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Summary of Acoustic Equations

This chapter first discusses the acoustic equations and also focuses on the particle velocity and
particle displacement. Conventional methods for estimating the particle velocity are briefly
discussed with an emphasis on their advantages and disadvantages. This chapter also explains
the advantages of a direct measurement of the velocity and the importance of using laser-based
non-intrusive methods for nonlinear acoustics.

1.1. Basic equations

1.1.1. Fluid- and thermodynamics

Acoustic motion is governed by the laws of fluid mechanics and
thermodynamics [KUN 90]. The quantities involved in acoustics are the pressure p
in Pascal (Pa = N⋅m–1), the particle velocity v (m⋅s–1), the density of the fluid ρ
(kg⋅m–3) and two thermodynamic variables as the temperature (K) T and the entropy
S (J/K). As the velocity is a three-component vector and the other variables are
scalar, seven equations are needed to solve an acoustic problem. All variables
generally have spatial and time dependences, which are omitted in order to simplify
the presentation of the equations.

The first equation (vectorial) is the momentum equation derived from Newton’s
second principle applied to the fluid particle

( ) [ ].v v grad v f grad p div
t

ρ ρ ρ σ∂ + = − +
∂

, [1.1]
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2 Acoustic Particle Velocity Measurements using Lasers

where [σ] is the stress tensor including the effects of viscosity (see the following
note) and fρ is the body forces by unit volume (usually gravity height in fluid
mechanics). The term

.d v grad
dt t

∂= +
∂

[1.2]

is the convective derivative.

The second equation derived from the mass conservation law [BRU 06] is given
as

( )div v q
t
ρ ρ ρ∂ + =

∂
, [1.3]

where qρ is the source by injection of mass expressed per unit of volume and per
unit of time (dimension of q is s–1). Without sources, the equation becomes the
continuity equation of the fluid

( ) 0div v
t
ρ ρ∂ + =

∂
, [1.4]

which could be rewritten, using the property ( ) ρρρ dagrvvdivvdiv .)( +=

1 ( )d div v
dt
ρ

ρ
= − . [1.5]

Equation [1.5] expresses the relationship between compressibility and velocity
and plays an important role in compressible flows.

To consider heat transfer in flows, the first law of thermodynamics (energy
conservation) may be applied and leads to the third necessary equation [KUN 90,
RIE 03]. If e is the internal energy (potential energy) per unit mass, the energy
conservation could be written as

( ) ( ) [ ]( )
2

. .
2

d ve div J div pv f v div v
dt

ρ ρ ρ σ
⎛ ⎞

+ = − − + +⎜ ⎟
⎝ ⎠

, [1.6]

where J is the heat flux vector per unit mass.
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As the velocities are quite a lot smaller than the sound celerity, by neglecting the
viscosity and with TCe V= for a perfect gas with VC , the specific heat at constant
volume, equation [1.6] becomes

( )p
dTC div J
dt

ρ = − , [1.7]

where PC is the specific heat at constant pressure [KUN 90]. Considering the heat
transfer equation (Fourier’s law) written here for an isotropic and homogeneous
fluid of the first order

( )J k grad T= − , [1.8]

where k is the heat conductivity. Introducing equation [1.7] into [1.8] leads to

dT T
dt

κ= Δ , [1.9]

where
PC
k

ρ
κ = is the coefficient of thermal diffusivity.

The second law of thermodynamics, entropy production, which is generally
considered as a measure of disorder in a system, can be written as

2

dS de p dT
dt dt dt

ρ
ρ

= − , [1.10]

where S is the entropy. An insulated system tends to a constant and maximum
entropy.

To summarize, the analysis of a complete acoustic process must take into
account seven scalar variables, pressure, three-dimensional (3D) motion variable
(displacement, velocity or acceleration), density (mass flow), temperature and
entropy. Equations [1.1], [1.3], [1.6] and [1.10] are sufficient to close the system for
a perfect gas.

According to given problems, the hypotheses may considerably simplify the
equations and in the following we will give some classical examples. Nevertheless,
as we will see later, the use of lasers for measuring particle velocity is very useful in
the case of complex experiments for which temperature gradient or viscosity, for
instance, could not be neglected.



4 Acoustic Particle Velocity Measurements using Lasers

NOTE.– Stress tensor for acoustics.

The momentum equation in the context of acoustics is generally written as

( ) vdivdagrvpdagrfvdagrvv
tdt

vd
⎟
⎠
⎞

⎜
⎝
⎛ ++Δ+−=+

∂
∂=

3
. μημρρρρ

where µ is the coefficient of shear viscosity and η is the bulk viscosity coefficient.
As we do not emphasize thermoviscous losses, the above equation will not be used
later.

1.1.2. Hypothesis of linear acoustics without losses

In this first case, the fluid is homogeneous and without temperature gradient or
fluctuation. The other acoustic variables may be divided into a mean value and
fluctuating quantities assumed to be related to acoustic variations; then

0 'p p p= + [1.11]

0 'ρ ρ ρ= + [1.12]

0 'v v v= + [1.13]

with
0

' 1p
p

<< ,
0

' 1ρ
ρ

<< , T = T0 and 00 ≈v .

The above hypotheses are still available for very few mean flows, the nonlinear
terms of the second-order Navier–Stokes equation (advection term) remain much
lower than the unstationary term (equation [1.1]) and low velocities do not impact
the compressibility (equation [1.3]). Neglecting the weight forces and the shear and
bulk viscosities, equation [1.1] becomes

0 0
' 'v grad p f
t

ρ ρ∂ + =
∂

, [1.14]

where f is the force that an acoustic source may impose on the fluid. If in a given
volume (source) a fluctuating mass flow is injected, )(0 tqρ , then equation [1.3]
becomes



Summary of Acoustic Equations 5

0' ( ' ')div v q
t

ρ ρ ρ∂ + =
∂

. [1.15]

Without heat source and viscous dissipation, the equation of entropy [1.10] for a
perfect gas ( TCe V= ) becomes

2
vCdS dT p d

dt T dt dtT
ρ

ρ
= − . [1.16]

As it is usual to write dS in relation to dp and dρ, dT is replaced using the log-
differentiation of the state equation

dT dp d
T p

ρ
ρ

= + [1.17]

into [1.16]. As the average value of T, p and ρ is much larger than their fluctuations
and using the perfect gas equation, p/ρ = rT, with r = 287 J·kg–1·K–1, it gives

( )
0 0 0 0 0 0

1pv v
v

CCv rC CdS dp d dp d dp dC
dt p dt dt p dt dt p dt dt

ρ ρ γ ρ
ρ ρ ρ

− ⎛ ⎞
= + = + = +⎜ ⎟

⎝ ⎠
, [1.18]

where 4.1==
v

p

C
C

γ for the air. If the fluid is considered as isentropic (dS = 0), i.e.

with no temperature source, we obtain by integration from [1.18]

20

0 0

' ' ' '
T

pp cγ γρ ρ ρ
ρ ρ χ

= = = , [1.19]

where p′ and ρ′ are zero at the origin. In the above equation, c0 is the acoustic
celerity for a homogeneous and quiet media and χT is the coefficient of isothermal
compressibility (for a perfect gas χT= 1/p0).

1.2. Acoustic equations

1.2.1. Linear acoustic equations with sources

In taking the divergence of equation [1.14] and the gradient of equation [1.15]
and combining both with equation [1.19], the equation for the acoustic pressure is
obtained; then
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2

02 2
0

1 '' p qp divf
tc t

ρ∂ ∂⎛ ⎞Δ − = −⎜ ⎟∂∂ ⎝ ⎠
. [1.20]

If a fluctuating source of heat h is inserted into the volume (pulsed laser, flame,
etc.), then the entropy becomes

TdS hdt= . [1.21]

By neglecting spatial variation on the source domain, the state equation [1.18]
could be rewritten as

2
0

1

p

p h
t t Cc
ρ α∂ ∂= −

∂ ∂
, [1.22]

where α = βχTp0 is the thermal expansion coefficient and β is the thermal pressure
variation. Whatever is inside the source, the density fluctuations are now dependent
not only on the pressure variation but also on heat fluctuations.

Using the same transformation, the equation with thermal contribution may be
written as

2

02 2
0

1 ''
p

p q hp divf
t C tc t

αρ
⎛ ⎞∂ ∂ ∂Δ − = − −⎜ ⎟⎜ ⎟∂ ∂∂ ⎝ ⎠

. [1.23]

1.2.2. Some remarks on acoustic sources

The concept of acoustic sources is non-trivial. First, equation [1.23] is only valid
in the source domain. Second, the analysis of the sources practically requires an
other discipline such as vibration or thermal science. Figure 1.1 shows the principle
of a model of the acoustic problem with sources. In the presence of acoustic sources
(musical instrument, rotating machinery, burner, etc.), the analysis allows us to
estimate f , q or h, three types of canonical sources but possibly present at the same
time in a physical process responsible for the generation of the sound. These three
sources are, respectively, called:

– force source because it derives from the momentum equation;

– debit source because it derives from the mass equation;

– heat source.
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The actual sources are often a combination of these three sources located more or
less in the same area of production. A good example is an airplane turboreactor.

Further study will show that the source of force leads to a bidirectional
directivity (acoustic dipole) due to the term fdiv in the right-hand side of equation
[1.23]; the other terms are omnidirectional directivity (monopole).

Figure 1.1. Principle scheme of a model of a resolution of an acoustic problem
by taking into account sources: S is the study domain with a border Σ and S0 is

the source domain with a border Σ0

1.2.3.Without sources

In the (S-S0) domain (Figure 1.1), the source activity has no more direct effect
and the sound propagates until final attenuation. Then, the model for this part of the
space needs only the left-hand side of equation [1.23], equation [1.14] without
source and equation [1.19]. The set of equations

( )

2

2 2
0

0

2
0

1 '' 0

' ' ,

' '

pp
c t
v grad p
t

p c

ρ

ρ

⎧ ∂Δ − =⎪ ∂⎪
⎪ ∂⎪ = −⎨ ∂⎪
⎪ =
⎪
⎪⎩

[1.24]

Make it possible solve many acoustic problems, if sources are physically described
and border and time conditions are known. The first equation is the well-known
D’Alembert equation (called the propagation equation in the following), the second
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equation is the linear Euler equation for small motions (simply called the Euler
equation in the following).

Remembering the Fourier transform of the signal, x(t) is written as

( ) 2( ) j ftX f x t e dtπ
+∞

−

−∞

= ∫ [1.25]

and one of its properties is

( )
2 ( )

dx t
TF j fX f

dt
π

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭

. [1.26]

The previous set of equations [1.24] could be rewritten as

( )

2

0
2
0

' ' 0

' '

' '

p k p
jv grad p

p c
ρ ω

ρ

⎧Δ + =
⎪
⎪ =⎨
⎪
⎪ =⎩

, [1.27]

where the first equation is called the Helmholtz equation and p′ is now dependent on
frequency. The wave number is

0 0

2 fk
c c
ω π= = . [1.28]

and the wavelength is

02 c
k f
πλ = = . [1.29]

This above characterictic has much impact on practical acoustics because the
solid objects considerably modify the acoustic field (diffraction to ultrasounds for
instance). The measurement method have to take into account the solid environment
of an acoustic field and must avoid to disturb the field with too large probes. The use
of laser probes is one answer of this problem.
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1.2.4. Acoustic intensity and source power

Far from sources, inside (S–S0), assuming that sound propagates in a
homogeneous and quiet media and neglecting the dissipation, equation [1.6] directly
becomes

( )' 'te div p v
t

∂
= −

∂
, [1.30]

where et is the total mechanical energy (kinetic and potential) per unit of volume. In
the absence of source in the domain, this equation vanishes. The product, ''vpP = ,
called the acoustic energy flux, contains the information on source activities
whatever their physical origin. An actual estimation of the flux is given by

( ) ( )'' vpP ℜℜ= where ( )ℜ is the real value of the variables. By definition, the
acoustic intensity is

( ) ( )' 'I P p v=< >=< ℜ ℜ > , [1.31]

where <.> is the temporal means (see note below).

The above equation shows that knowledge of the velocity is absolutely essential
for knowledge of the source intensity and direction.

The source power is written as

( )0 .P S I ndσ
Σ

= ∫∫ , [1.32]

where Σ' is the integrating surface, including the S domain larger than S0 by
definition. The surface surrounding the source domain may be chosen arbitrarily.
Nevertheless, depending on the applications, the standards of measurement
recommend respecting a certain distance from the assumed location of the sources to
the measuring devices (typically a few wavelengths).

The above equation is the basis of standard measurement for noise engineering.

NOTE.– Averages of time-varying variables.

The notation <.> usually means the expected value or statistical averages. In the
case of an ergodic process, the statistical means are assumed to be equal to time
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averages. This concept will be detailed in Chapter 2. In this chapter, the hypothesis
of ergodicity is assumed; then

( )
( )

1lim .
TT

x x t dt
T→+∞

< >= ∫

If x′(t) = x(t)-mx where mx = <x>, mean of the signal, the root mean square
(RMS) value of x(t) is defined as

( )2 2

( )

1' lim ( ) ,x xTT
e x x t m dt

T→+∞
= < > = −∫

if the process is ergodic. The standard deviation (STD) and the RMS value (ex) are
equivalent. This enables us to quantify the characteristic variations of a signal.

1.2.5. Acoustic impedance and border conditions

If an incident wave is reflected on a surface (Figure 1.2), it is assumed that the
surface as a local reaction can be modeled by the surface impedance

'( )
'n

n

pZ
v

ω = , [1.33]

where vn is the surface normal velocity in the direction of the external normal of the
element of the surface [DOW 83]. We should note that the impedance depends
on frequency and is generally measured with adapted setup (Kundt’s tube for
example).

Figure 1.2. On a border (wall, media changing, etc.), the wave is assumed to have a local
reaction due to the impedance Zn(ω) of the element of surface dσ
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From Euler equation [1.27] in the frequency domain, the normal velocity could
be written as

0

'' .n
j pv

nρ ω
∂=
∂

[1.34]

This means that the knowledge of the pressure gradient is theoretically sufficient
to solve a border problem. Practically, this is not so simple and this pressure gradient
has to be estimated using a finite number of pressure captions, as we will see later
[ALL 09].

In the particular case where the normal velocity is close to zero, 0'≈nv , the
pressure gradient is given by

' 0p
n

∂ =
∂

[1.35]

which is called Neumann’s condition. This condition is nearly followed when the
border is highly reflective (solid body).

Conversely, if 0≈nZ , the border condition could be written as

' 0p = [1.36]

which is called Diriclet’s condition. This condition is much more difficult to respect
in actual experiments because the pressure rarely vanishes in a singularity.
Nevertheless, in a first approximation, this is the case of an open end of an acoustic
pipe.

The last case is when the wall is vibrating with a velocity V0; by continuity, the
impedance could be rewritten as

0

'( )n
n

pZ
V v

ω =
−

. [1.37]

Not only should the acoustic velocity be known, but also the vibration of the
wall. This condition is very important in coupling between vibrating surfaces and an
acoustic domain (loudspeaker, radiation of mechanical engine, wall transparency,
etc.).



12 Acoustic Particle Velocity Measurements using Lasers

The acoustic impedance, which is the ratio between a scalar variable on the
projection of a vectorial variable, has to be used very carefully and its measurement
must be carried out in a sensitive manner. For one-dimensional propagation,
typically for wind instrument analysis [DAL 01], or when wavelengths are much
larger than the object dimensions, in electroacoustics [ROS 86], the concept of
impedance is very useful and it enables us to solve numerous problems at the first
order.

1.3. Constants, units and magnitude orders of linear acoustics

The celerity in the air is mainly dependent on temperature T

2 0
0

0

p RTc
M

γ γ
ρ

= = [1.38]

for a perfect gas where R is the perfect gas constant and M is the molar mass of the
gas1. A good linear approximation about T0= 15°C is given by

( )0 331.4 0.607 m/s,c T= + [1.39]

where T is in degrees Celsius.

Figure 1.3. Acoustic celerity versus temperature in degrees Celsius. The solid line
represents the values in equation [1.38] and the dotted line represents the linear

approximation given in equation [1.39]

1 M = 28.92 g/mol and R = 8.314472 J·mol–1·K–1.
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To simplify the exposition of the order of magnitude of acoustic variables, we
will only consider one-dimensional wave propagation. Whatever the functions f and
g, the solutions of system [1.14] are

( )

0 0

0 0 0 0 0 0

'( , )

1 1' ,

x xp x t f t g t
c c

x xv x t f t g t
c c c cρ ρ

⎧ ⎛ ⎞ ⎛ ⎞
= − + +⎪ ⎜ ⎟ ⎜ ⎟

⎪ ⎝ ⎠ ⎝ ⎠
⎨

⎛ ⎞ ⎛ ⎞⎪ = − − +⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠ ⎝ ⎠⎩

. [1.40]

The function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

0c
ttf is the progressive wave when x increases and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

0c
ttg

is the progressive wave when x decreases. In actual problems, both kinds of waves
occur when an obstacle is present in the field. In the case of a harmonic wave, the
solution could be

( )

0 0

' ,

,

j t jkx j t jkx

x xj t j t
c c

p x t Ae e Be e

Ae Be

ω ω

ω ω

− +

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= +

= +
[1.41]

where A and B are arbitrary complex constants. Assuming that only one progressive
wave is propagating,

( )

( )

0

0 0

' ,

1' ,

xp x t f t
c

xv x t f t
c cρ

⎧ ⎛ ⎞
= −⎪ ⎜ ⎟

⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ = −⎜ ⎟⎪
⎝ ⎠⎩

[1.42]

and the ratio of pressure and velocity is

( )
( )0 0

' ,
' ,
p x t

c
v x t

ρ = , [1.43]

called the characteristic impedance because it contains the essential elements of the
thermodynamics of a homogeneous and quiet media. At temperature T0 = 15°C,

3
0 1.23 kg/mρ ≈ and 2 1

0 0 417 kg m scρ − −≈ for the air.
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For a pure tone of 1,000 Hz, the RMS value of the minimum pressure perceived
by human being (on average) is

52 10 Parp
−= × [1.44]

which is a very small value of magnitude (called the reference acoustic pressure in
the following). The highest level before the theshold of painful hearing is

20 Pahp = . [1.45]

In terms of pressure, audition is being able to perceive about six orders of
magnitude without difficulties. It has seemed necessary to build a scale adapted to
the audition range avoiding manipulating such a large scale of numbers. A
logarithmic scale seemed to be a good solution because of the relative resolution of
magnitude perception2. Thus, by definition, the decibel sound pressure level (dBSPL)
is defined as

520 log 20 log
2 10

rms rms
dB

r

p pp
p−= =

×
dBSPL. [1.46]

The threshold of audition at 1,000 Hz (equation [1.44]) is pdB = 0 dB and the
maximum (equation [1.45]) is pdB= 120 dB.

The acoustic energy flux has been previously defined as P=R(p)R(v) where the
pressure and the velocity are obtained by Fourier transform [1.25]. As R(x)=x+x*/2,
it becomes

( )1 ' ' '* ' ' '* '* '*
4

P p v p v p v p v= + + + , [1.47]

if the acoustic wave is harmonic such as

( )

( )'
'

'

j t

j t

p e

v e n

ω

ω

+Φ

+Φ

=

=
. [1.48]

As the terms ''vp and '*'*vp are time dependent and zero mean by definition,
the intensity becomes

2 The audible gap from 0.01 to 0.1 Pa is nearly the same from 0.1 to 1 Pa.
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( ) ( )1 1' '* '* ' ' '*
4 2

I P p v p v n p v n=< >= < > + < > = ℜ . [1.49]

Note that the intensity is a vector that indicates locally the sense of the acoustic
energy flux. For a plane wave (equation [1.42]), the acoustic intensity is

2

0 0

rmspI
cρ

= , [1.50]

where ><= 2'pprms . Then, the decibel unit defined on intensity

1210 log
10dB
II −= , [1.51]

where the reference intensity Ir = 10−12 W comes from pr = 2 × 10–5 Pa and
40000 =cρ Pa⋅s/m, an approximate value of the characteristic impedance3. These

last equations are the basis of sound intensity measurements in noise engineering.

Now, assuming that the real part of the velocity of equation [1.48] (from a
measurement for instance) is written

( ) ( )' cos 2 ' cos 'x a av V ft V tπ φ ω φ= + = + [1.52]

the particle displacement becomes, if the equilibrium position of the particle is
assumed to be zero,

( ) ( )sin 2 ' sin '
2

a a
x

V Vd ft t
f

π φ ω φ
π ω

= + = + . [1.53]

Then, the values of the RMS value of velocity and displacement for the reference
pressure 52 10 Parp

−= × (0 dB at 1,000 Hz) are

8

0

5 10 m/sr
r

pV
cρ

−= = × ,

3 If not, the small error occurs, approximately 0.17 dB for measurement at 15°C.
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1110 m
2

r
r

Vd
fπ

−= = .

At the limits of comfortable audition, 20 Pahp = (120 dB at 1,000 Hz), it
becomes

2

0

5 10 m/sh
h

pV
cρ

−= = ×

510 m
2

h
h

Vd
fπ

−= = .

These calculations justify a posteriori the linearization of the basic equations,
particularly the order of two advective terms of equation [1.1] (second term on the
left side), which is low in comparison to the others, in a large range of magnitude.
Furthermore, they also show that the sensitivity of human audition is considerably
high; ears are sensitive to an acoustic displacement of about 10−11 m, that is the order
of the molecular dimension.

1.4. Acoustic velocity measurement and applications

As we have seen before, the velocity is an indispensable variable for a complete
knowledge of the velocity field, as well as for impedance estimation or intensity.
Moreover, in noise engineering or control, it is often insufficient to deduce the
intensity from equation [1.50] because of the high complexity of the acoustic field.
The velocities have to be deduced from the gradient of pressure under the
assumption of linearity. This measurement needs at least two or more microphones
and the velocity is estimated using finite difference schemes.

1.4.1. Velocity estimation from pressure gradient

Considering the Euler equation in the frequency domain (equation [1.27])
projected on the x component to simplify the presentation

0

''x
j pv

xρ ω
∂=
∂

. [1.54]
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Figure 1.4 shows the principle of the estimation of the pressure gradient using
two microphones distant from L. Using a finite difference scheme for the gradient,
the estimated velocity becomes

( ) ( )2 1 2 1

0 0 0

'
2x

p p j p pjv
L c L

λ
ρ ω πρ

− −
= = . [1.55]

Figure 1.4. Principle of velocity measurement by means of the microphone doublet

It clearly appears in this simple example that a dimensional parameter λ/L carries
all the difficulties of this kind of measurement:

– If λ/L >> 1, then 21 pp ≈ ; then the difference p2-p1 is close to zero and if an
actual signal is noisy, the relative error could dramatically increase; at given L, this
often occurs at low frequency.

– If λ/L << 1, then the velocity is underestimated or does not have any sense; at
given L, this occurs at high frequencies.

These kinds of measurements need a good choice of microphone positions and L
should be adapted to the analyzed frequency domain. Above all, a precise estimation
in magnitude and phase should be achieved; the calibration procedure is quite
delicate. It is also possible to estimate velocity using more than two microphones;
the principles are similar.

1.4.2. Intensity estimation

The intensity defined in equation [1.31] may be estimated from the experimental
setup displayed in Figure 1.4. The pressure is estimated by

1 2'
2

p pp += [1.56]
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and from equation [1.49], the estimation of acoustic intensity becomes

( )( )( ) ( )

( )

*
1 2*

1 2 2 1
0 0 0 0

*
1 2

0

,
8 4

2

x

p p
I j p p p p

L c L c

p p

L

λλ
π ρ π ρ

ω ρ

ℑ
= ℜ − + − =

ℑ
=

[1.57]

where ( )ℑ is the imaginary part. Equation [1.57] shows that the estimation of
intensity necessitates only the interpectrum calculation of the pressures given by
both microphones (see chapter 2). In practice, some difficulties may occur such as
for example: the calibration in magnitude and phase must be achieved carefully, the
distance between microphones should be set in relation to the frequency range to be
measured. However, this technique is extensively used in standard measurements.

1.4.3. Application to impedance estimation

With the same experimental setup, the impedance between both microphones
becomes

( )
( )

( )
( )

1 2 1 2
0 0 0 0

2 1 2 1

2
x

x

p p p pp L kLZ c c
v j p p j p p

πρ ρ
λ

+ +
= = =

− −
. [1.58]

The exact formulation of estimation impedance using two microphones in a
wave guide would be obtained by replacing ( )kLtan instead of ( kL ), which is a first-
order approximation at large wavelength [DAL 01]. As discussed above, there are
critical bands for which the precision of the estimation decreases, particularly
around 21 pp ≈ .

1.5. Beyond linear equations

The understanding of the previous sections 1.1–1.4 is sufficient to explain the
measuring methods based on lasers and their capabilities. The present section briefly
presents some cases for which laser techniques have been used successfully and
when the classical theory presented here is insufficient. The development of each
application would require further developments, which are far beyond the focus of
this book.
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1.5.1. Acoustic equations with mean flow

The velocity could be decomposed into a mean and fluctuating velocities as
'0 vvv += (equation [1.13]) with a mean flow non-negligible and much higher than

the fluctuating velocity; the convective derivative (equation [1.1]) becomes

0 .
d v grad
dt t

∂= +
∂

[1.59]

and without losses and sources, and with the same method discussed in section
1.1.3, the linearization of equations [1.1], [1.5] and [1.19] gives

0 0 . ' ' 0v grad v grad p
t

ρ ∂⎛ ⎞+ + =⎜ ⎟∂⎝ ⎠
, [1.60]

0 0. ' ( ') 0v grad div v
t

ρ ρ∂⎛ ⎞+ + =⎜ ⎟∂⎝ ⎠
[1.61]

0' 'p c ρ= . [1.62]

By using simular calculations as in section 1.2.1, an equation for pressure is
easily derived

2

02
0

1' . ' 0.p v grad p
tc

∂⎛ ⎞Δ − + =⎜ ⎟∂⎝ ⎠
[1.63]

In a special case where the moving flow is in the same direction of propagation,
the projection (hypothesis of the flat profile) of equation [1.63] gives

22 2 2
2

0 02 2 2
0

1' 2 ' 0p v v p
x tc t x

⎛ ⎞∂ ∂ ∂Δ − + + =⎜ ⎟∂ ∂∂ ∂⎝ ⎠
[1.64]

or introducing the Mach number

0

0

v
M

c
= [1.65]

2 2 2

2 2 2
0 0

' ' 1 '' 2 0p M p pp M
c x tx c t

∂ ∂ ∂Δ − − + =
∂ ∂∂ ∂

[1.66]
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and the frequential version, in the Fourier domain,

2 2

2 2

' ' '' 2 0p p pp M jMK K
x tx t

∂ ∂ ∂Δ − − + =
∂ ∂∂ ∂

[1.67]

where
0 0

2 fK
c c
ω π= = [1.68]

It is straightforward to prove that the progressive wave ( ) xjktj xeAetxp −= ω,' will
propagate with a wave number when x increases

0 0 1x
Kk

c v M
ω= =
+ +

[1.69]

and when x decreases

0 0 1 1x
K Kk

c v M M
ω= − = − =
− − −

[1.70]

As shown in section 1.3, the acoustic velocity still remains lower at 1m/s, even
when the pressure reaches 120 dB. The mean velocities in actual applications of
acoustic propagation with flow may range from 10 to 300 m/s, such as for cars,
trains and aircraft (we do not consider supersonic flows). Thus, the measurement of
acoustic velocity about 1% or less of a mean flow is challenging. Furthermore, the
flow velocity profile could also be linear (roughly close to a wall), parabolic or with
power laws. Also, turbulence occurs in a major part of these applications which adds
more difficulties.

Nevertheless, a complete description of phenomena which occur in these
applications has not been fulfilled up to now. Thus, advanced measurement
techniques must be achieved by means of microphone arrays or laser techniques, in
order to improve our comprehension of the physics involved.

1.5.2. High acoustic displacement

Even when the hypothesis of linear acoustics seems valid, in some cases,
nonlinear behavior exists due to an abrupt change of section or discontinuities.
Figure 1.5 shows the principle of what happens.
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Figure 1.5. a) The radius of curvature of an open end of a guide is larger than acoustic
displacement (dashed arrow). b) The radius of curvature of an open end of a guide is smaller
(sharp end) than the acoustic displacement. The fluid displacement (dashed arrow) does not

follow the wall and vortex shedding occurs

If the wave guide is excitated with a sine-wave, the particle movement at the end of
the pipe may have two kinds of behavior as shown in Figure 1.5. If the particle
displacement is the smaller of the radius of curvature of the end of the pipe (smooth
end) the authors [MAR 08] note that when the acoustic displacement is higher than R

1x aV
R L
δ

ω
= > [1.71]

the movement generates a vortex at the end.

These kinds of phenomena occur in loudspeaker ports [ROO 98],
thermoacoustic devices [BLA 03] or musical instruments [ATI 04]. Laser techniques
are required for analyzing these phenomena.

Figure 1.6. Streaming velocity field; δν is the boundary layer depth, R is the radius of the
wave guide and λ is the acoustic wavelength [MOR 07]
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1.5.3. Acoustic streaming

A last example of a phenomenon with in margin of classical acoustics is acoustic
streaming, i.e. the flow induced by the order of two terms when the level increases.
First described by Rayleigh (central vortices, called outer cells), a complete analytic
description is now available, including the vortices close to the wall called the inner
cells [BAI 01]. Figure 1.6 shows the theoretical behavior of acoustic streaming.

The understanding of this effect needs a complete measurement in the acoustic
boundary layer (less than 1 mm) and a joint estimation of the acoustic and flow
velocity, the last being about 1% of the acoustic velocity. This problem has been
addressed by a large number of authors, as we will see in Chapter 4.
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