Real-Time Systems and Time
Predictability

This introduction discusses real-time systems and shows how they differ from general purpose
computing systems. Different types of real-time systems are explained and examples of these
types are given. The need for time predictability of computer systems is exposed and the structure
of the book is presented.

1.1. Real-time systems
1.1.1. Introduction

Most of the processors in use today are not part of what we usually call
computers, i.e. servers, workstations, laptops or tablets. They are instead
components of hidden computing systems that control and interact with
physical environments, also referred to as embedded systems. Such systems
are developed in a wide range of domains: transport (cars, aircrafts, trains and
rockets), household appliances (washing machines and vacuum cleaners),
communications (cellular phones, modems and routers), multimedia (MP3
players and set top boxes), construction machinery (drilling machines),
production lines (robots), medicine (pacemakers), etc. In cars, for example,
embedded software controls the behavior of the engine with the goal of
saving fuel and, at the same time, limiting emissions. Digital equipment also
provides safety improvement by the means of dedicated functions (e.g.
antilock breaking systems and air bags) and the well-being of passengers (e.g.
air conditioning, power windows or audio systems). In recent years, the
notion of cyber-physical systems has been introduced. This refers to such

2 Time-Predictable Architectures

systems that link several computing elements, which tightly interact both
among one another and with their physical environment.

Embedded systems typically abide by a number of constraints that go
beyond the usual scope of computing systems. Economical considerations,
especially for large markets such as those for phones or cars, impose
optimizing the cost. This is particularly true for hardware components: even
an additional 5 cents is a lot when multiplied by 1,000,000 units. But cost
issues also concern software development. For this reason, the reuse of
software components (intellectual property (IP) components) is usually
favored. Hand-held electronic devices should be as small and as light as
possible. But size and, above all, weight may also be an issue in some
transportation systems: additional weight usually increases the cost. Mobile
devices must exhibit low energy consumption to optimize the life of batteries
between charges. Thermal dissipation may be an issue in cases of limited
cooling facilities, e.g. in confined spaces. Other constraints are put on systems
that operate in harsh environments and are subjected to heat, vibrations,
shocks, radio frequency (RF) interference, corrosion water, etc. Components
in aerospace systems can be hit by cosmic and high-energy ionizing particles
that engender the so-called single event upset that may change the state of
bits. Radiation-hardened components are used in spatial systems but also
around nuclear reactors.

Furthermore, some embedded systems must fulfill timing constraints:
some of the tasks that implement the system must meet deadlines. For such
systems, referred to as real-time systems, producing results in time is required
as much as producing correct results. As a result, part of the system design
and verification process consists of performing timing analysis of critical
tasks, then checking that they can be scheduled in such a way that they are
able to meet their deadlines. Various techniques and tools have been
developed for this purpose and will be surveyed throughout this book. In
section 1.1.2, the concept of task criticality will be discussed, safety standards
will be briefly reviewed in section 1.1.3 and various examples of real-life
real-time systems will be discussed in section 1.1.4.

Progress in technology and in computer architecture designs leads to
components that offer steadily increasing computing power. Today, increasing
clock frequencies in order to obtain higher performance from advanced
processors is no longer feasible. So, the trend is to integrate multiple cores on

Real-Time Systems and Time Predictability 3

a single chip: the aggregated performance is higher than what can be achieved
with single-core architectures, and at the same time the performance/energy
ratio is improved. Better performance allows us to consider the
implementation of new and advanced functionalities, such as steer-by-wire
and brake-by-wire driver-assistance systems, combustion engine control, or
automatic emergency-braking tiggered by collision avoidance techniques.
These systems can evaluate more sensor signals and master more complex
situations if higher performance is provided by future control units. Examples
could be online distance measures that trigger higher security actions for
passengers such as closing the windows and setting the passenger seats in
upright positions if an unavoidable crash is detected. Motor injection could be
optimized to reduce gas consumption and emissions through better processor
performances. Embedded systems for automotive applications are under
permanent pressure of cost, while demanding higher performance due to new
standards and Quality-of-Service (QoS). Also of paramount and vital
importance is the ability to develop and produce systems that are capable of
achieving maximum safety, reliability and availability.

Aerospace applications benefit from more powerful processors by
providing support for ever-increasing demands of additional functionality on
board or a higher level of comfort through a better control of the actuators
and, at the same time, requiring absolute guarantees on the timing
performance of the system. In addition, certification requirements (e.g.
DO-178C) impose restrictions on proving properties of hardware and
software, especially regarding timing. At the very least, a fourfold increase in
performance is desired for next-generation aircrafts.

On a similar level, future space applications will require increased
performance; however, higher CPU clock frequency rates are not generally
feasible due to the increased risk of electromagnetic interference and errors
induced from cosmic radiation. In this context, an increase in performance is
not due to increasing CPU frequencies, but increasing the number of
computation units. The most energy and weight efficient way to achieve this
is through multicore processors. Current trends in the development of the
freely available LEON family of processors for space applications precisely
follow this trend. However, in a project performed for ESA by Rapita
Systems called PEAL, it was shown that there are still significant issues
regarding the adoption of these advanced features by industry unless provable
properties regarding timing can be demonstrated. In aerospace, the demand

4 Time-Predictable Architectures

for reduced weight and size is relentless. Guidance, navigation and control
algorithms routinely coexist on a single processor. With the advent of free
flight and autonomous flight, we must increasingly co-host many other safety
and non-safety critical applications on a common powerful processor to
maximally utilize hardware that reduces recurring costs, size, weight and
power.

This race for computing performance has consequences on the verification
and validation of critical systems. Most schemes implemented in modern
processors to achieve high performance exhibit one of the following
characteristics: (1) their behavior relies on the execution history (e.g.
dynamic branch predictors make their decisions based on the issues of
previous branches; cache memories contain instructions and data that have
been accessed in the past); (2) their behavior is dynamic, i.e. it depends on
information that is only available at runtime (e.g. the way an instruction
crosses a pipeline depends on which instructions are in the pipeline at the
same time); (3) they speculate on the results of some instructions in order to
process other instructions faster. These characteristics combined with a wide
range of possible values of input data make the execution profile of tasks
difficult to predict at analysis time. With multicore architectures, the sharing
of resources (e.g. the interconnection network and part of the memory) among
cores adds to the complexity. Paradoxically, a faster architecture does not
systematically mean a better chance of meeting deadlines: the sophisticated
mechanisms used to increase the instruction rate are often hard, sometimes
even impossible, to model, and this may result in longer estimated execution
times due to the pessimism engendered by overcautious assumptions. In
section 1.2, we review the concept of time predictability. One objective of this
book is to show why some of the above-mentioned schemes challenge timing
analysis techniques and to provide some recommendations for
time-predictable architectures. Shortly, the global advice is: Make the worst
case fast and the whole system easy to analyze [SCH 09b].

1.1.2. Soft, firm and hard real-time systems

Real-time systems are commonly divided into the following three
categories according to the consequence of missing a deadline (see Figure 1.1):

—In hard real-time systems, missing a deadline is a full system failure.
Dramatic consequences include environmental disaster, economic crash, or

Real-Time Systems and Time Predictability 5

even loss of human lives. An example of such a system is the control unit
that triggers inflating air bags during a car crash. The decision to use the
air bag is taken from monitoring various sensors, e.g. accelerometers, wheel
speed sensors, gyroscopes, seat occupancy sensors and brake pressure sensors.
It must be taken in time, i.e. within a given delay after the collision is
anticipated, so that the driver and the passengers are protected against hitting
the steering wheel and windows. Many other applications in the domain of
traveler transportation (e.g. flight control software in an aircraft, signaling
systems in trains or antilock braking systems (ABSs) in cars) have strict
deadlines. An antimissile system also runs hard real-time tasks: it must destroy
any incoming missile before it cause any damage.

— Firm real-time systems denote such systems for which a result
produced after the deadline is useless and discarded without any catastrophic
consequences. It is accepted that some deadlines can be missed if not too
frequently. Typical firm real-time systems are encountered in the domain
of multimedia applications. In a video conferencing system, audio or video
frames that do not reach their destination before their deadline are simply
dropped, which may only affect the quality of the received video.

— In soft real-time systems, the result produced by a task after its deadline
is still useful but the QoS is degraded. Video decoding applications and printer
control software belong to this category.

soft real time firm real time hard real time

usefulness usefulness usefulness

time /7 time . / time
deadline deadline deadline

Figure 1.1. Soft, firm and hard real time

This book mainly deals with hard real-time systems where it is expected
that no failure occurs during the time the system is effective (often referred to
as the time of the mission in reference to aeronautics and space systems).
Quantitatively, the probability of a hazard occuring, per operational hour,
should be less than 10~% [KAS 12]. Achieving such a low probability of
failure requires a careful design of the hardware, taking into account the

6 Time-Predictable Architectures

specific constraints of the application domain, the use of fault-tolerance
techniques and a normalized process for the development of the software
including formal methods to ensure that the system is logically and timely
error-prone.

The notion of criticality is closely related to the application domain.
Transportation systems (airplanes, cars, trains and spacecraft) include critical
subsystems for which a failure may translate into injuries to or even death of
passengers. This is also true for equipment that may look light at first glance
but that requires a high level of reliability, such as amusement park rides. A
failure in the control system of a nuclear plant may engender an
environmental catastrophe that can also have severe consequences on the
health of neighboring people. Some medical devices, such as heart
pacemakers, feature safety requirements as well, for obvious reasons. Now,
criticality can also be considered through the prism of economical
consequences. A failure in an electricity distribution system can put some
industries in a difficult situation. A company that produces a component that
produces timing errors may suffer economical effects and close if they lose
markets.

1.1.3. Safety standards

Safety standards exist for several of the application domains mentioned
above and their use spreads rapidly [KAS 12]. Their objective is to provide
guidelines toward safe software development and validation. Besides
guaranteeing the absence of non-functional hazards, they require verifying
three points: absence of runtime errors, execution times and memory usage.
They define criticality levels and recommend, for each level, a range of
techniques and tools to be used to show that the software meets the
constraints.

The DO-178C is applicable to aerospace systems. It defines five levels of
criticality, from level A (the most critical) to level E (the least critical). The
standard promotes software verification through the use of formal techniques,
such as abstract interpretation, model checking and theorem proving (it
explicitly mentions that dynamic testing “cannot show the absence of
errors”). It also recommends model-based software development as well as
the use of qualified tools. Worst-case execution time (WCET) is listed as one

Real-Time Systems and Time Predictability 7

of the non-functional properties that must be verified. The safety standard for
electrical, electronic and programmable electronic systems is the IEC-61508.
It considers four safety integrity levels, from SIL1 (the least critical) to SIL4
(the most critical). WCET is also mentioned as a property to be checked and
static program analysis is required for levels SIL2—-SIL4. The ISO-26262 is
for automotive systems and the CENELEC EN-50128 is for railway systems.
They both impose analyzing WCETs and response times and recommend
static analysis techniques for this purpose. Similar standards exist for medical
applications (the EN-60601 and the IEC-62304) and for nuclear plants
(IEC-60880).

1.1.4. Examples

This section presents several examples of soft and hard real-time systems.
Firm real-time systems are not included because of their marginal relevance in
practice.

1.1.4.1. Soft real-time systems

Soft real-time systems mainly appear in the domain of multimedia and
software-defined radio systems. In general, multimedia systems translate a
kind of digital data stream into visual or audio signals or vice versa. The
visual or audio signals arise from or are consumed by human beings. This is
where the real-time constraints come from. The reasons for the real-time
constraints are the visual percipiency of human beings and the physical
characteristics of audio signals.

1.1.4.1.1. MP3 decoding

The so-called MP3 format for audio data (see [PAN 96]), which was
originally called Moving Picture Expert Group (MPEG) layer 3, stores coded
data of an audio stream. Several bit resolutions and sample rates are possible
as well as the availability of mono- and stereo features.

The audio information stored within an MP3 stream is separated into
multiple frames containing 32 or 12 samples, according to the wave band.
Depending on the sample rate, each frame correlates to a predefined period of
the audio stream. To obtain a proper playback of the MP3 audio stream, these
frames must be read, decoded and handed to the output device in time.

8 Time-Predictable Architectures

Otherwise, a blackout time between the previous frame and the current frame
occurs that can be noticed by the listener.

The observed blackout time is a result of a missed deadline, which is
provided by the frame length. The execution time of the task that decodes the
MP3 stream depends on the data present within the stream and some
environmental activities. For example, the user of an MP3 player presses a
button on the device while the player is decoding a frame. The pressed button
should be handled within a short period of time otherwise the player seems to
hang, but the handling could affect the decoding task and thus its execution
time.

In the case of this example, a missed deadline results in an unintended
blackout but no danger for human beings or machinery can occur. Hence, this
example has to be classified as a soft real-time system.

1.1.4.1.2. MPEG decoding

Another example of a soft real-time system is the MPEG video
decoding [138 96], which is similar to the MP3 decoding. In contrast to the
MP3 coding, the MPEG video streams consist of different kinds of frames.
The types of frames have different characteristics with respect to their
complexity. The main types are the I, the P and the B frames. The I-type
frames contain a whole picture with the full resolution of the video, whereas
the two other types are composed of relative pictures, i.e. only deltas are
stored within these frames.

During playback, a typical series of frames is I, B, B, P, B, B, I where
the P is a delta with respect to the first / and the B frames are related to
the preceding I and synchronously to the succeeding P frame and vice versa,
respectively. As a result, the P frame has to be decoded before the second
frame can be shown. To allow for this circumstance, the frames are stored in
a different order within the data stream, e.g. I, P, B, B, I, B, B. Hence, it is
required to decode two frames, the P and the first B, to display the second
picture (after the initial I frame). Accordingly, it is not required to decode any
frame to display the fourth picture, which is the already-decoded P frame.

Because of the different kinds of frames and the way they are decoded, the
execution times for decoding the frames strongly depend on the type and the
input data and vary extremely. An authentic WCET analysis as described in

Real-Time Systems and Time Predictability 9

section 2.2 is nearly impossible and missed deadlines cannot be excluded. The
results can be realized in terms of incompletely decoded frames or unsteady
movements in the video. Burchard et. al. [BUR 99] presented an alternative
decoding approach using a predecoding phase as well as precalculated
execution times per frame that would be stored inside the stream.

The deadlines for decoding the frames arise from the frame rate used for
coding the video stream. If a deadline were missed, it is possible that the
succeeding frame or multiple frames would have to be skipped. The reason is
that in most cases a video stream is correlated with an audio stream, which is
decoded separately. Hence, both streams must proceed synchronously and as
a result some video frames have to be skipped if the video decoding is too
slow. With respect to the frame skipping, the video decoding can also be
regarded as a firm real-time system because late decoded frames are of no use.

1.1.4.1.3. Cell phone audio transmission

Digital telecommunication audio transmission between cell phones consists
of many tasks that fulfill the mission of transmitting an audio stream from one
human being to another one by a digital signal stream. Figure 1.2 shows an
abstract and simplified presentation of the required transmission tasks.

Wireless upload - Wired transmission Wireless download _
Cd

v

)//

\
NI

Transmission Base Base Transmission
station station station station

Cell phone Cell phone

Figure 1.2. Simplified task chain of an audio telecommunication transmission

The five tasks, namely sampling, wirelessupload, wiredtransmission,
wirelessdownload and playback, have to meet a single common real-time
requirement. The transmission delay should not be noticeable by the
participants. This requirement is not very strict because it is a subjective
demand.

But, the challenge of telecommunication is to synchronize the required
tasks in a way that all data reach the receiver in time. Hence, the sampling cell

10 Time-Predictable Architectures

phone has to meet deadlines to achieve a predefined sampling rate; the
wireless upload as well as the wired transmission and the download must
guarantee a certain data rate. The last element of the chain has to decode the
received stream also using the predefined sampling rate.

The telecommunication sector itself represents a soft real-time system but
because of the diversity of participating devices, companies and transport
medias, it is a very complex area with respect to the real-time requirements.

1.1.4.2. Hard real-time systems

The examples presented in section 1.1.4.1 illustrate some systems with
soft real-time requirements. In contrast to these systems, the examples shown
in this section can bring danger to human beings or machinery in cases of a
missed deadline. Hence, these examples have to be classified as hard
real-time systems.

1.1.4.2.1. The air bag system

The air bag should reduce the risk of injury to passengers within a car in
case of a crash. Therefore, the air bag control system evaluates the data
received from multiple crash sensors. The front air bags must be released in
the event of a front crash but they must not be triggered if the crash is from
behind or from either side. In addition, at least two crash sensors must report
a crash to eliminate fail functions caused by a defect of a crash sensor.

Different types of crash sensors are available: accelerometers detect a high
acceleration, pressure sensors measure fast changes of the air pressure within
the doors of a car and the so-called Crash Impact Sound Sensing (CISS)
systems recognize the sound of deforming metal.

Signals of all these sensors are evaluated by an air bag control unit, which
decides if an air bag must be triggered or not. Because the active period of an
open air bag is only about 100 ms, the activation of it must be timed very well
so that its efficiency is at the maximum. Besides the original velocity of the
car, it is also important whether or not the passenger has used his/her seat belt
at the time of the crash.

An additional timing constraint originates from other air bags: the opening
of an air bag is about 160 decibels loud and brings the risk of acute hearing
loss. To minimize this risk, the two front air bags must not be activated at the

Real-Time Systems and Time Predictability 11

same time and hence, the air bag of the co-driver is triggered slightly after the
driver’s air bag.

As real-time constraints of an air bag control system, a simple deadline is
not sufficient. Moreover, an exact point of time is required at which the air bag
must be triggered. In addition, calculating the point of time on the fly and in
time leads to another hard deadline. Missing this deadline or activating the air
bag at the wrong time could lead to inadmissible danger for the passengers. In
this case, no air bag might be the better solution.

1.1.4.2.2. The antilock braking system

The aim of an ABS in cars and aircrafts is to take care of the grip during
extreme braking. Therefore, it tries to avoid the locking of wheels and to
sustain static friction, which must not change to dynamic friction. Otherwise,
the adhesive force is reduced and the efficiency of the brakes is affected. In
addition, preventing the wheels from locking keeps the steering active and the
driver or pilot is enabled to control the car or aircraft during hard or
emergency braking.

i -
_Wheel sensor
——

: Electric pump
’ | ___Hydraulic valve
J —m| | |
Wheel break —>l e
-

F R

ABS electronic control
»| unit with hard real-time

— : ————{requirements ———————— : -—
. § - o . §

Figure 1.3. Schematic of an ABS sensor and actuator system

Figure 1.3 shows a schematic picture of the ABS of a passenger car. The
control unit measures the rotation of each wheel independently, mostly by
sensors using the so-called Hall effect [POP 04]. These sensors measure the

12 Time-Predictable Architectures

spinning of the wheel more than 50 times per rotation. If a wheel tends to get
much slower than the others, the ABS control unit first opens an
electromagnetic valve in the hydraulic braking system to reduce the pressure
at the particular brake. In a second step, an additional pump is activated,
which further reduces the pressure at the brake in order to release it. As a
result, the wheel starts spinning again and the valve is closed once again to
increase the compression.

Both procedures, opening the valve and closing it, have hard real-time
constraints. If the control unit recognizes the locking of a wheel late, the
braking effect of this wheel is reduced. Furthermore, if the system misses the
time when the wheel properly spins, no braking is available because the valve
is still open. Both scenarios could lead to horrible disasters and thus the ABS
must be classified as a hard real-time system. Moreover, it is also a
safety-critical system but these systems are out of the scope of this work.

1.1.4.2.3. Combustion engine control

Modern combustion engines are managed by a digital control unit, the
so-called engine control unit. This unit is responsible for coordinating the
ignition, the injection of fuel, the valve timing, the incoming air mass, the
exhaust gas recirculation and so on. The main objective of using this
electronic unit instead of mechanical motor management, as was used several
years ago, is to reduce fuel consumption and environmental pollution. In
contrast to the ABS and the air bag system, an engine control unit is not
required to improve the safety of the passengers of the car. Nevertheless, if it
is applied, it has to be classified as a hard real-time system, which is also
safety related. The reason is, for example, that if the ignition is not correctly
timed, the rotation speed of the crankshaft could become out of control and,
in turn, the speed of the car would be out of control.

The mission of controlling the engine consists of several hard real-time
tasks with different timing constraints. Some tasks such as the ignition control
depends on the current angle of the crankshaft and some other tasks are related
to timing periods. For example, the ignition must be activated several degrees
before the corresponding piston reaches its upper dead center. Other tasks such
as the exhaust gas recirculation must be managed periodically, independent of
the crankshaft.

Real-Time Systems and Time Predictability 13

1.1.4.2.4. Aircraft autopilot

Autopilots for aircraft are very complex systems, starting from multiple
systems to control roll, pitch, yaw and throttle, and extend to a redundant
system with, for example, three complete autopilots as required for airliners.
The autopilot is an inherent part of an airliner and it is active during about
95% of a flight.

Besides the single stand-alone task of each autopilot subsystem, the tasks
are related to each other by physicality. For example, during the flight the
amount of fuel inside the tanks is reduced, which leads to a lower weight of
the aircraft. Hence, to prevent the aircraft from climbing steadily, the pitch
control reduces the pitch permanently to stay on a predefined flight level.
Because of the lower pitch, the aerodynamic resistance decreases and the
aircraft accelerates, which in turn increases the lift again. At this time, the
throttle control has to reduce the speed to an optimal speed otherwise an
overspeed situation can destroy the aircraft (see Figure 1.4).

Speed, throttle

Figure 1.4. Pitch and throttle of an aircraft

In order to deal with these physical correlations, all the different tasks of
an autopilot have to react to the current situation in time. In addition, the
reactions of the tasks have to be coordinated and scheduled in order to prevent
an oscillating situation where one task counteracts the actions of other tasks
or the actions of two tasks accumulate. This could happen in the previous
example if pitch control further reduces the pitch to prevent further climbing,
while the throttle also decreases speed.

1.1.4.2.5. Hydraulic motor control

An example without any direct impact on human life but on the
functionality of a piece of technical machinery is the control logic of
hydraulic motors. To increase the torque of the drill shown in Figure 1.5, two
hydraulic motors are used in parallel. These two motors have to be activated

14 Time-Predictable Architectures

simultaneously to avoid damages. Because the motors are coupled physically,
starting one motor before the other motor would force the second motor to
rotate without oil flow. As a result, a low pressure inside it leads to a vacuum,
which is explosively filled up by the following high pressure when the second
motor is started. The problem is that this event could lead to a delamination of
swarf, which can damage the hydraulic pump at a later point of time.

Two hydraulic motors
to reach the required torque

Figure 1.5. Drilling machine with two hydraulic motors

Of course, this seems to be a very simple real-time system compared to an
autopilot because it is only required to open two valves simultaneously. But,
if these valves are controlled by two different control units, a communication
delay must be taken into account. In addition, this real-time scenario can be
found inside an aircraft multiple times. Because of redundancy reasons, most
rudders are moved by two hydraulic cylinders that are supplied by two
hydraulic circuits and controlled by different control units. Hence, the
problem of opening multiple valves simultaneously is also present as a small
real-time task inside a very complex real-time environment.

Real-Time Systems and Time Predictability 15

1.2. Time predictability

Most of the computing systems exhibit high-performance requirements and
the achieved performance of hardware and software is generally measured on
the average case, i.e. on some executions that are considered as representative
of most of the executions.

In hard real-time systems, aside from performance requirements, is the
need for being able to show that real-time tasks can always meet their
deadlines. For this purpose, the WCETs of critical tasks must be determined.
This is possible only if the hardware architecture is time-predictable or
time-analyzable. These two expressions are often used without distinction.
However, Grund et al. [GRU 11b] formalize these concepts. They show that
predictability (i.e. the ability to be predicted) is generally not a Boolean
property, but can instead be expressed by a range of levels that allow
comparing two systems (“A is more predictable than B”). Predictability can
be seen as the ability to take into account a hardware scheme with a certain
level of accuracy. The maximal accuracy is reached when the behavior of the
system can be exactly predicted. Instead, analyzability is related to the
approach used for timing analysis. It indicates the capacity of this approach to
predict a given property.

A key point is that a real-time system does not necessarily have to exhibit
high performance. Conversely, a high-performance processor may not fit the
requirements of real-time systems. A common pitfall is to believe that a
solution for making sure that a critical task will meet its deadline is to run it
on a fast processor. Unfortunately, if the average execution time is usually
improved by using a faster processor, this may not be the case for the WCET
due to predictability/analyzability issues. The complexity of some of the
schemes used to achieve high performance often makes the timing analysis
complex and pessimistic. As a result, the WCET computed considering a
high-performance processor may be longer than that obtained considering a
simpler processor. In addition, the variability of execution times is generally
higher when the processor implements sophisticated mechanisms and the
observed execution time might be far from the estimated WCET, which may
be a problem.

16 Time-Predictable Architectures

1.3. Book outline

The purpose of this book is threefold: (1) to offer an overview of the
state-of-the-art techniques in the field of timing analysis of hard real-time
systems, (2) to provide an insight into the difficulties raised by advanced
architectural schemes with respect to such timing analysis and (3) to review
existing techniques toward the design of time-predictable processors.

Chapter 2 provides background information on timing analysis
approaches. First, an overview of task scheduling techniques, both for
single-score and multicore systems, is given. These techniques all consider
estimations of the WCET of tasks, i.e. their maximum possible execution
time, whatever the input data values and the initial state of the hardware
platform. Various approaches can be used to determine WCET estimates:
some of them rely on measurements of the program execution on the target
hardware, while other approaches consider models of the hardware as part of
static program analyses. The main lines of such approaches are reviewed. The
chapter ends with a discussion on the notion of time composability.

Chapter 3 focuses on current processor architectures. It studies the main
schemes implemented in the execution core to enhance the average-case
performance: pipelining, superscalar execution, multithreading and branch
prediction. Each of them is first presented, and then state-of-the-art
techniques to determine their worst-case timing behavior are introduced.
Finally, directions to improve its timing predictability are discussed.

Chapter 4 deals with the memory hierarchy: instruction and data caches,
scratchpad memories and the external main memory. The specificities of each
level of the hierarchy are reviewed. Then, the basic existing approaches to
analyze the worst-case behavior of such memories are presented and
recommendations to build time-predictable memory systems are given.

Chapter 5 deals with multicore architectures that are now unavoidable
when designing high-performance embedded systems. Multicore
architectures are beneficial in terms of integration and power efficiency from
the sharing of resources among cores. However, this sharing challenges the
timing analysis of critical software because individual tasks can no longer be
analyzed separately. At the same time, the global analysis of several
concurrent tasks jointly does not seem feasible: first, this raises computational

Real-Time Systems and Time Predictability 17

complexity issues and second, the set of tasks that run concurrently is often
decided dynamically. For these reasons, it is necessary to consider specific
schemes to control resource sharing to some extent, in order to favor timing
composability. This allows the use of timing analysis techniques that are close
to those developed for single-core architectures. In this chapter, we review
such hardware schemes.

Finally, Chapter 6 describes single-core and multicore architectures that
have been designed in several academic and European projects, with time
predictability as a main objective. These architectures may inspire future
commercial designs once the view to time predictability spreads over
application domains that require time-critical software design.

