
Chapter 1

Uncertainty Representation
Based on Set Theory

Real systems are often complex due to several factors: the
system’s nature (e.g. mechanical, electrical and chemical
systems), interactions between its different components (e.g.
multivariable systems), and its different behavior in a
dynamic environment (e.g. influence of disturbances, noises
and uncertainties). All these aspects have to be considered
when modeling a given system, sometimes leading to a
complicated model. In the context of control systems, a
mathematical model is frequently used to describe the system
behavior. On the one hand, the accuracy of the mathematical
model is important to analyze and design control strategies
for the considered system; on the other hand, in the context of
industrial applications, it is suitable to use unsophisticated
controllers designed using a simple model. In this context, a
trade-off must be found: the system model should be simple
but precise enough to characterize the dynamical behavior of
the original system. Thus, the simple/simplified
mathematical model cannot represent the real system exactly
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due to a lack of knowledge of, or unreliable information
about, the system. To validate this model, some uncertainties
can be added to the mathematical model. Frequently,
perturbations influencing the real system have to be taken
into account in the mathematical model in order to ensure a
similar behavior of the real system and the mathematical
model. The importance of uncertainties in system design has
been discussed by many authors (the interested reader can
refer to [MAY 79, AUG 06, AYY 06] and the references
therein). In the literature, there are two ways to represent
uncertainties: the statistical (or stochastic) approach and the
deterministic approach. An overview of these two directions
is provided in the following.

In the stochastic approach, the uncertainty is modeled by a
random process with a known statistical property. This
technique is widely used in various domains (e.g. economics
[BAT 08], biology [ULL 11] and engineering [MAY 79]),
especially when estimates of the probability distribution of
the uncertain parameters are available. But in many
applications, there are situations when the probability
distribution of the uncertain parameters is not known and
only bounds of the uncertain domain can be fixed. In this
case, the probabilistic assumptions on the uncertainty are no
longer valid, making this method unsuitable for modeling the
uncertainties.

In the deterministic approach, the uncertainty is assumed
to belong to a set: a classical (crisp) set 1 or a fuzzy set 2. In
the literature, different families of classical sets are used
depending on their properties. Usually, the accuracy and the

1 A classical set is a set wherein the degree of membership of any object to
the set is either 0 or 1.
2 A fuzzy set is a set wherein the degree of membership of any object to the
set is between 0 and 1.
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complexity of the uncertainties’ representation are inversely
proportional, depending on the particular problem related to
the choice of a suitable geometric form. In the following
sections, some popular families of sets are presented with
their advantages and weaknesses. Note that in this book only
convex classical sets are considered due to the important role
of convexity in the optimization theory [BER 03].

1.1. Basic set definitions: advantages and weaknesses

Before presenting the most well-known families of sets,
some basic set definitions and operations used in this book
are introduced.

DEFINITION 1.1.– A set S ⊂ Rn is called a convex set if for
any x1,x2, . . . ,xk ∈ S and any α1, α2, . . . , αk ∈ R+ such that
k

i=1
αi = 1, then the element

k

i=1
αixi is in S.

DEFINITION 1.2.– A convex hull of a given set S, denoted
conv(S), is the smallest convex set containing S.

DEFINITION 1.3.– A set S ⊂ Rn is called a C-set if S is
compact, convex and contains the origin. This is a proper set
if its interior is not empty.

DEFINITION 1.4.– The inclusion operator between two sets is
defined by X ⊆ Y, if and only if ∀x ∈ X , then x ∈ Y. This
means that X is a subset of Y.

DEFINITION 1.5.– The intersection operator of two sets X and
Y is defined by X ∩ Y = {x : x ∈ X and x ∈ Y}.

DEFINITION 1.6.– The image of a set S under a map
(projection) M is the set M(S) = {y : y = M(x), x ∈ S}.
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DEFINITION 1.7.– The Minkowski sum of two sets X and Y is
defined by X ⊕ Y = {x+ y : x ∈ X , y ∈ Y}.

DEFINITION 1.8.– The Pontryagin difference of two sets X and
Y is defined by X Y = {z : z + y ∈ X , ∀y ∈ Y}.

DEFINITION 1.9.– Let X and Y be two non-empty sets. The
distance between these two sets X and Y is defined by d(X ,Y) =
min{d(x, y) : x ∈ X , y ∈ Y}.

DEFINITION 1.10.– Let X and Y be two non-empty sets. The
Hausdorff distance of these two sets X and Y is defined by
dH(X ,Y) = max{d̄H(X ,Y), d̄H(Y ,X )}, with d̄H(X ,Y) =
max
x∈X

min
y∈Y

d(x, y).

The Hausdorff distance allows characterizing the quality
of the approximation of X by Y [HUN 93]. If X and Y have
the same closure 3, then the Hausdorff distance is equal to 0.
Figure 1.1 illustrates the difference between the “normal”
distance (Definition 1.9) which is equal to 0 and the
Hausdorff distance dH(X ,Y) between the two sets X and Y.

Figure 1.1. Illustration of the Hausdorff distance between two sets

3 The closure of a set S is defined by the union of S and its boundary ∂S.
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1.1.1. Interval set

A very simple way to define uncertainties is by using the
interval notion. This is based on the idea of enclosing
numerical errors into an interval. In many cases, obtaining
the probability of occurrence of different uncertainties is not
possible. Therefore, it can be easier and thus suitable to
bound the uncertainties by intervals. Moreover, the interval
analysis allows us to simplify most of the standard operations
[MOO 66, HAN 65, JAU 01]. This approach is developed in
many domains (e.g. identification, diagnosis and estimation),
especially when a short computation time is required.

DEFINITION 1.11.– An interval I = [a, b] ⊂ R is defined by the
set {x ∈ R : a ≤ x ≤ b}.

DEFINITION 1.12.– The center and the radius of an interval
I = [a, b] are, respectively, defined by mid(I) = a+b

2 and rad(I) =
b−a
2 .

DEFINITION 1.13.– The unitary interval is denoted by B =
[−1, 1].

DEFINITION 1.14.– The set of real compact intervals [a, b],
where a, b ∈ R and a ≤ b, is denoted by I.

DEFINITION 1.15.– A box ([a1, b1], . . . , [an, bn])
T is an interval

vector.

DEFINITION 1.16.– A unitary box in Rn, denoted by Bn, is a
box composed of n unitary intervals.

Consider the intervals [x, x̄] and [y, ȳ]. An operation ◦
between these two intervals can be formalized as:

[x, x̄] ◦ [y, ȳ] = {x ◦ y : x ∈ [x, x̄], y ∈ [y, ȳ]} [1.1]
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The four basic operations [MOO 66] with intervals are the
following:

1) [x, x̄] + [y, ȳ] = [x+ y, x̄+ ȳ]

2) [x, x̄]− [y, ȳ] = [x− ȳ, x̄− y]

3) [x, x̄]∗[y, ȳ] = [min(x·y, x·ȳ, x̄·y, x̄·ȳ),max(x·y, x·ȳ, x̄·y, x̄·ȳ)]
4) [x, x̄]/[y, ȳ] = [x, x̄] ∗ [1/ȳ, 1/y], if 0 /∈ [y, ȳ]

Despite the simplicity of interval analysis, a drawback of
this approach is that the computation results can sometimes
be conservative due to the dependency effect 4 and the
wrapping effect 5 [MOO 66, KÜH 98b, JAU 01]. These two
effects are further analyzed through two examples.

EXAMPLE 1.1.– DEPENDENCY EFFECT – Consider two
functions f1(x, y) = x− y and f2(x) = x− x, with the variables
x, y ∈ [−1, 1]. Using the interval analysis, the value domain of
f1 and f2 is the same [−1, 1]− [−1, 1] = [−2, 2], even if the real
value domain of f2 is 0. This problem, called the “dependency
effect”, relies on the fact that the occurrence of the same
variable x in the function f2 is independently considered and
can lead to an important over-approximation of the result.

EXAMPLE 1.2.– WRAPPING EFFECT – Consider a function
f(x, y) =

f1(x, y)
f2(x, y)

= A · x
y

, with x, y ∈ [−1, 1] and

A =
0 −0.5
1 1

. Using the interval analysis leads to

f(x, y) =
f1(x, y)
f2(x, y)

=
−0.5y
x+ y

, with the value domains

f1 ∈ [−0.5, 0.5] and f2 ∈ [−2, 2], represented in dark gray in

4 The dependency effect appears when a variable occurs more than one time
in a function and each occurrence is considered independently, increasing
the resulting interval.
5 The wrapping effect appears when the domain representation grows due
to the over-estimation at each sampling time.
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Figure 1.2. The vertices of the exact solution of f (see Figure

1.2) −0.5
2

,
−0.5
0

,
0.5
−2

,
0.5
0

are obtained by

computing the product of the matrix A with each vertex of the
unitary box containing x and y (e.g. [−0.5, 0]T = A · [−1, 1]T ).
Comparing these solutions, an important over-approximation
of the interval analysis solution can be observed. If this
operation is repeated several times, the difference between
the exact solution and the solution of the interval analysis is
more and more important. This problem is called the
“wrapping effect”.

Figure 1.2. Illustration of the wrapping effect in
interval analysis

1.1.2. Ellipsoidal set

Another way to represent bounded uncertainties is based
on the use of bounded ellipsoids. Moreover, due to its low
complexity, the ellipsoidal set is widely used in a large class
of applications in automatic control [SCH 68, WIT 68,
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BER 71, CHE 81, MIL 96, KUR 96, DUR 01, POL 04]. Some
basic properties of ellipsoids are discussed in the following.

DEFINITION 1.17.– Given a vector c ∈ Rn and a symmetric
positive definite matrix P = P T 0, an ellipsoid E(c, P ) is
defined as follows:

E(c, P ) = {x ∈ Rn : (x − c)TP−1(x − c) ≤ 1} [1.2]

The vector c is called the center of the ellipsoid E(c, P ) and
the matrix P is called the shape matrix of the ellipsoid E(c, P ).

EXAMPLE 1.3.– An ellipsoid E(c, P ) with c =
0
0

and

P =
1 1
1 4

is illustrated in Figure 1.3.

Figure 1.3. Illustration of a bounded ellipsoid in R2

PROPERTY 1.1.– Consider an ellipsoid E(c, P ) ⊆ Rn, a matrix
A ∈ Rn×n and a vector b ∈ Rn. An affine transformation of this
ellipsoid is also an ellipsoid AE(c, P ) + b = E(Ac + b, APAT ).
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The interested reader can find concrete studies on
ellipsoids and their operations in [BOY 94] and [KUR 96] and
can easily use the Ellipsoidal Toolbox [KUR 06] to implement
different operations of ellipsoidal calculus within a
MATLAB R environment.

Despite the simple representation of ellipsoids, there are
still some drawbacks that can be a source of conservatism.
The main inconvenience is that ellipsoids are not closed
under some operations 6. Furthermore, ellipsoids allow
representing bounded uncertainties which are necessarily
coupled [LAL 08] due to the low flexibility of the ellipsoidal
shape compared to polyhedral sets which are presented in the
following section.

1.1.3. Polyhedral set

The polyhedral set is one of the most popular geometrical
forms used in control systems and optimization. A polyhedral
set in a finite-dimensional Euclidean space is the intersection
of a finite amount of closed half-spaces [ZIE 95]. A bounded
polyhedral is denoted as a polytope. Because of its flexibility,
polytopes offer a good approximation of any convex set
[LAY 82, BRO 08, SCI 11]. In addition, polytopes are closed
under the basic operations 7 unlike ellipsoids. Moreover, its
dual representations (half-space representation and vertex
representation) allow us to choose the appropriate form for a
particular problem. The main weakness of polytopes is due to

6 For example, the Minkowski sum or the intersection of two ellipsoids
is generally not an ellipsoid. In order to preserve the simplicity offered
by ellipsoids, ellipsoidal outer approximations of the obtained sets can be
made, leading to a trade-off between accuracy of the representation and
simplicity of the computation.
7 For example, the Minkowski sum or the intersection of two convex
polytopes is generally a polytope.
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their complexity related to the number of vertices, but not
fixed by the space dimension. Therefore, even if a polytope
can approximate any convex set well, the complexity can
quickly increase with the number of vertices even in a low
space dimension. In order to formalize the notations, the
main definitions of polytopes are summarized below.

DEFINITION 1.18.– HALF-SPACE REPRESENTATION – A
polyhedral set P ∈ Rn can be defined as the intersection of a
finite number of half-spaces: P = {x ∈ Rn : Hx ≤ k}, with
H ∈ Rm×n, k ∈ Rm. If P is bounded, then P is a polytope.

EXAMPLE 1.4.– A polytope P in the half-space representation
with:

H =
−1 1 1 −1
1 −1 1 −4

T

,k = 1 1 1 4
T

is shown in Figure 1.4. Hi and ki denote the ith row of matrix
H and the ith element of vector k, respectively.

Figure 1.4. H-representation of a polytope
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DEFINITION 1.19.– VERTEX REPRESENTATION – For a finite
set of points V ⊂ Rn, with V = {v1, v2, . . . , vm}, a polytope P
can be defined as the convex hull of the set V:

P = conv(V) = α1v1 + α2v2 + . . .+ αmvm : αi ∈ R+,

m

i=1

αi = 1,vi ∈ Rn

EXAMPLE 1.5.– Consider the set of vertices
V =

0
1

,
1
0

,
0

−1
,
−1.6
−0.6

. Figure 1.5 shows the

V -representation of a polytope based on the set V .

Figure 1.5. V -representation of a polytope. For a color version of this
figure, see www.iste.co.uk/stoica/zonotopes.zip

Theorem 1.1 [ZIE 95] shows the equivalence of these two
definitions of a polytope (i.e. H-polytope and V -polytope)
allowing us to choose a suitable representation for a
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particular problem. For example, the proof that the polytopic
set is closed under the Minkowski sum is trivial via the
V -representation but can become complicated via the
H-representation.

THEOREM 1.1.– EQUIVALENCE OF H-REPRESENTATION AND
V-REPRESENTATION [ZIE 95] – A set P ⊂ Rn is the convex
hull of a finite point set (a V -polytope) if and only if it is a
bounded intersection of half-spaces (a H-polytope).

This theorem shows that the H-polytope can be
transformed into the V -polytope and vice versa. In the
literature, this problem is well known as the vertex
enumeration problem for the transformation of a V -polytope
to a H-polytope and the facet enumeration problem for the
transformation of a H-polytope to its equivalent V -polytope.
There exist algorithms to solve these transformation
problems, but they are time consuming (e.g. [DAN 72] and
[FUK 99]). The interested reader can find more details on
polytopes in [ZIE 95] and [BLA 07] and the references
therein. An example of the same polytope defined by
H-representation and V -representation is illustrated in
Figures 1.4 and 1.5.

Even if polytopes can approximate any convex set well,
their complexity increases with its number of vertices. This
can lead to some limitations for the direct application of the
methods based on polytopes. In the following section, a
geometrical form which offers a good trade-off between
complexity and flexibility is presented.

1.1.4. Zonotopic set

In recent years, zonotopes are used more and more to
represent uncertainties due to the flexibility, the reduced
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complexity and specially the efficient computation of linear
transformations and Minkowski sums. Zonotopes are a
special class of convex symmetric polytopes. Thus, the
properties developed for convex polytopes can also be applied
to zonotopes. In this way, zonotopes can be represented as
H-polytopes or V -polytopes. There also exist different
representations specific to zonotopes, which are presented
below.

DEFINITION 1.20.– GENERATOR REPRESENTATION – Given a
vector p ∈ Rn and a set of vectors G = {g1,g2, . . . ,gm} ⊂ Rn,
m ≥ n, a zonotope Z of order m (also called a m-zonotope) is
defined as follows:

Z = (p;g1,g2, . . . ,gm)

= {x ∈ Rn : x = p +

m

i=1

αigi;−1 ≤ αi ≤ 1} [1.3]

The vector p is called the center of the zonotope Z. The
vectors g1, . . . ,gm are called the generators of Z. The order of
a zonotope is defined by the number of its generators (m in
this case). A m-zonotope Z ⊂ Rn with m generators and
m < n is called a degenerated m-zonotope.

This definition is equivalent to the definition of zonotopes
obtained by the Minskowski sum of a finite number of line
segments defined by giB

1:

Z = (p;g1,g2, . . . ,gm) = p ⊕ g1B
1 ⊕ . . .⊕ gmB1 [1.4]

EXAMPLE 1.6.– Consider the following zonotope of third order

in R2 with p =
0
0

and its generators g1 =
1
3

, g2 =
2
2

,

g3 =
3
1

. This 3-zonotope is illustrated in Figure 1.6.
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Figure 1.6. 3-zonotope and its generators in R2

EXAMPLE 1.7.– Figure 1.7 represents a sixth-order centered
zonotope 8 in R3 with:

p =

⎡⎣00
0

⎤⎦, g1 =

⎡⎣11
0

⎤⎦, g2 =

⎡⎣ 1
−1
0

⎤⎦, g3 =

⎡⎣10
1

⎤⎦, g4 =

⎡⎣ 1
0

−1

⎤⎦,

g5 =

⎡⎣01
1

⎤⎦, g6 =

⎡⎣ 0
1

−1

⎤⎦.

From these two examples, it can be observed that the
complexity of zonotopes depends on the number of generators
and the dimension of the space. The complexity grows quickly
with the number of generators: the number of vertices of the
zonotope is 6 in Figure 1.6 and 24 in Figure 1.7. When the
number of generators is increased, the space dimension is
also increased in Figure 1.7 compared to Figure 1.6.

Another definition of zonotopes that is more convenient for
the approach considered in this book is based on the fact that

8 A centered zonotope is a zonotope whose center is the origin (i.e. p = 0n
in equation [1.3]).
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a m-zonotope in Rn can be defined as the affine image of a
m-dimensional hypercube in Rn.

Figure 1.7. 6-zonotope in R3

DEFINITION 1.21.– HYPERCUBE AFFINE PROJECTION – A
m-zonotope in Rn (m ≥ n) is the translation by the center
p ∈ Rn of the image of a unitary hypercube of dimension m in
Rn under a linear transformation. Given a matrix H ∈ Rn×m

representing the linear transformation, the zonotope Z is
defined by:

Z = (p;H) = p ⊕HBm [1.5]

Considering the matrix H = g1 g2 . . . gm proves the
equivalence of the two proposed definitions. From now on, to
simplify the chapter, the zonotope Z is described by Z(p;H).
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EXAMPLE 1.8.– Consider the zonotope Z(p;H) with p =
0
0

and H =
1 2 3
3 2 1

. Using the hypercube affine projection, this

zonotope can be constructed as the image of a hypercube in R3

(with its eight vertices

⎡⎣11
1

⎤⎦,

⎡⎣−1
1
1

⎤⎦,

⎡⎣ 1
−1
1

⎤⎦,

⎡⎣ 1
1

−1

⎤⎦,

⎡⎣−1
−1
1

⎤⎦,

⎡⎣−1
1

−1

⎤⎦,⎡⎣ 1
−1
−1

⎤⎦,

⎡⎣−1
−1
−1

⎤⎦) under the projection H in R2 (see Figure 1.8).

The reader can note that the same zonotope is obtained via the
hypercube affine projection (Figure 1.8) and via the generator
representation (Figure 1.6).

Figure 1.8. 3-zonotope and its vertices in R2

The conversion between these particular representations
of zonotopes is studied by many authors
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[GRI 93, SEY 94, FUK 04, SCH 05b, ALT 10]. As zonotopes
are special cases of polytopes, the generator representation
and the hypercube affine projection of a zonotope can be
converted to the V -representation and also to the
H-representation. These conversions are related to the
Minkowski sum of two polytopes because the generator
representation is equivalent to the Minkowski sum of a finite
number of line segments, which is a polytope. In addition, the
generator representation illustrates a significant advantage
of zonotopes: a complex geometrical form represented via a
simple matrix and a vector (that can be zero for zonotopes
centered to the origin). For example, the centered zonotope
from Figure 1.7 with 24 vertices in R3 is represented by a
matrix H ∈ R3×6. This leads us to simplify the mentioned
basic set operations by simple matrix computation as
presented in the following section.

1.2. Main properties of zonotopes

This section proposes an overview of the main properties
of zonotopes that will be used throughout this book. Some
examples are also considered in order to make the book
easier to comprehend.

PROPERTY 1.2.– PARTICULAR ZONOTOPES – Given a centered
zonotope Z = HBm ∈ Rn. Because of the properties of the
matrix H, some particular forms of zonotopes can be obtained.
If H is the identity matrix, then Z is the unit box. If H is
diagonal, orthogonal or invertible, then Z is a box, a hypercube
or a parallelotope 9, respectively.

9 A parallelotope is a special zonotope whose number of generators is equal
to the dimension of the space.
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PROPERTY 1.3.– GENERATOR PERMUTATION – The
permutation of the matrix columns in the generator
representation of a zonotope does not modify the zonotope.

PROOF – This property results from the commutativity of the
Minkowski sum of several line segments.

PROPERTY 1.4.– SUM OF TWO ZONOTOPES – Given two
zonotopes Z1 = p1 ⊕H1Bm1 ∈ Rn and Z2 = p2 ⊕H2Bm2 ∈ Rn,
the Minkowski sum of two zonotopes is also a zonotope
defined by Z = Z1 ⊕Z2 = (p1 + p2)⊕ H1 H2 Bm1+m2 .

PROOF – From the definition of the Minkowski sum, it results
in Z1 ⊕ Z2 = {p1 + p2 + H1z1 + H2z2 : z1 ∈ Bm1 , z2 ∈ Bm2},
which can be further rewritten in a matrix form as:
Z1 ⊕ Z2 = {p1 + p2 + H1 H2 · z1

z2
:

z1

z2
∈ Bm1+m2} =

(p1 + p2)⊕ H1 H2 Bm1+m2 = Z.

PROPERTY 1.5.– LINEAR IMAGE OF A ZONOTOPE – The image
of a zonotope Z = p ⊕ HBm ∈ Rn by a linear mapping K can
be computed by a standard matrix product K · Z = (K · p) ⊕
(K ·H)Bm.

PROOF – Using matrix multiplication leads to KZ = {K(p +
Hz) : z ∈ Bm} = {Kp+KHz : z ∈ Bm} = (Kp)⊕ (KH)Bm.

The basic operations with zonotopes can increase the size
of the obtained zonotopes. Thus, an interesting issue concerns
the techniques that reduce the complexity of zonotopes,
allowing us to limit the number of generators of a zonotope.
For example, if the problem of reachable set 10 is addressed
using zonotopes, the complexity of this zonotope increases at
each sample time due to the Minkowski sum operation. This

10 This is the problem of computing all states visited by trajectories of a
system starting from any x0 ∈ X0.
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part focuses on over-approximations of a high-order zonotope
leading to compute a reduced order zonotope enclosing the
initial zonotope.

PROPOSITION 1.1.– COMPLEXITY REDUCTION OF
ZONOTOPES VIA INTERVAL HULL METHOD – Considering a
zonotope Z = p ⊕HBm ∈ Rn, the smallest box containing this
zonotope is computed by:

Z = p ⊕ rs(H)Bn [1.6]

with rs(H) a diagonal matrix such that rs(H)ii =
m
j=1 |Hij |,

i = 1, . . . , n.

PROOF.– As a box is an axis-aligned set, the
over-approximation of a zonotope by a box can be made by
considering its extreme points in each direction. The extreme
point in the direction i can be computed by pi +

m
j=1 |Hij |. All

extreme points in all n directions are similarly computed and
the smallest box containing the zonotope Z is obtained as
Z = p ⊕ rs(H)Bn.

This proposition provides a simple and fast
over-approximation of a zonotope by a box. The result has a
minimal complexity which is given by the dimension of the
space. However, the result obtained with this proposition is
conservative because the form of the initial zonotope is lost.

An example is proposed in the following in order to better
illustrate this proposition.

EXAMPLE 1.9.– Consider a centered zonotope Z = HB3 ∈ R2,

with H =
1 2 3
3 2 1

. Applying the interval hull approximation

leads to a box (in Figure 1.9) containing the original zonotope
(hexagon in Figure 1.9).
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Figure 1.9. Interval hull of a zonotope. For a color version of this
figure, see www.iste.co.uk/stoica/zonotopes.zip

In order to reduce the conservatism, an outer
approximation based on the parallelotope hull is further
presented.

PROPOSITION 1.2.– COMPLEXITY REDUCTION OF
ZONOTOPES VIA PARALLELOTOPE HULL METHOD – Given a
zonotope Z = p ⊕HBm ∈ Rn (m > n), an over-approximation
of this zonotope by a parallelotope is computed as:

Z = Γ · (Γ−1Z) [1.7]

where Γ ∈ Rn×n is an invertible matrix containing n columns
taken from H.

PROOF [ALT 10].– This approach first transforms the
coordinates of Z by the linear mapping Γ−1 (leading to
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Γ−1Z = (Γ−1p) ⊕ (Γ−1H)Bm), where the new coordinate axes
are the column vectors of Γ. In these new coordinates, the
zonotope is over-approximated by a box using the interval
hull. This box is transformed back to the original coordinate
system, resulting in a parallelotope. The over-approximation
is guaranteed by the fact that the parallelotope is
over-approximated in the transformed coordinate system by
the interval hull operator, such that it is also
over-approximated after the transformation to the original
coordinate system.

EXAMPLE 1.10.– The same zonotope as in Example 1.9 is
taken in order to compare the two approximation methods. In
Figure 1.10, this zonotope Z is over-approximated by three
different parallelotopes P1, P2, P3 due to the different choice

of the matrix Γ (Γ1 =
1 2
3 2

, Γ2 =
1 3
3 1

, Γ3 =
2 2
3 1

).

Comparing the two examples (Figures 1.9 and 1.10), the
over-approximation by the parallelotope hull is less
conservative than the over-approximation by interval hull,
but with a higher complexity because n generators must be
chosen among m generators to have the best approximation
(the P2 parallelotope). Some criteria for selecting the suitable
generators are given in [MOO 66] and [ALT 10].

PROPOSITION 1.3.– CASCADE REDUCTION OF ZONOTOPES
VIA THE GENERATOR SELECTION METHOD – Given a
zonotope Z = p ⊕ HBm·n ∈ Rn (m ≥ n), with H a m-block
matrix of n × n matrices (H = H1 . . . Hm ), let
D(l) = H1 . . . Hl be the matrix obtained by choosing l blocks
of H. Choosing the biggest l (2 ≤ l ≤ m) for which
D(l− 1) ∞ > Hl ∞ or l = 1 if such an integer does not exist,

this norm criterion is called the fullness criterion and imposes
that the small parallelotope will be over-approximated more
frequently than the big parallelotope. Then an
over-approximation of Z is defined by:

Z ⊆ p ⊕ rs(D(l)) Hl+1 . . . Hm [1.8]
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Figure 1.10. Parallelotope hull of a zonotope. For a color version of
this figure, see www.iste.co.uk/stoica/zonotopes.zip

This proposition is based on the representation of a
zonotope by the Minkowski sum of parallelotopes. The
interested reader can find more details on this proposition
and its performance in [KÜH 98a].

PROPOSITION 1.4.– CRITERION-BASED REDUCTION OF A
ZONOTOPE – Given the zonotope Z = p ⊕HBm ∈ Rn and the
integer s, with n < s < m, denote Ĥ the matrix resulting from
the reordering of the columns of the matrix H by a criterion
which is detailed in the following (Ĥ = ĥ1 . . . ĥi . . . ĥm ). The
zonotope is rewritten as: Z = p ⊕ Ĥ1Bs−n ⊕ Ĥ2Bm−s+n, where
Ĥ1 is obtained from the first s − n columns of matrix Ĥ and
Ĥ2 is the remainder of Ĥ. Then the initial zonotope is
over-approximated by a zonotope of reduced order s as
follows: Z ⊆ p ⊕ Ĥ1Bs−n ⊕ QBn, where QBn is the
over-approximation of the zonotope Ĥ2Bm−s−n.
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This over-approximation can be a box using Proposition 1.1
or a parallelotope using Proposition 1.2.

PROOF.– [ALA 05] – Since a column of the matrix H
represents a segment of the zonotope Z, then a column
permutation in the matrix H does not modify the zonotope Z.
It means that Z = p ⊕HBm = p ⊕ ĤBm. From the definition
of matrix Ĥ and applying Property 1.4, it results in:

Z = p ⊕ Ĥ1 Ĥ2 Bm =

= p ⊕ Ĥ1Bs−n ⊕ Ĥ2Bm−s+n =

= p ⊕ Ĥ1Bs−n ⊕ ĥs−n+1 . . . ĥm Bm−s+n
[1.9]

Propositions 1.1 and 1.2 show that the centered zonotope
ĥs−n+1 . . . ĥm Bm−s+n can be approximated by QBn, where Q

is a diagonal matrix (if a box-based approximation is used) or
a full matrix (if a parallelotope-based approximation is used).
Therefore, the following expression is true: Z ⊆ p ⊕ Ĥ1Bs−n ⊕
QBn = p ⊕ Ĥ1 Q Bs.

Using Proposition 1.4, the quality of the approximation
depends on the value of s which limits the complexity, the
criterion used to split the zonotope Z and the approximation
method (box or parallelotope) used for the zonotope
Ĥ2Bm−s−n. A large value of s means high accuracy of the
approximation and high complexity of the computation. Two
methods to split the zonotope Z are described below.

A first approach consists of sorting the generators of the
zonotope in decreasing order of the Euclidean norm
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[COM 03, ALA 05], which is equivalent to arranging the
segments of zonotope from the longest to the shortest. Then
the longest segments which have a more important role in
the shape of the zonotope are kept and the contribution of the
shortest segments is over-approximated by a box or a
parallelotope in order to limit the complexity.

A second approach consists of reordering the columns of
matrix H in decreasing order of the term hi 1 − hi ∞
[GIR 05]. The chosen generators (whose contribution is
approximated) are close to vectors with only one non-zero
component and are therefore well approximated by an
interval hull.

An example is proposed in order to better illustrate the
quality of these methods of complexity reduction.

EXAMPLE 1.11.– Consider a centered zonotope
Z = HB8 ∈ R2, with m = 8, n = 2 and

H =
0.9169 0.8936 0.3529 0.0099 0.2028 0.6038 0.1988 0.7468
0.4103 0.0579 0.8132 0.1389 0.1987 0.2722 0.0153 0.4451

.

This zonotope is approximated using Propositions 1.3 and
1.4 11. Using the cascade reduction, the value of l = 3 is
obtained. Figure 1.11 shows the approximation of the initial
zonotope using the cascade reduction. Figure 1.12 shows the
over-approximation (Zinitial) of the zonotope Z obtained using,
as the criterion, the Euclidean norm with different values of s
(with s = 4, s = 5). This example confirms that a bigger value
of s leads to a better approximation.

11 In Proposition 1.4, the over-approximation by a box is used.
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Figure 1.11. Complexity reduction of a zonotope using the
cascade reduction. For a color version of this figure, see

www.iste.co.uk/stoica/zonotopes.zip

Figure 1.12. Complexity reduction of a zonotope using the
Euclidean norm-based criterion. For a color version of this figure, see

www.iste.co.uk/stoica/zonotopes.zip
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Figure 1.13. Complexity reduction of a zonotope: comparing
two criteria. For a color version of this figure, see

www.iste.co.uk/stoica/zonotopes.zip

Figure 1.13 compares the performance of the
over-approximation of the same zonotope Z based on the two
criteria of the generators’ reordering and selection: the
Euclidean norm and the difference between the H1 norm and
the H∞ norm. The same value s = 6 is chosen for both cases.
In this example, the best approximation is obtained using the
Euclidean norm-based criterion. Therefore, in the further
examples proposed in this book, the over-approximation
based on the Euclidean norm criterion is used.


