
Chapter 1

Origins and Topicality of a Concept

Limit state design is, to some extent, a familiar terminology within
the syllabuses of civil engineers’ education, as it appears explicitly in
the stability analyses of various types of structures or is present
“anonymously” in the methods used for such analyses. Nevertheless,
the variety of the corresponding approaches often makes it difficult to
recognize that they proceed from the same fundamental principles,
which are now the basis of the ultimate limit state design (ULSD)
approach to the safety analysis of structures. As an introduction to the
theory, this chapter will both present some famous historical
milestones and the topicality of the subject referring to the principles
of ULSD.

1.1. Historical milestones

1.1.1. Dialogs concerning two new sciences

The fundamental concept to be acknowledged first is that of yield
strength as introduced by Galileo in his Discorsi [GAL 38a] on the
simple experiment of a specimen in pure tension (Figure 1.1).
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The first guiding idea of Coulomb’s rationale in tackling these
problems is making a clear distinction between the active forces,
which are the prescribed loads acting on the structure under
consideration, and the characteristics of resistance of the material,
which set the bounds to the “coherence” forces that can be mobilized
(Figure 1.5).

Figure 1.5. Defining friction and cohesion in Coulomb’s Essay [COU 73]

The second guiding idea is that the resistance forces are exerted
locally along an assumed failure surface, anticipating, to a certain
extent, the concept of the stress vector to be introduced some 50 years
later. In the simple case of a stone column under a compressive load
(Figure 1.4), Coulomb explains the principles of the analysis: the
active force on the assumed fracture surface must be balanced by the
“coherence” force; the fracture surface will be determined through a
minimization process.

On the basis of the same principle, Coulomb’s stability analysis of
a retaining wall is a fundamental landmark for the theory of yield
design. Coulomb starts with the celebrated “Coulomb’s wedge”
reasoning (Figures 1.4, 1.6), where he assumes the failure surface to
be plane and states a condition for stability that the active forces on
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the assumed fracture surface Ba must be balanced by the “coherence”
forces, from which he derives, through minimization and
maximization processes, two bounds for the horizontal force that can
be applied to CB so that the wall be stable. Because of its simplicity,
this reasoning is often presented as the Coulomb analysis of the
stability of a retaining wall. In fact, Coulomb, after showing how
the friction along the wall could be taken into account, states that, to
be complete, the analysis should look for the curve that produces the
highest pressure on CB and sketches the process for this
determination.

Figure 1.6. Coulomb’s wedge [COU 73]

1.1.3. Compatibility between equilibrium and resistance

It is not difficult to point out the common features of the analyses
that have been briefly presented here.

– First, the concept of resistance is introduced as a mechanical
characteristic of the constituent material. After having been
determined through a given simple experiment, it is used in any other
circumstances and sets the limits to the resisting forces that can be
actually mobilized.

– Then, the idea that the resistance of a given structure – a result
at the global level – can be derived from the knowledge of the
resistance of its constituent material(s), which is a property at the local
level.
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– For this determination, the rationale is based upon the statement
that equilibrium equations of the structure must be satisfied while
complying with the limits imposed by the resistance of the constituent
material(s). In other words, equilibrium and resistance must be
mathematically compatible.

– The practical implementation of this statement is made through
the choice or the assumption of some particularly crucial zone in the
structure (cross-section in the first case and failure surface in the
second case), where it is anticipated that compatibility between
equilibrium and resistance should be checked.

As it is shown in Figure 1.3 in the case of Galileo’s analysis, it may
be objected that such approaches do not take into account the behavior
of the material, that is the fact that the material deforms under the
forces it is subjected to. But it must be recalled that although the
concept of linear elasticity was first introduced by Hooke in the 1660s,
it was only in 1807 that Young’s recognized shear as an elastic
deformation; three-dimensional linear elasticity itself was only really
formalized in the 1820s (Navier, Cauchy and others) at the same time
as the concept of the stress tensor. As noted before, the yield design
approach implicitly embodies an anticipation of the concept of
internal forces. This is not surprising since the intuition of internal
forces is primarily linked to that of rupture being localized on surfaces
or lines as observed on full-, reduced- or small-scale experiments
(Figures 1.7 and 1.8).

Figure 1.7. “Slip line” pattern under a foundation in a purely cohesive material
(medium-scale experiment) [HAB 84]
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Figure 1.8. Bending of a reinforced plaster slab: evidence of hinge
curves (M. Milicevic)

1.2. Topicality of the yield design approach

1.2.1. The Coulomb’s Essay legacy

Coulomb’s Memoir was at the origin of many methods used by
engineers for the stability analyses of various types of structures. In
the case of masonry vaults, the works by Méry [MER 40] and
Durand-Claye [DUR 67, DUR 80] have been extensively studied by
Heyman [HEY 66, HEY 69, HEY 72, HEY 80, HEY 82, HEY 98] and
Delbecq [DEL 81, DEL 82]: it is interesting to note that they often
combined Coulomb’s original reasoning with elastic arguments, thus
losing its original theoretical meaning without any damage from the
practical point of view.

Soil mechanics, which is sometimes considered as having found its
very origin in Coulomb’s Memoir, exhibits numerous methods clearly
related to it for the stability analysis of slopes, retaining walls, fills
and earth dams or for the calculation of the bearing capacity of the
surface foundations [BER 52, BIS 54, BØN 77, BRI 53, BU 93,
CHA 07, CHE 69a, CHE 69b, CHE 70a, CHE 70b, CHE 73a,
CHE 75a, CHE 75b, COU 79, JOS 80, DRU 52, GRE 49, HIL 50,
HOU 82, KÖT 03, KÖT 09, LAU 11, MAN 72, MAR 05, MAR 09,
MAS 99, MAT 79, MEY 51, MEY 53, MEY 63, MIC 98, MIC 09,
PRA 55, REN 35, SAL 74, SAL 76, SAL 82, SAL 85, SAL 95a,
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SAL 95b, SAL 06, SOK 55, SOK 60, SOK 65, SAR 91, TAY 37a,
TAY 37b, UKR 98], including the limit equilibrium methods and the
slip line methods, which were also applied to solving metal forming
problems. Finite element methods have also been developed and used
extensively within this framework for applications to soil mechanics
and to some related problems [AND 72, DEL 77, FRÉ 73, KAM 10,
KRA 03, KRA 05, LYA 02a, LYA 02b, LYS 70, MAK 06, MAK 07,
MAK 08, MAR 11, PAS 09].

Another field of application is the bearing capacity of metallic
plates and reinforced concrete slabs through the yield hinges theory as
developed by Johansen, Save, Massonnet and others [JOH 31,
JOH 43, MAS 63, SAV 73, SAV 95, BRA 07].

Considerable attention has been devoted by Chen, Drucker and
co-authors to applying the theorems of limit analysis to the
determination of the bearing capacity of concrete blocks and fiber
reinforced concrete [CHE 69c, CHE 70c, CHE 71, CHE 73b,
CHE 74].

More recently, it has been applied to the determination of the
resistance of long fiber composites from the knowledge of the
resistances of the components through a homogenization process
leading to the definition and determination of a homogenized yield
criterion [BU 86a, BU 98, BU 89, BU 86b, BU 90, BU 91, SUQ 82,
SUQ 83].

1.2.2. Topicality

Obviously, the yield design approach did play a highly important
role in civil engineering and construction as a scientific approach
before the theory of elasticity was elaborated and could be practically
implemented for the design of structures. We may wonder now about
its topicality, taking into account both the constant improvement of
the formulation and determination of constitutive laws and the
development of computational methods and tools that can be applied
to determine the behavior of a structure along a given loading path. It
must be understood that there is no inconsistency between the
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different approaches provided they are used within their proper
domain of validity, depending on the available data, and with
their results interpreted accordingly. Moreover, the yield design
approach proves quite efficient for back calculations after the collapse
of a structure without knowing the exact circumstances of its
occurrence.

Recent construction codes such as the Eurocodes are based on the
concept of limit state design that includes ULSD, the principle of
which may be stated as follows [OVE 89]:

The design criterion is simply to design for equilibrium
[under the design loads] in the design limit state of
failure. The design criterion could be expressed in the
following way:

d dR S≥

which means that the design load effect dS should be inferior to the
effect of the design resistances d.R

Three words are familiar to us in this statement, namely
“equilibrium”, “loads” and “resistances”, as a follow up to Coulomb’s
Memoir. The word “design” needs to be explained and “effect” must
be defined. As far as design is concerned, it means that the values that
are considered for the design and the dimensioning of the structures
are not the actual values of the loads or of the resistances but
conventional values derived from them through properly chosen
partial safety coefficients (“partial factors”) and thus setting the “rules
of the game”. Regarding the effect, it must be quantified as a scalar in
order to make the inequality practically meaningful.

Because of the theoretical basis of the ULSD approach to safety
provided by the theory of yield design [SAL 94], it is possible1 to
make the necessary clear distinction between the active forces and the
resisting forces, exactly in the same spirit as explained by Coulomb
more than 200 years ago. Also, through a quantified definition of the

1 See Chapter 7.
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effects, it provides at the same time, scientifically consistent and
efficient methods for its implementation [ANT 91, SIM 09].
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