

Transformation [1.13] comes from integrating each differential equation
[1.14], by considering xj(t), j 6= i, as constant in the sampling interval, that
is xj(t) = xj(kh) for t ∈ [kh, (k + 1)h). This is a very natural approach to
discretization in a distributed context; where there is access to local states, and
where the “interconnected” states are communicated to each subsystem.

The following result deals with

1) the preservation of stability using [1.13], under suitable assumptions;

2) the proof that A ∈ S → F (h) ∈ S so that A and F (h) in [1.13] share
the same zero pattern of the off-diagonal entries;

3) the preservation of Lyapunov functions when using the mE-ZOH
transformation [1.13].

Finally, note that limh→0 D(h) = I , so that the standard forward Euler
discretization formula [1.11] can be recovered from [1.13].

THEOREM 1.5.– Let A ∈ Mc ∩ S . Then, under [1.13], F (h) ∈ Md ∩ S ,
∀h > 0. Furthermore, if v(x) = maxi

$
xi

wi

+
, w > 0, is a copositive linear

Lyapunov function for A, that is Aw < 0, then, for all h, v(x) is a copositive
linear Lyapunov function for F (h), namely F (h)w < w.

PROOF.– First note that the (i, j) entry fij(h) of F (h) can be written as:

fij(h) =

%! h

0

eaiiτdτ

,
aij , i 6= j,

fii(h) = eaiih.

If aij = 0, i 6= j, then fij(h) = 0. This means that F (h) ∈ S for all
h > 0. Moreover, since A is Metzler, (1) the diagonal entries eaiit ≥ 0, t ≥ 0;
(2) the non-diagonal entries fij(h) are non-negative for all i, j = 1, . . . , n and
hence F (h) is a non-negative matrix. Finally, since A is Hurwitz, there exists
a strictly positive vector w such that Aw < 0. Hence, by noticing that D(h)
is a non-negative matrix, F (h)w < w, implying that F (h) is a Schur stable
matrix, for any h > 0.
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REMARK 1.2.– Concerning the case where A is not necessarily a Metzler
matrix, note first that the forward Euler transformation maps the eigenvalue
λi of A to those of F (h) in a very simple way, inherited by formula [1.11].
Indeed a simple computation shows that if A is Hurwitz stable, then F (h) in
[1.11] is Schur stable if and only if:

h < ĥ = min
i

−2Re(λi)

|λi|2 .

The map of the eigenvalues of the mE-ZOH transformation is much more
complicated and cannot be given an explicit formula. In the particular case
when the diagonal elements aii are all equal, say to a, then this formula can be
easily found [COL 12]. We obtain, that, if A is Hurwitz stable, then F (h) in
[1.13] is Schur stable if and only if:

h < h̃ =

�
1
a ln(1 + aĥ), |a| < 1

ĥ∞ otherwise
.

Note that, since a < 0 due to the stability assumption, h̃ ≥ ĥ so that, even
for non-positive systems, at least in the simple case of equal diagonal entries, it
can be shown that the mE-ZOH transformation outperforms the forward Euler
transformation in terms of stability preservation.

EXAMPLE 1.1.– Let

A =

⎡⎣−1 0.5 1
0 −1 0.5
0.5 0 −1

⎤⎦.
Figure 1.1 depicts the maximum modulus eigenvalue and the minimum

diagonal entry of F (h) as a function of h for three cases; (1) when using the
forward Euler transformation (fE), (2) when using the mE-ZOH transformation
and (3) when using the ZOH transformation.

The eigenvalues of A are −0.19,−1.5 and −1.309. Recalling remark 1.2,
F (h) given by the forward Euler transformation becomes unstable for h ≥
4/3, but, accordingly to [1.12], fails to be a non-negative matrix for h ≥ h?

= 1. On the other hand, the mE-ZOH transformation is always Schur stable
and non-negative for all h > 0.
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Figure 1.1. a) Maximum modulus eigenvalue of F (h); b) minimal diagonal
entry of F (h); solid line: fE, dotted line: mE-ZOH and dashed line: ZOH

1.3.3. The mixed Euler-ZOH discretization for switched systems

Consider the switching continuous-time system [1.1], where the switching
signal σc(t) allows the system matrix to jump in the finite set A1, A2, · · · , Am.
The matrices Ai are assumed to be Metzler, Hurwitz stable and sparse, that is
Ai ∈ Mc∩Si, i = 1, 2, . . . ,m, where Si indicates the sparsity structure of Ai.
The (i, j) entry of matrix Ap is denoted by ap,ij . The discrete-time switched
system [1.2] is obtained using the mE-ZOH transformation in [1.13], where,
associated with Ap, matrix D(h) is replaced by the diagonal matrix Dp(h),
whose diagonal entries are h−1

" h

0
eap,iitdt.

For systems [1.1] and [1.2] the following results hold (see [GUR 07]).

LEMMA 1.5.– System [1.1] with Ap ∈ Mc, ∀p, is stable under arbitrary
switching if there exists a vector w > 0 such that Apw < 0, ∀p.

System [1.2] with Fp ∈ Md, ∀p, is stable under arbitrary switching if there
exists a vector w > 0 such that Fpw < w, ∀σ.

In both the cases, v(x) = maxi

$
xi

wi

+
is a common copositive Lyapunov

function.
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We now provide conditions for stability under arbitrary switching for the
discrete-time system [1.2]. Recall theorem 1.5, that is Ap ∈ Mc ∩ Sp →
Fp(h) ∈ Md ∩ Sp. The following result can be easily proven.

THEOREM 1.6.– Let Ap ∈ Mc ∩ Sp for all p = 1, . . . ,m and let w be a

strictly positive vector. If v(x) = maxi

$
xi

wi

+
is a common copositive

Lyapunov function for the continuous-time switched system [1.1], then it is
also a common copositive Lyapunov function for the discrete-time switched
system [1.2], and therefore system [1.2] is stable under arbitrary switching.

EXAMPLE 1.2.– Recalling example 1.1, let

A1 =

⎡⎣−1 0.5 1
0 −1 0.5
0.5 0 −1

⎤⎦ , A2 =

⎡⎣−2 1 0.5
0 −2 1
1 0 −2

⎤⎦ .

Note that Apw < 0, p = 1, 2, with w� =
�
2 1 1.4

�
so that the switched

continuous-time system is stable under arbitrary switching with a copositive
linear Lyapunov function V (x) = maxi

$
xi

wi

+
. Let us consider the discrete-

time system obtained by the mE-ZOH transformation, that is:

F1(h) =

⎡⎣ e−h 0.5(1− e−h) 1− e−h

0 e−h 0.5(1− e−h)
0.5(1− e−h) 0 e−h

⎤⎦,
F2(h) =

⎡⎣ e−2h 0.5(1− e−2h) 0.25(1− e−2h)
0 e−2h 0.5(1− e−2h)

0.5(1− e−2h) 0 e−2h

⎤⎦.

It is possible to verify that Fp(h)w < w, p = 1, 2, so that the discrete-time
system is stable under arbitrary switching with the same Lyapunov function.

The following example considers a switched system, taken from [FAI 09],
that is not stable under arbitrary switching even though any convex
combination of the two matrices is Hurwitz stable.

EXAMPLE 1.3.– Let

A1 =

⎡⎣−1 0 0
10 −1 0
0 0 −10

⎤⎦ , A2 =

⎡⎣−10 0 10
0 −10 0
0 10 −1

⎤⎦ .



16 Hybrid Systems with Constraints

This continuous-time system is not stable under arbitrary switching since,
for example, eA1eA2 is not a Schur stable matrix. It can be shown that the
switched system is stable for any switched systems with dwell time τ ≥ 1.44.
This means that it is stable for all switching sequences with switching instants
satisfying tk+1 − tk ≥ 1.44.

Using the mE-ZOH transformation, we get a switched system with

F1(h) =

⎡⎣ e−h 0 0
10(1− e−h) e−h 0

0 0 e−10h

⎤⎦,
F2(h) =

⎡⎣ e−10h 0 1− e−10h

0 e−10h 0
0 10(1− e−h) e−h

⎤⎦.

In Figure 1.2, we show the plot of the dwell time Tdwell(h) for the
discretized systems [1.2] obtained with mE-ZOH and with ZOH as a function
of the sampling interval h. As expected, if h ≥ 1.44, the dwell time for the
discrete-time system in case of ZOH transformation is one step. On the other
hand, for the mE-ZOH transformation Tdwell(h) ≥ 2 for all h > 0, which
implies that the switched system is not stable under arbitrarily switching laws
for any h.

Furthermore, in Figure 1.3, we depict the plot of the maximum modulus
eigenvalue of F1(h), F2(h) and of FT1

1 (h)FT2
2 (h), with T1 and T2 spanning

from 1 to Tdwell(h), for the cases of fE, mE-ZOH and ZOH transformations.
As expected, the discrete-time switching system obtained with the ZOH
transformation, that is with F1(h) = eA1h and F2(h) = eA2h, with h ≥ 1.44,
is stable under arbitrary switching. Furthermore, using the forward Euler
transformation with h = 1.44, neither F1(h) nor F2(h) are Schur stable.
Finally, in case of mE-ZOH matrices, F1(h) and F2(h) are Schur stable for
any h > 0 (indeed it is easy to see that their eigenvalues correspond to those
of eA1h and eA2h), while FT1

1 (h)FT2
2 (h) is unstable for suitable choices of T1

and T2. Note that however such a system admits a dwell time equal to 2 for
h ≥ 5.2.

As a final remark, note that theorem 1.6 ensures the preservation of
copositive Lyapunov function only. There exist switched systems that are
stable under arbitrary switching but do not admit a common copositive
Lyapunov function. For such systems, the properties of the mE-ZOH
transformation should be further explored.
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Figure 1.2. Dwell time Tdwell(h) for the discrete-time systems [1.2]
obtained with mE-ZOH (circles) and with ZOH (dots) as a function of the

sampling interval h
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2 (h) for
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1.4. Conclusions

This chapter addressed the problem of analyzing different discretization
methods.

First, the suitability of diagonal Padé transformations for positive systems
has been examined. Unfortunately, the results of this investigation are
uniformly bad. In particular, a number of problems with this transformation
have been noted, and an alternative method has been presented that avoids
these pitfalls.

Second, the mE-ZOH transformation has been introduced and studied.
The main merit of this transformation is to outperform stability preservation
(with respect to the traditional Euler transformation) besides preserving the
matrix positivity and sparseness properties. This is in particular appealing in
the analysis of positive systems since it has been shown that stability is
preserved independent of the sampling period. The case of switched systems
is also addressed. Future works include the use of channel-distributed
sampling times in many applications and a closer analysis of the eigenvalues
of the discrete-time systems in the more general case of non-positive systems.
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