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SNMR Imaging for Groundwater

1.1. Brief history of SNMR development

Surface Nuclear Magnetic Resonance (SNMR) imaging is a non-invasive
geophysical technique developed for groundwater investigation. This method was
initially used for investigating a homogeneous subsurface. In a one-dimensional
(1-D) implementation, the subsurface is assumed to be horizontally stratified and the
method is known as the Magnetic Resonance Sounding (MRS) method or Surface
Nuclear Magnetic Resonance (SNMR). In France, the name RMP (sondage par la
Résonance Magnétique Protonique) is used.

The MRS method was developed in Russia in the early 1980s by a team of
Russian scientists under the guidance of A.G. Semenov. Their research program
started from the Varian patent [VAR 62] where using the Nuclear Magnetic
Resonance phenomenon (NMR) was proposed for non-invasive detection of proton-
containing liquids (hydrocarbons or water) in the subsurface. The very first MRS
instrument, named HYDROSCOPE, was built in 1981 [SEM 89]. The method was
used in Russia and has been tested in other countries: [SCH 91], [GOL 94],
[LIE 94], [LEG 95] and [GEV 96]. In 1996, IRIS Instruments (France), in
cooperation with the Bureau de Recherches Géologiques et Minières (BRGM (The
French Geological Survey), France) and the Institute of Chemical Kinetics and
Combustion (ICKC, Russia), released the first commercial MRS instrument
(NUMIS), thus rendering MRS commercially available and easily accessible for the
international scientific community. Since then, MRS has been intensively tested by
different teams and in different countries. A two-dimensional (2-D) implementation
named the Surface Magnetic Resonance Tomography or 2D-SNMR was developed
around 2005 [HER 07], which was further extended to the three-dimensional (3-D)
applications named 3D-SNMR [LEG 11]. MRS equipment was also improved and
MRS instruments of the new generation were developed in France, USA, Germany
and China.
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2 Magnetic Resonance Imaging for Groundwater

Today, SNMR imaging for groundwater is an emerging geophysical method
which is routinely used for groundwater investigations but it is still a subject of
research and development for an international community composed of
geophysicists and hydrogeologists.

1.2. The basic principles

The phenomenon of nuclear magnetic resonance (NMR) consists of selective
absorption and transmission by atomic nuclei of electromagnetic energy of a specific
frequency, particular to different nuclei. This phenomenon was discovered in 1946.
The Nobel Prize in Physics, 1952, was jointly awarded to Felix Bloch and Edward
Mills Purcell for their development of new methods for nuclear magnetic precision
measurements and discoveries in connection therewith: [BLO 46] and [PUR 46].
The NMR phenomenon can be observed in nuclei possessing both magnetic
moments and angular momentum. The SNMR method is based on the observation of
the NMR phenomenon in hydrogen or protons (H1) contained in water and oil
[ABR 61]. In the first 200 m of the subsurface, the probability of finding oil
reservoirs is negligibly small and hence SNMR is principally targeted at
groundwater. The resonance behavior of proton magnetic moments in the
geomagnetic field ensures that the method is selective and sensitive only to
groundwater. Thus, a non-invasive detection of subsurface water is the competitive
advantage of SNMR compared with other geophysical tools used for
hydrogeological investigation. SNMR is a large-scale method, and the investigated
volume can be approximated by a cube of a×5.1 , where 15010 ≤≤ a m is the side
of a square loop.

In the classical model, nuclei are represented as macroscopic magnetic moments
M . A typical scheme of magnetic resonance measurement consists of three phases
(Figure 1.1). In the natural, non-perturbed state (equilibrium position), all magnetic
moments M are oriented along the static magnetic field 0B and do not produce any
measurable signal. Nuclei are able to absorb electromagnetic energy at the Larmor

frequency πγ 2/
00
Bf = . The gyromagnetic ratioγ has a specific value for each type of

nucleus, and hence the Larmor frequency is a physical property of the nuclei. Thus,
when an external electromagnetic field is applied to a sample, the nuclei absorb the
energy and magnetic moments precess from their equilibrium. After the external
field is cut off, they return to their initial position and generate a magnetic field,
which is also oscillating at the Larmor frequency. This field can be measured, and
then analyzed. For data acquisition, a pulse of current, oscillating at the Larmor
frequency is generated in the transmitting coil. The magnetic resonance response is
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6 Magnetic Resonance Imaging for Groundwater

The macroscopic magnetic moment M of the volume dV which is located below

a surface loop is oriented along the static magnetic field
0

B as shown in Figure 1.4.

The Earth’s magnetic field acts as the static field
0

B . A pulse of alternating current

generated in the loop produces an electromagnetic field within the volume dV. The
frequency of the current is set as equal to the resonance frequency for protons in the
geomagnetic field (Larmor frequency). The component of the loop’s magnetic field

1
B transversal to the Earth’s magnetic field

0
B makes rotating the magnetic

moment M in the plane perpendicular to the plane (
10

,BB ) at the angle τγθ
1

B=

(flip angle), where τ is the pulse duration and γ is the gyromagnetic ratio. Magnetic

resonance signal induced in the loop is proportional to the projection of M on
1

B :

⊥
ME ~

0
. As )sin(θMM =

⊥
, the signal also depends on θ and hence )sin(~

0
θE .

For the same loop the flip angle θ depends on two parameters: current in the loop

0
I and distance between the loop and the sample dV.

0
I is known and hence, by

measuring θ , we obtain information on the depth of water saturated formations. A
magnetic resonance signal is generated by water molecules and simple observation
of the NMR response using an SNMR field setup is sufficient for reliably detecting
groundwater. The maximum sensitivity of the method with regard to groundwater
will be achieved when the flip angle °=90θ (Figure 1.4).

However, SNMR can also be used in a sounding mode. In this case depth to
water saturated formations can be derived from SNMR measurements.
Implementation of a Magnetic Resonance Sounding (MRS) is schematically
presented in Figure 1.5. Two distinct cases are presented: a shallow aquifer and a
deep one. If the pulse duration is fixed, then for the same current in the loops the flip
angleθ of the macroscopic magnetic moment M will be larger for a shallow water
saturation formation than for a deeper one. One sounding consists of measuring the

amplitude of the SNMR signal
0

E for different values of the current
0
I in the loop.

The amplitude is then plotted versus the current, as shown in Figure 1.5. The shape

of the sounding curve )(
00
IE allows us to resolve the depth to the aquifer.
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If SNMR loops are separated at the distance of more than a (Figure 1.7) then
measurements within each loop are independent and these measurements should be
considered as a 1-D survey (Figure 1.11a). When loops are set side by side (Figure
1.11b) measurements can be interpreted as a 2-D profile. The resolution of a 2-D
survey may be improved by using half-overlapped loops (Figure 1.11c). Note that
setting loops closer than the half-overlapped loops will increase the labor
proportionally to the number of the loops without proportional improvement in
resolution.

Figure 1.11. SNMR field setup: a) 1-D; b) 2-D minimal coverage; c) 2-D optimal coverage

3-D field setups are shown in Figure 1.12. In order to be well resolved, an
investigable anomaly should be located within the area occupied by SNMR loops.
The half overlapped loop setup seems to be a good compromise between the
resolution, and the time and labor consumption.

Figure 1.12. SNMR field setup: a) 3-D minimal coverage; b) 3-D optimal coverage
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Resolution of the inversion is limited by the properties of the linear equation
used for inversion, but also depends on the survey design and the signal-to-noise
ratio. In general, SNMR is a low-resolution method, and water-saturated structures
can be resolved with the uncertainty of a few meters to a few tens of meters. This
will be discussed in more detail in Chapter 4.

Aquifer hydrodynamic properties. Porosity and hydraulic conductivity are the
basic parameters that characterize the productivity of an aquifer formation
[LAC 05]. Actually, existing SNMR instruments allow the investigation of only
hydraulically permeable rocks. For example, clay may contain a lot of water but,
being a low permeable material, is seen with SNMR as a dry rock. The water
content w derived from SNMR inversion allows the estimation of the effective

porosity wn
e

≈ and an empirical relationship
1
2wTCk

p
= allows the prediction of

the hydraulic conductivity k .
p

C is an empirical constant that needs to be

calibrated. w and
1

T are the water content and the relaxation time derived from

SNMR inversion. In some rocks,
1

T can be replaced by
2

T or
*

2
T . The

transmissivity zkT Δ= is a product of the hydraulic conductivity k and the aquifer
thickness zΔ both estimated with SNMR. T is a more robust parameter than k and
zΔ separately.

Finally, for positioning SNMR in the geophysical toolbox let us compare SNMR
with other popular surface geophysical methods.

Method Measured
parameter

Rock property Information about
subsurface

Electric and/or
electromagnetic

Electrical resistivity Electrical
properties of

rocks

Subsurface formations of
different electrical

resistivity

Seismic Velocity of
propagation of
seismic waves

Elastic
properties of

rocks

Structural geological
information

SNMR Magnetic resonance
response of
groundwater

Water saturation Rock hydraulic properties

Table 1.1. Comparison of SNMR with electric/electromagnetic and seismic methods
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For example, Table 1.1 shows that electric and EM methods provide distribution
of the electrical resistivity in the subsurface, and seismic methods provide elastic
properties of rocks. These physical parameters of the rock have indirect and often
non-unique information about groundwater and hydrodynamic properties of water-
saturated formations. On the contrary, the SNMR signal is directly linked with
groundwater which allows more reliable interpretation of SNMR results in terms of
groundwater.


