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Constraint Satisfaction Problems

This chapter provides the state of the art in the area of centralized constraint programming.
In section 1.1, we define the constraint satisfaction problem (CSP) formalism and present some
academic and real examples of problems modeled and solved by centralized CSP. Typical
methods for solving centralized CSP are described in section 1.2.

1.1. Centralized constraint satisfaction problems

Many real-world combinatorial problems in artificial intelligence arising from
areas related to resource allocation, scheduling, logistics and planning are solved
using constraint programming. Constraint programming is based on its powerful
framework called CSP. A CSP is a general framework that involves a set of variables
and constraints. Each variable can assign a value from a domain of finite possible
values. Constraints specify the allowed values for a set of variables. Hence, a large
variety of applications can be naturally formulated as CSPs. Examples of
applications that have been successfully solved by constraint programming are
picture processing [MON 74], planning [STE 81], job-shop scheduling [FOX 82],
computational vision [MAC 83], machine design and manufacturing
[FRA 87, NAD 90], circuit analysis [DEK 80], diagnosis [GEF 87], belief
maintenance [DEC 88], automobile transmission design [NAD 91], etc.

Solving a CSP consists of looking for solutions to a constraint network, that is a
set of assignments of values to variables that satisfy the constraints of the problem. A
constraint represents restrictions on value combinations allowed for constrained
variables. Many powerful algorithms have been designed for solving CSPs. Typical
systematic search algorithms try to develop a solution to a CSP by incrementally
instantiating the variables of the problem.

There are two main classes of algorithms searching solutions for CSPs, namely
those of a look-back scheme and those of look-ahead scheme. The first category of
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search algorithms (look-back scheme) corresponds to search procedures checking the
validity of the assignment of the current variable against the already assigned (past)
variables. When the assignment of the current variable is inconsistent with
assignments of past variables, a new value is tried. When no value remains, a past
variable must be reassigned (i.e. change its value). Chronological backtracking (BT)
[GOL 65], backjumping (BJ) [GAS 78], graph-based backjumping (GBJ) [DEC 90],
conflict-directed backjumping (CBJ) [PRO 93] and dynamic backtracking (DBT)
[GIN 93] are algorithms performing a look-back scheme.

The second category of search algorithms (look-ahead scheme) corresponds to
search procedures that check forward the assignment of the current variable. In a look-
ahead scheme, the not yet assigned (future) variables are made consistent, to some
degree, with the assignment of the current variable. Forward checking (FC) [HAR 80]
and maintaining arc consistency (MAC) [SAB 94] are algorithms that perform a look-
ahead scheme.

Proving the existence of solutions or finding them in CSP are nondeterministic
polynomial time (NP)-complete tasks. Thereby, numerous heuristics were developed
to improve the efficiency of solution methods. Although being numerous, these
heuristics can be categorized into two kinds: variable ordering and value ordering
heuristics. Variable ordering heuristics address the order in which the algorithm
assigns the variables, whereas the value ordering heuristics establish an order on
which values will be assigned to a selected variable. Many studies have shown that
the ordering of selecting variables and values dramatically affects the performance of
search algorithms.

We present in the following an overview of typical methods for solving centralized
CSPs after formally defining a CSP and give some examples of problems that can be
encoded in CSPs.

1.1.1. Preliminaries

A CSP (or a constraint network) [MON 74] involves a finite set of variables, a
finite set of domains determining the set of possible values for a given variable and a
finite set of constraints. Each constraint restricts the combination of values that a set of
variables it involves can assign. A solution is an assignment of values to all variables
satisfying all constraints.

DEFINITION 1.1.– A constraint satisfaction problem or a constraint network was
formally defined by a triple (X ,D, C), where:

– X is a set of n variables {x1, . . . , xn};

– D = {D(x1), . . . , D(xn)} is a set of n current domains, where D(xi) is a finite
set of possible values to which variable xi may be assigned;
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– C = {c1, . . . , ce} is a set of e constraints that specify the combinations of
values (or tuples) allowed for the variables they involve. The variables involved in
a constraint ck ∈ C form its scope (scope(ck)⊆ X ).

During a search procedure, values may be pruned from the domain of a variable.
At any node, the set of possible values for variable xi is its current domain, D(xi).
We introduce the particular notation of initial domains (or definition domains) D0 =
{D0(x1), . . . , D

0(xn)}, which represents the set of domains before pruning any value
(i.e. D ⊆ D0).

The number of variables on the scope of a constraint ck ∈ C is called a the arity of
the constraint ck. Therefore, a constraint involving one variable (respectively, two or n
variables) is called a unary (respectively, binary or n-ary) constraint. In this book, we
are concerned with binary constraint networks where we assume that all constraints
are binary constraints (they involve two variables). A constraint in C between two
variables xi and xj is then denoted by cij . cij is a subset of the Cartesian product
of their domains (i.e. cij ⊆ D0(xi) × D0(xj)). A direct result of this assumption is
that the connectivity between the variables can be represented with a constraint graph
G [DEC 92].

DEFINITION 1.2.– A binary constraint network can be represented by a constraint
graph G = {XG, EG}, where vertices represent the variables of the problem (XG =
X ) and edges (EG) represent the constraints (i.e. {xi, xj} ∈ EG iff cij ∈ C).

DEFINITION 1.3.– Two variables are adjacent iff they share a constraint. Formally,
xi and xj are adjacent iff cij ∈ C. If xi and xj are adjacent, we also say that xi and
xj are neighbors. The set of neighbors of a variable xi is denoted by Γ(xi).

DEFINITION 1.4.– Given a constraint graph G, an ordering O is a mapping from the
variables (vertices of G) to the set {1, . . . , n}. O(i) is the ith variable in O.

Solving a CSP is equivalent to finding a combination of assignments of values to
all variables in a way that all the constraints of the problem are satisfied.

In the following, we present some typical examples of problems that can be
intuitively modeled as CSPs. These examples range from academic problems to
real-world applications.

1.1.2. Examples of CSPs

Various problems in artificial intelligence can be naturally modeled as a CSP. We
present here some examples of problems that can be modeled and solved by the CSP
framework. First, we describe the classical n-queens problem. Next, we present the
graph coloring problem. Finally, we introduce the problem of meeting scheduling.
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1.1.2.1. The n-queens problem

The n-queens problem is a classical combinatorial problem that can be formalized
and solved by a CSP. In the n-queens problem, the goal is to put n queens on an n×n
chessboard so that none of them are able to attack (capture) any other. Two queens
attack each other if they are located on the same row, column or diagonal on the
chessboard. This problem is called a CSP because the goal is to find a configuration
that satisfies the given conditions (constraints).

In the case of 4-queens (n = 4, Figure 1.1), the problem can be encoded as a CSP
as follows1:

– X = {q1, q2, q3, q4}, each variable qi corresponds to the queen placed in the
ith column;

– D = {D(q1), D(q2), D(q3), D(q4)}, where D(qi)={1, 2, 3, 4} ∀i ∈ 1.4. The
value v ∈ D(qi) corresponds to the row where the queen representing the ith column
can be placed;

– C = {cij : (qi �= qj) ∧ (| qi − qj |�=| i − j |) ∀ i, j ∈ {1, 2, 3, 4} and i �= j} is
the set of constraints. A constraint between each pair of queens exists that forbids the
involved queens to be placed in the same row or diagonal line.

q1 q2 q3 q4

1 zZzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ
qqqq

variables

v
a

lu
e
s ∀i, j ∈ {1, 2, 3, 4} such that i 
= j:

(qi 
= qj) ∧ (| qi − qj |
=| i − j |)

Figure 1.1. The 4-queens problem

The n-queen problem permits, in the case of n = 4 (4-queens), two configurations
as solutions. We present the two possible solution in Figure 1.2. The first solution,
Figure 1.2(a), is (q1 = 2, q2 = 4, q3 = 1, q4 = 3), where we put q1 in the second row,
q2 in the fourth row q3 in the first row and q4 is placed in the third row. The second
solution, Figure 1.2(b), is (q1 = 3, q2 = 1, q3 = 4, q4 = 2).

1.1.2.2. The graph coloring problem

Another typical problem is the graph coloring problem. Graph coloring is one of
the most combinatorial problem studied in artificial intelligence because many real

1 This is not the only possible encoding of the n-queens problem as a CSP.
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applications such as time-tabling and frequency allocation can be easily formulated
as a graph coloring problem. The goal in this problem is to color all nodes of a graph
so that any two adjacent vertices should get different colors where each node has a
finite number of possible colors. The graph coloring problem is simply formalized as
a CSP. Hence, the nodes of the graph are the variables to color and the possible colors
of each node/variable form its domain. A constraint between each pair of adjacent
variables/nodes exists that prohibits these variables from having the same color.

q1 q2 q3 q4

1 zZz5™Xqz
2 5XqzZzzZ
3 zZzzZ5Xq
4 z5™XqzzZ

a) (q1 = 2, q2 = 4, q3 = 1, q4 = 3)

q1 q2 q3 q4

1 zZ5XqzZz
2 zzZz5™Xq
3 5™XqzzZz
4 zzZ5XqzZ

b) (q1 = 3, q2 = 1, q3 = 4, q4 = 2)

Figure 1.2. The solutions for the 4-queens problem

A practical application of the graph coloring problem is the problem of coloring
a map (Figure 1.3). The objective in this case is to assign a color to each region so
that no neighboring regions have the same color. An instance of the map coloring
problem is illustrated in Figure 1.3(a), where we present the map of Morocco with
its 16 provinces. We present this map-coloring instance as a constraint graph in
Figure 1.3(b). This problem can be modeled as a CSP by representing each node
of the graph as a variable. The domain of each variable is defined by the possible
colors. A constraint exists between each pair neighboring regions. Therefore we get
the following CSP:

– X = {x1, x2, . . . , x16};

– D = {D(x1), D(x2), . . . , D(x16)}, where D(xi) = {red, blue, green};

– C = {cij : xi �= xj | xi and xj are neighbors}.

1.1.2.3. The meeting scheduling problem

The meeting scheduling problem (MSP) [SEN 95, GAR 96, MEI 04] is a
decision-making process that consists of scheduling several meetings among various
people with respect to their personal calendars. The MSP has been defined in many
versions with different parameters (e.g. duration of meetings [WAL 02] and
preferences of agents [SEN 95]). In MSP, we have a set of attendees, each with
his/her own calendar (divided into time-slots), and a set of n meetings to coordinate.
In general, people/participants may have several slots already filled in their calendars.
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Each meeting mi takes place in a specified location denoted by location(mi). The
proposed solution must enable the participating people to travel among locations
where their meetings will be held. Thus, an arrival-time constraint is required
between two meetings mi and mj when at least one attendee participates in both the
meetings. The arrival-time constraint between two meetings mi and mj is defined in
equation [1.1]:

| time(mi)− time(mj) | −duration > TravelingT ime(location(mi),

location(mj)). [1.1]

a) The 16 provinces of Morocco

x11

x7

x6

x13

x8

x14

x9x2
x1

x5 x12 x3 x10

x4

x16

x15

b) The map coloring problem represented as a
constraint graph

Figure 1.3. An example of the graph coloring problem

The MSP [MEI 04] can be encoded in a centralized CSP as follows:

– X = {m1, . . . , mn} is the set of variables where each variable represents a
meeting;

– D = {D(m1), . . . , D(mn)} is a set of domains, where D(mi) is the domain
of variable/meeting mi. D(mi) is the intersection of time-slots from the personal
calendar of all agents attending mi, that is D(mi) =

�
Aj∈ attendees of mi

calendar(Aj);

– C is a set of arrival-time constraints. An arrival-time constraint for every pair of
meetings (mi, mj) exists if there is an agent that participates in both meetings.

A simple instance of a MSP is illustrated in Table 1.1. There are four attendees:
Adam, Alice, Fred and Med, each having a personal calendar. There are four
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meetings to be scheduled. The first meeting (m1) will be attended by Alice and
Med. Alice and Fred will participate in the second meeting (m2). The agents
attending the third meeting (m3) are Fred and Med, while the last meeting (m4)
will be attended by Adam, Fred and Med.

Meeting Attendees Location

m1 Alice, Med Paris
m2 Alice, Fred Rabat
m3 Fred, Med Montpellier
m4 Adam, Fred, Med Agadir

Table 1.1. A simple instance of the meeting scheduling problem

The instance presented in Table 1.1 is encoded as a centralized CSP in Figure 1.4.
The nodes are the meetings/variables (m1, m2, m3, m4). The edges represent binary
arrival-time constraints. Each edge is labeled by the person, attending both meetings.
Thus,

– X = {m1, m2, m3, m4};

– D = {D(m1), D(m2), D(m3), D(m4)};

- D(m1) = {s | s is a slot in calendar(Alice) ∩ calendar(Med)},

- D(m2) = {s | s is a slot in calendar(Alice) ∩ calendar(Fred)},

- D(m3) = {s | s is a slot in calendar(Fred) ∩ calendar(Med)},

- D(m4) = {s | s is a slot in calendar(Adam) ∩ calendar(Fred) ∩
calendar(Med)};

– C = {c12, c13, c14, c23, c24, c34}, where cij is an arrival-time constraint
between mi and mj .

m1 m2

m3m4

Alice

Med

Med Fred

Fred

Med, Fred, Adam

Med attends meetings: m1, m2 and m4

Alice attends meetings: m1 and m2

Fred attends meetings: m2, m3 and m4

Adam attends meetings: m4

Figure 1.4. The constraint graph of the meeting scheduling problem
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The previous examples show the power of the CSP framework to easily model
various combinatorial problems arising from different issues. In the following section,
we describe the well-known generic methods for solving a CSP.

1.2. Algorithms and techniques for solving centralized CSPs

In this section, we describe the basic methods for solving CSPs. These methods
can be considered under two broad approaches: constraint propagation and search.
Here, we also describe a combination of those two approaches. In general, the search
algorithms explore all possible combinations of values for the variables in order to find
a solution of the problem, that is a combination of values for the variables that satisfies
the constraints. However, the constraint propagation techniques are used to reduce
the space of combinations that will be explored by the search process. Afterward,
we present the main heuristics used to boost the search in the centralized CSPs. We
particularly summarize the main variable ordering heuristics, while we briefly describe
the main value ordering heuristics used in the CSPs.

1.2.1. Algorithms for solving centralized CSPs

Usually, algorithms for solving centralized CSPs search systematically through
the possible assignments of values to variables in order to find a combination of these
assignments that satisfies the constraints of the problem.

DEFINITION 1.5.– An assignment of value vi to a variable xi is a pair (xi, vi) where
vi is a value from the domain of xi, that is vi ∈ D(xi). We often denote this assignment
by xi = vi.

Henceforth, when a variable is assigned a value from its domain, we say that the
variable is assigned or instantiated.

DEFINITION 1.6.– An instantiation I of a subset of variables {xi, . . . , xk} ⊆ X is an
ordered set of assignments I = {[(xi = vi), . . . , (xk = vk)] | vj ∈ D(xj)}. The
variables assigned on instantiation I = [(xi = vi), . . . , (xk = vk)] are denoted by
vars(I) = {xi, . . . , xk}.

DEFINITION 1.7.– A full instantiation is an instantiation I that instantiates all the
variables of the problem (i.e. vars(I) = X ), and conversely we say that an
instantiation is a partial instantiation if it instantiates in only a part.

DEFINITION 1.8.– An instantiation I satisfies a constraint cij ∈ C if and only if the
variables involved in cij (i.e. xi and xj) are assigned in I (i.e. (xi = vi), (xj = vj) ∈
I) and the pair (vi, vj) is allowed by cij . Formally, I satisfies cij iff [(xi = vi) ∈
I] ∧ [(xj = vj) ∈ I] ∧ [(vi, vj) ∈ cij ].
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DEFINITION 1.9.– An instantiation I is locally consistent iff it satisfies all of the
constraints whose scopes have no uninstantiated variables in I. I is also called a
partial solution. Formally, I is locally consistent iff ∀cij ∈ C | scope(cij) ⊆
vars(I)and I satisfies cij .

DEFINITION 1.10.– A solution to a constraint network is a full instantiation I, which
is locally consistent.

The intuitive way to search a solution for a CSP is to generate and test all
possible full instantiations and check their validity (i.e. if they satisfy all constraints
of the problem). The full instantiations satisfying all constraints are then solutions.
This is the principle of the generate & test algorithm. In other words, a full
instantiation is generated and then tested if it is locally consistent. In the generate &
test algorithm, the consistency of an instantiation is not checked until it is full. This
method drastically increases the number of combinations that will be generated. The
number of full instantiations considered by this algorithm is the size of the Cartesian
product of all the variable domains. Intuitively, one can check the local consistency
of instantiation as soon as its respective variables are instantiated. In fact, this is the
systematic search strategy of the chronological BT algorithm. We present the
chronological BT in the following.

1.2.1.1. Chronological backtracking

The chronological BT [DAV 62, GOL 65, BIT 75] is the basic systematic search
algorithm for solving CSPs. The BT is a recursive search procedure that
incrementally attempts to extend a current partial solution (a locally consistent
instantiation) by assigning values to variables not yet assigned, toward a full
instantiation. However, when all values of a variable are inconsistent with previously
assigned variables (a dead-end occurs), BT backtracks to the variable immediately
instantiated in order to try another alternative value for it.

DEFINITION 1.11.– When no value is possible for a variable, a dead-end state occurs.
We usually say that the domain of the variable is wiped out (DWO).

The pseudo-code of the BT algorithm is illustrated in algorithm 1.1. The BT
assigns a value to each variable in turn. When assigning a value vi to a variable xi,
the consistency of the new assignment with values assigned thus far is checked
(line 6, algorithm 1.1). If the new assignment is consistent with previous
assignments, BT attempts to extend these assignments by selecting another
unassigned variable (line 7). Otherwise (the new assignment violates any of the
constraints), another alternative value is tested for xi if it is possible. If all values of a
variable are inconsistent with previously assigned variables (a dead-end occurs), BT
to the variable immediately preceding the dead-end variable takes place in order to
check alternative values for this variable. In this way, either a solution is found when
the last variable has been successfully assigned or BT can conclude that no solution
exists if all values of the first variable are removed.



12 Algorithms and Ordering Heuristics for DisCSPs

Algorithm 1.1. The chronological backtracking algorithm.
procedure Backtracking(I)
01. if ( isFull(I) ) then report I as solution; /* all variables are assigned in I */
02. else
03. select xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. foreach ( vi ∈ D(xi) ) do
05. xi ← vi;
06. if ( isLocallyConsistent(I ∪ {(xi = vi)}) ) then
07. Backtracking(I ∪ {(xi = vi)});

Figure 1.5 illustrates an example of running the BT algorithm on the 4-queens
problem (Figure 1.1). First, variable q1 is assigned to 1 (the first queen representing
the queen to place in the first column, is placed in the first row of the 4 × 4
chessboard) and added to the partial solution I. Next, BT attempts to extend I by
assigning the next variable q2. Because we cannot assign values 1 or 2 for q2 as these
values violate the constraint c12 between q1 and q2, we select value 3 to be assigned
to q2 (q2 = 3). Then, BT attempts to extend I = [(q1 = 1), (q2 = 3)] by assigning
the next variable q3. No value from D(q3) exists that satisfies all of the constraints
with (q1 = 1) and (q2 = 3) (i.e. c13 and c23). Therefore, a BT is performed to the
most recently instantiated variable (i.e. q2) in order to change its current value (i.e.
3). Hence, variable q2 is assigned to 4. Afterward, the value 2 is assigned to next
variable q3 because value 1 violates the constraint c13. Then, the algorithm
backtracks to variable q3 after attempting to assign variable q4 because no possible
assignment for q4 exists that is consistent with previous assignments
I = [(q1 = 1), (q2 = 4), (q3 = 2)]. Thus, q3 = 2 must be changed. However, no
value consistent with (q1 = 1) and (q2 = 4) is available for q3. Hence, another
backtrack is performed to q2. In the same way BT backtracks again to q1 as no value
for q2 is consistent with (q1 = 1). Then, q1 = 2 is selected for the first variable q1.
After that, q2 is assigned to 4 because other values (1, 2 and 3) violate the constraint
c12. Next, I is extended by adding a new assignment (q3 = 1) of the next variable q3
consistent with I. Finally, an assignment, consistent with the extended partial
solution I, is sought for q4. The first and the second values (row number 1 and 2)
from D(q4) are not consistent with I = [(q1 = 2), (q2 = 4), (q3 = 1)]. Then, BT
chooses 3 that is consistent with I to be instantiated to q4. Hence, a solution is found
because all variables are instantiated in I, where I = [(q1 = 2), (q2 = 4),
(q3 = 1), (q4 = 3)].

On the one hand, it is clear that we need only linear space to perform the BT.
However, it requires time exponential in the number of variables for most nontrivial
problems. On the other hand, the BT is clearly better than “generate & test” because
a subtree from the search space is pruned whenever a partial instantiation violates a
constraint. Thus, BT can detect early unfruitful instantiation compared to “generate &
test”.
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Although the BT improves the “generate & test”, it still suffers from many
drawbacks. The main drawback is the thrashing problem. Thrashing is the fact that
the same failure due to the same reason can be rediscovered an exponential number
of times when solving the problem. Therefore, a variety of refinements of BT have
been developed in order to improve it. These improvements can be classified under
two main schemes: look-back methods such as CBJ or look-ahead methods such
as FC.

1.2.1.2. Conflict-directed backjumping

From the earliest work in the area of constraint programming, researchers were
concerned by the trashing problem of the BT algorithm and then they proposed a
number of techniques to avoid it. The BJ concept was one of the pioneer techniques
used for this reason. Thus, several non-chronological BT (intelligent BT) search
algorithms have been designed to solve centralized CSPs. In the standard form of BT,
each time a dead-end occurs, the algorithm attempts to change the value of the most
recently instantiated variable. However, BT chronologically to the most recently
instantiated variable may not address the reason of the failure. This is no longer the
case in the BJ algorithms that identify and then jump directly to the responsible
dead-end (culprit). Hence, the culprit variable is reassigned if it is possible or
another jump is performed. Incidentally, the subtree of the search space where the
thrashing may occur is pruned.

DEFINITION 1.12.– Given a total ordering on variables O, a constraint cij is earlier
than ckl if the latest variable in scope(cij) precedes the latest one in scope(ckl)
on O.

EXAMPLE 1.1.– Given the lexicographic ordering on variables ([x1, . . . , xn]), the
constraint c25 is earlier than constraint c35 because x2 precedes x3 since x5 belongs
to both scopes (i.e. scope(c25) and scope(c35)).

Gaschnig designed the first explicit non-chronological (BJ) algorithm in
[GAS 78]. For each variable xi BJ records the deepest variable with which it checks
its consistency with the assignment of xi. When a dead-end occurs on a domain of a
variable xi, BJ jumps back to the deepest variable, say xj , against which the
consistency of xi is checked. However, if there are no more values remaining for xj ,
BJ perform a simple backtrack to the last assigned variable before assigning xj .2
Dechter [DEC 90, DEC 02] presented the GBJ algorithm, a generalization of the BJ
algorithm. Basically, GBJ attempts to jump back directly to the source of the failure
by using only information extracted from the constraint graph. Whenever a dead-end
occurs on a domain of the current variable xi, GBJ jumps back to the most recent
assigned variable (xj) adjacent to xi in the constraint graph. Unlike BJ, if a dead-end
occurs again on a domain of xj , GBJ jumps back to the most recent variable xk

2 BJ cannot execute two “jumps” in a row, only performing steps back after a jump.
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connected to xi or xj . Prosser [PRO 93] proposed the CBJ that rectifies the bad
behavior of Gaschnig’s algorithm.

The pseudo-code of CBJ is illustrated in algorithm 1.2. Instead of recording only
the deepest variable, for each variable xi CBJ records the set of variables that were in
conflict with some assignment of xi. Thus, CBJ maintains an earliest minimal
conflict set for each variable xi (i.e. EMCS[i]) where it stores the variables involved
in the earliest violated constraints with an assignment of xi. Whenever a variable xi

is chosen to be instantiated (line 3), CBJ initializes EMCS[i] to the empty set. Next,
CBJ initializes the current domain of xi to its initial domain (line 5). Afterward, a
consistent value vi with the current search state is looked for the selected variable xi.
If vi is inconsistent with the current partial solution, then vi is removed from the
current domain D(xi) (line 13), and xj such that cij is the earliest violated constraint
by the new assignment of xi (i.e. xi = vi) is then added to the earliest minimal
conflict set of xi, that is EMCS[i] (line 15). EMCS[i] can be seen as the subset of
the past variables in conflict with xi. When a dead-end occurs on the domain of a
variable xi, CBJ jumps back to the last variable, say xj , in EMCS[i] (lines 16, 9 and
10). The information in EMCS[i] is earned upwards to EMCS[j] (line 11). Hence,
CBJ performs a form of “intelligent backtracking” to the source of the conflict
allowing the search procedure to avoid rediscovering the same failure due to the same
reason.

Algorithm 1.2. The conflict-directed backjumping algorithm.
procedure CBJ(I)
01. if ( isFull(I) ) then report I as solution; /* all variables are assigned in I */
02. else
03. choose xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. EMCS[i] ← ∅ ;
05. D(xi) ← D0(xi) ;
06. foreach ( vi ∈ D(xi) ) do
07. xi ← vi;
08. if ( isConsistent(I ∪ (xi = vi)) ) then
09. CS ← CBJ(I ∪ {(xi = vi)}) ;
10. if ( xi /∈ CS ) then return CS ;
11. else EMCS[i] ← EMCS[i] ∪ CS \ {xi} ;
12. else
13. remove vi from D(xi) ;
14. let cij be the earliest violated constraint by (xi = vi);
15. EMCS[i] ← EMCS[i] ∪ xj ;
16. return EMCS[i] ;

When a dead-end occurs, the CBJ algorithm jumps back to address the culprit
variable. During the BJ process, CBJ erases all assignments that were obtained since
and then wastes a meaningful effort made to achieve these assignments. To overcome
this drawback, Ginsberg have proposed DBT [GIN 93].
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1.2.1.3. Dynamic backtracking

In the naive chronological of BT, each time a dead-end occurs the algorithm
attempts to change the value of the most recently instantiated variable. Intelligent BT
algorithms were developed to avoid the trashing problem caused by the BT.
Although these algorithms identify and then jump directly to the responsible
dead-end (culprit), they erase a great deal of the work performed thus far on the
variables that are backjumped over. When backjumping, all variables between the
culprit variable responsible for the dead-end and the variable where the dead-end
occurs will be re-assigned.

Ginsberg proposed the DBT algorithm in order to keep the progress performed
before BJ [GIN 93]. In DBT, the assignments of non-conflicting variables are
preserved during the BJ process. Thus, the assignments of all variables following the
culprit are kept and the culprit variable is moved so as to be the last among the
assigned variables.

To detect the culprit of the dead-end, CBJ associates a conflict set (EMCS[i])
with each variable (xi). EMCS[i] contains the set of the assigned variables whose
assignments are in conflict with a value from the domain of xi. In a similar way, DBT
uses nogoods to justify the value elimination [GIN 93]. Based on the constraints of the
problem, a search procedure can infer inconsistent sets of assignments called nogoods.

DEFINITION 1.13.– A nogood is a conjunction of individual assignments, which has
been found inconsistent either because of the initial constraints or because of
searching for all possible combinations.

EXAMPLE 1.2.– The following nogood ¬[(xi = vi) ∧ (xj = vj) ∧ . . . ∧ (xk = vk)]
means that assignments it contains are not simultaneously allowed because they cause
an inconsistency.

DEFINITION 1.14.– A directed nogood ruling out value vk from the initial domain of
variable xk is a clause of the form xi = vi ∧ xj = vj ∧ . . . → xk �= vk, meaning that
the assignment xk = vk is inconsistent with the assignments xi = vi, xj = vj , . . ..
When a nogood (ng) is represented as an implication (directed nogood), the left-hand
side, lhs(ng), and the right-hand side, rhs(ng), are defined from the position of
→.

In DBT, when a value is found to be inconsistent with previously assigned values,
a directed nogood is stored as a justification of its removal. Hence, the current
domain D(xi) of a variable xi contains all values from its initial domain that are not
ruled out by a stored nogood. When all values of a variable xi are ruled out by some
nogoods (i.e. a dead-end occurs), DBT resolves these nogoods producing a new
nogood (newNogood). Let xj be the last variable in the left-hand side of all these
nogoods and xj = vj . In CBJ algorithm, xj is the culprit variable. The
lhs(newNogood) is the conjunction of the left-hand sides of all nogoods except
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xj = vj and rhs(newNogood) is xj �= vj . Unlike the CBJ, DBT only removes the
current assignment of xj and keeps assignments of all variables between it and xi

because they are consistent with former assignments. Therefore, the work done when
assigning these variables is preserved. The culprit variable xj is then placed after xi

and a new assignment for it is searched for because the generated nogood
(newNogood) eliminates its current value (vj).

Because the number of nogoods that can be generated increases monotonically,
recording all of the nogoods, as is done in dependency-directed backtracking
algorithm [STA 77], requires an exponential space complexity. To keep a polynomial
space complexity, DBT stores only nogoods compatible with the current state of the
search. Thus, when BT to xj , DBT destroys all nogoods containing xj = vj . As a
result, with this approach, a variable assignment can be ruled out by at most one
nogood. Because each nogood requires O(n) space and there are at most nd
nogoods, where n is the number of variables and d is the maximum domain size, the
overall space complexity of DBT is in O(n2d).

1.2.1.4. Partial order dynamic backtracking

Instead of BT to the most recently assigned variable in the nogood, Ginsberg and
McAllester [GIN 94] proposed the partial order dynamic backtracking (PODB), an
algorithm that offers more freedom than DBT in the selection of the variable to put on
the right-hand side of the generated nogood. PODB is a polynomial space algorithm
that attempted to address the rigidity of DBT.

When resolving the nogoods that led to a dead-end, DBT always selects the most
recently assigned variable among the set of inconsistent assignments to be the
right-hand side of the generated directed nogood. However, there are clearly many
different ways of representing a given nogood as an implication (directed nogood).
For example, ¬[(xi = vi) ∧ (xj = vj) ∧ · · · ∧ (xk = vk)] is logically equivalent to
[(xj = vj) ∧ · · · ∧ (xk = vk)] → (xi �= vi) meaning that the assignment xi = vi is
inconsistent with the assignments xj = vj , . . . , xk = vk. Each directed nogood
imposes ordering constraints called the set of safety conditions for completeness
[GIN 94]. Since all variables on the left-hand side of a directed nogood participate in
eliminating the value on its right-hand side, these variables must precede the variable
on the right-hand side.

DEFINITION 1.15.– The safety conditions imposed by a directed nogood ng, that is
S(ng), ruling out a value from the domain of xj are the set of assertions of the form
xk ≺ xj , where xk is a variable in the left-hand side of ng, that is xk ∈ lhs(ng).

The PODB attempts to offer more freedom in the selection of the variable to put
on the right-hand side of the generated directed nogood. In PODB, the only
restriction to respect is that the partial order induced by the resulting directed nogood
must safeguard the existing partial order required by the set of safety conditions, say
S. In a later study, Bliek [BLI 98] shows that PODB is not a generalization of DBT
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and then proposes the generalized partial order dynamic backtracking (GPODB), a
new algorithm that generalizes both PODB and DBT. To achieve this, GPODB
follows the same mechanism of PODB. The difference between the two (PODB and
GPODB) resides in the obtained set of safety conditions S� after generating a new
directed nogood (newNogood). The new order has to respect the safety conditions
existing in S�. While S and S� are similar for PODB, when computing S�, GPODB
relaxes all safety conditions from S of the form: rhs(newNogood) ≺ xk. However,
both algorithms generate only directed nogoods that satisfy the already existing
safety conditions in S. To the best of our knowledge, no systematic evaluation of
either PODB or GPODB has been reported.

All algorithms presented so far incorporate a form of look-back scheme. Avoiding
possible future conflicts may be more attractive than recovering from them. In the
BT, BJ and DBT, we cannot detect that an instantiation is unfruitful until all variables
of the conflicting constraint are assigned. Intuitively, each time a new assignment is
added to the current partial solution (instantiation), one can look ahead by performing
a forward check of consistency of the current partial solution .

1.2.1.5. Forward checking

The FC algorithm [HAR 79, HAR 80] is the simplest procedure of checking every
new instantiation against the future (as yet uninstantiated) variables. The purpose of
the FC is to propagate information from assigned to unassigned variables. Then, it is
classified among those procedures performing a look-ahead.

The pseudo-code of FC procedure is presented in algorithm 1.3. FC is a recursive
procedure that attempts to foresee the effects of choosing an assignment on the
not-yet- assigned variables. Each time a variable is assigned, FC checks forward the
effects of this assignment on the domains of future variables (Check-Forward call,
line 6). So, all values from the domains of future variables, which are inconsistent
with the assigned value (vi) of the current variable (xi), are removed (line 11). Future
variables concerned by this filtering process are only those sharing a constraint with
xi, the current variable being instantiated (line 10). Incidentally, each domain of a
future variable is filtered in order to keep only consistent values with past variables
(variables already instantiated). Hence, FC does not need to check consistency of
new assignments against already instantiated ones as opposed to chronological BT.
The FC is then the easiest way to prevent assignments that guarantee later failure.

We illustrate the FC algorithm on the 4-queens problem (Figure 1.6). In the first
iteration, the FC algorithm selects the first value of the domain (1), (i.e. (q1 = 1)).
Once, value 1 is assigned to q1, FC checks forward this assignment. Thus, all values
from domain of variables not yet instantiated sharing a constraint with q1 (i.e. q2, q3
and q4) will be removed if they are inconsistent with the assignment of q1. Thus, the
check-forward results in the following domains: D(q2) = {3, 4}, D(q3) = {2, 4}
and D(q4) = {2, 3}. In the second iteration, the algorithm selects the first available
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value on the domain of q2 (i.e. 3), then FC checks forward this new assignment
(i.e. q2 = 3). When checking forward (q2 = 3), the assignment is rejected because a
dead-end occurs on the D(q3) as values 2 and 4 for q3 are not consistent with q2 = 3.
Thus, the FC algorithm then chooses q2 = 4, which generates the following domains
D(q3) = {2} and D(q4) = {3}. Afterward, FC assigns the only possible value (2)
for q3 and checks forward the assignment q3 = 2. The domain of q4 (i.e.
D(q4) = {3}) is then filtered. Hence, value 3 is removed from D(q4) because it is
not consistent with q3 = 2. This removal generates a dead-end on D(q4), requiring
another value for q3. A backtrack to q2 takes place because there is no possible value
on D(q2). In a similar way, FC backtracks to q1 requiring a new value.

Algorithm 1.3. The forward checking algorithm.
procedure ForwardChecking(I)
01. if ( isFull(I) ) then report I as solution; /* all variables are assigned in I */
02. else
03. select xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. foreach ( vi ∈ D(xi) ) do
05. xi ← vi;
06. if ( Check-Forward(I, (xi = vi)), ) then
07. ForwardChecking(I ∪ {(xi = vi)});
08. else
09. foreach ( xj /∈ vars(I) such that ∃ cij ∈ C ) do restore D(xj) ;

function Check-Forward(I, xi = vi)
10. foreach ( xj /∈ vars(I) such that ∃ cij ∈ C ) do
11. foreach ( vj ∈ D(xj) such that (vi, vj) /∈ cij ) do remove vj from D(xj) ;
12. if ( D(xj) = ∅ ) then return false ;
13. return true;

A new assignment is generated for q1 assigning it the next value 2. Next, q1 = 2
is checked forward producing removals on the domains of q2, q3 and q4. The
obtained domains are as follows: D(q2) = {4}, D(q3) = {1, 3} and
D(q4) = {1, 3, 4}. Afterward, the next variable is assigned (i.e. q2 = 4) and checked
forward producing the following domains: D(q3) = {1} and D(q4) = {1, 4}. Next,
variables are assigned sequentially without any value removal (q3 = 1 and q4 = 3).
Thus, FC has generated a full, consistent instantiation and the solution is
I = [(q1 = 2), (q2 = 4), (q3 = 1), (q4 = 3)].

The example (Figure 1.6) shows how the FC algorithm improves the BT and FC
detects the inconsistency earlier compared to the chronological BT. Thus, FC prunes
branches of the search tree that will lead to failure earlier than BT. This purpose
allows us to reduce the search tree and (hopefully) the overall amount of time. This
can be seen when comparing the size of the search tree of both algorithms on the
example of the 4-queens (Figures 1.5 and 1.6). However, we have highlighted that
when generating a new assignment, FC requires greater efforts compared to the BT.
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Figure 1.6. The forward checking algorithm running on the 4-queens problem

Unlike BT, FC algorithm enables us to prevent assignments that guarantee later
failure. This improves the performance of BT. However, FC reduces the domains of
future variables, checking only the constraints relating them to variables already
instantiated. In addition to these constraints, we can also check the constraints
relating future variables to each other. Incidentally, domains of future variables may
be reduced and further possible conflicts will be avoided. This is the principle of the
full look-ahead scheme or constraint propagation. This approach is called MAC.

1.2.1.6. Arc consistency

In CSPs, checking the existence of solutions is NP-complete. Therefore, the
research community has devoted great interest to studying the constraint propagation
techniques. Constraint propagation techniques are filtering mechanisms that aim to
improve the performance of the search process by attempting to reduce the search
space. They have been widely used to simplify the search space before or during the
search. Thus, constraint propagation became a central process of solving CSPs
[BES 06]. Historically, different kinds of constraint propagation techniques have
been proposed: node consistency [MAC 77], AC [MAC 77] and path consistency
[MON 74] . The oldest and most commonly used technique for propagating
constraints in literature is the AC.
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DEFINITION 1.16.– A value vi ∈ D(xi) is consistent with cij in D(xj) iff there exists
a value vj ∈ D(xj) such that (vi, vj) is allowed by cij . Value vj is called a support
for vi in D(xj).

Let us assume the constraint graph G = {XG, EG} (see definition 1.2) associated
with our CSP.

DEFINITION 1.17.– An arc {xi, xj} ∈ EG (constraint cij) is arc consistent iff ∀ vi ∈
D(xi), ∃ vj ∈ D(xj) such that (vi, vj) is allowed by cij and ∀ vj ∈ D(xj), ∃ vi ∈
D(xi) such that (vi, vj) is allowed by cij . A constraint network is arc consistent iff all
its arcs (constraints) are arc consistent.

A constraint network is arc consistent if and only if for any value vi in the domain,
D(xi), of a variable xi there exist in the domain D(xj) of any adjacent variable xj

a value vj that is compatible with vi. Clearly, if an arc {xi, xj} (i.e. a constraint
cij) is not arc consistent, it can be made arc consistent by simply deleting all values
from the domains of the variables in its scope for which there is not a support in
the other domain. It is obvious that these deletions maintain the problem solutions
since the deleted values are in no solution. The process of removing values from the
domain of a variable xi, when making an arc {xi, xj} arc consistent is called revising
D(xi) with respect to constraint cij . A wide variety of algorithms establishing AC
on CSPs have been developed: AC-3 [MAC 77], AC-4 [MOH 86], AC-5 [VAN 92],
AC-6 [BES 93, BES 94], AC-7 [BES 99], AC-2001 [BES 01c], etc. The basic and the
most well-known algorithm is Mackworth’s AC-3.

We illustrate the pseudo-code of AC-3 in algorithm 1.4. The AC-3 algorithm
maintains a queue Q 3 of arcs to render arc consistent. AC-3 algorithm will return
true once the problem is made arc consistent or false if an empty domain was
generated (a domain is wiped out) meaning that the problem is not satisfiable.
Initially, Q is filled with all ordered pair of variables that participates in a constraint.
Thus, for each constraint cij ({xi, xj}) we add to Q the ordered pair (xi, xj) to
revise the domain of xi and the ordered pair (xj , xi) the revise the domain of xj

(line 8). Next, the algorithm loops until it is guaranteed that all arcs have been made
arc consistent (i.e. while Q is not empty). The ordered pair of variables are selected
and removed one by one from Q to revise the domain of the first variable. Each time
an ordered pair of variables (xi, xj) is selected and removed from Q (line 10), AC-3
calls function Revise(xi, xj) to revise the domain of xi. When revising D(xi) with
respect to an arc {xi, xj} (Revise call, line 11), all values that are not consistent
with cij are removed from D(xi) (lines 2–4). Thus, only values having a support on
D(xj) are kept in D(xi). The function Revise returns true if the domain of variable
xi has been reduced, false otherwise (line 6). If Revise results in the removal of
values from D(xi), it can be the case that a value for another variable xk has lost its
support on D(xi). Thus, all ordered pairs (xk, xi) such that k �= j are added onto Q

3 Other data structures as queue or stack can perfectly serve the purpose.
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so long as they are not already on Q in order to revise the domain of xk. Obviously,
the AC-3 algorithm will not terminate as long as there is any pair in Q. When Q is
empty, we are guaranteed that all arcs have been made arc consistent. Hence, the
constraint network is arc consistent. The while loop of AC-3 can be intuitively
understood as constraint propagation process (i.e. propagation the effect of value
removals on other domains potentially affected by these removals).

Algorithm 1.4. The AC-3 algorithm.
function Revise(xi, xj)
01. change ← false;
02. foreach ( vi ∈ D(xi) ) do
03. if ( � vj ∈ D(xj) such that (vi, vj) ∈ cij ) then
04. remove vi from D(xi) ;
05. change ← true;
06. return change ;
function AC-3()
07. foreach ( {xi, xj} ∈ EG ) do /* {xi, xj} ∈ EG iff ∃ cij ∈ C */
08. Q ← Q ∪ {(xi, xj); (xj , xi)} ;
09. while ( Q �= ∅ ) do
10. (xi, xj) ← Q.pop() ; /* Select and remove (xi, xj) from Q */
11. if ( Revise(xi, xj) ) then
12. if ( D(xi) = ∅ ) then return false ; /* The problem is unsatisfiable */
13. else Q ← Q ∪ { (xk, xi) | {xk, xi} ∈ EG, k �= i, k �= j } ;
14. return true ; /* The problem is arc consistent */

1.2.1.7. Maintaining arc consistency

Historically, constraint propagation techniques are used in a preprocessing step to
prune values before a search. Thus, the search space that will be explored by the
search algorithm is reduced because domains of all variables are refined. Incidentally,
subsequent search efforts by the solution method will be reduced. Afterward, the
search method can be called for searching a solution. Constraint propagation
techniques are also used during search. This strategy is that used by the FC
algorithm. FC combines backtrack search with a limited form of AC maintenance on
the domains of future variables. Instead of performing a limited form of AC, Sabin
and Freuder proposed [SAB 94] the MAC algorithm that establishes and maintains a
full AC on the domains of future variables.

The MAC algorithm is a modern version of CS2 algorithm [GAS 74]. MAC
alternates the search process and constraint propagation steps as is done in FC
[HAR 80]. Nevertheless, before starting the search method, MAC makes the
constraint network arc consistent. In addition, when instantiating a variable xi to a
value vi, all the other values in D(xi) are removed and the effects of these removals
are propagated through the constraint network [SAB 94]. MAC algorithm enforces
AC in the search process as follows. At each step of the search, a variable assignment
is followed by a filtering process that corresponds to enforcing AC. Therefore, MAC
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maintains the AC each time an instantiation is added to the partial solution. In other
words, whenever a value vi is instantiated to a variable xi, D(xi) is reduced
momentarily to a single value vi (i.e. D(xi) ← {vi}) and the resulting constraint
network is then made arc consistent.

Figure 1.7 shows the search process performed by the MAC procedure on the
4-queens problem. Obviously, MAC is able to prune the search space earlier than the
FC. This statement can be seen in our example. For instance, when the first queen q1
is selected to be placed in the first row (i.e. q1 = 1), D(q1) is restricted to {1}.
Afterward, the conflicts between the current assignment of q1 and the future variables
are removed (i.e. values {1, 2}, {1, 3} and {1, 4} are removed respectively from
D(q2), D(q3) and D(q4)). After that, MAC checks the conflicts among the future
variables starting with the first available value (3) for next variable q2. This, value is
removed from D(q2) since it does not have a support in D(q3), its only support in
D(q3) was value 1 that is already removed. The MAC algorithm follows with the last
value 4 from D(q2), which has a support in c23 (i.e. 2). However, when MAC revises
the next variable q3 this only support (i.e. 2 ∈ D(q3)) for value 4 ∈ D(q2) will be
removed since it does not have a support in D(q4). Its only support in D(q4) was 4
that has already been removed from D(q4). This removal will lead to revisiting
D(q2) and thus removing 4 from D(q2). A dead-end then occurs and we backtrack to
q1. Hence, value 2 is assigned to q1. The same process follows until the result is
reached on the right subtree.

q1 q2 q3 q4

1 zZzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ

q1 q2 q3 q4

1 5™XqzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ

q1 q2 q3 q4

1 zZz5™Xqz
2 5XqzZzzZ
3 zZzzZ5Xq
4 z5™XqzzZ

Figure 1.7. The Maintaing arc consistency algorithm running on the 4-queens problem

1.2.2. Variable ordering heuristics for centralized CSPs

Numerous efficient search algorithms for solving CSPs have been developed. The
performance of these algorithms were evaluated in different studies and then shown
to be powerful tools for solving CSPs. Nevertheless, because CSPs are in general NP-
complete, these algorithms are still exponential. Therefore, a large variety of heuristics
were developed to improve their efficiency, i.e. search algorithms solving CSPs are
commonly combined with heuristics for boosting the search. The literature is rich in
heuristics designed for this task. The order in which variables are assigned by a search



24 Algorithms and Ordering Heuristics for DisCSPs

algorithm was one of the early concerns for these heuristics. The order on variables
can be either static or dynamic.

1.2.2.1. Static variable ordering heuristics

The first kind of heuristics addressing the ordering of variables was based on the
initial structure of the constraint graph. Thus, the order of the variables can be
determined prior to the search of solution. These heuristics are called static variable
ordering (SVO) heuristics. When presenting the main search procedures
(section 1.2), we always assumed, without specifying it each time, an SVO.
Therefore, in the previous examples we have always used the lexicographic ordering
of variables. That lexicographic ordering can be simply replaced by another ordering
more appropriate to the structure of the network before starting the search.

SVO heuristics are heuristics that keep the same ordering on variables all along the
search. This ordering is computed in a preprocessing step. Hence, this ordering only
exploits (structural) information about the initial state of the search. Examples of such
SVO heuristics are:

min-width: the minimum width heuristic [FRE 82] chooses an ordering that
minimizes the width of the constraint graph. The width of a constraint graph is the
minimum width over all orderings of variables of that graph. The width of an
ordering O is the maximum number of neighbors of any variable xi that occur earlier
than xi under O. Because minimizing the width of the constraint graph G is
NP-complete, it can be accomplished by a greedy algorithm. Hence, variables are
ordered from last to first by choosing, at each step, a variable having the minimum
number of neighbors (min degree) in the remaining constraint graph after deleting
from the constraint graph all variables, which have been already ordered.

max-degree: the maximum degree heuristic [DEC 89] orders the variables in a
decreasing order of their degrees in the constraint graph (i.e. the size of their
neighborhood). This heuristic also aims at, without any guarantee, finding a
minimum-width ordering.

max-cardinality: the maximum cardinality heuristic [DEC 89] orders the variables
according to the initial size of their neighborhood. max-cardinality puts in the first
position of the resulting ordering an arbitrarily variable. Afterward, other variables
are ordered from second to last by choosing, at each step, the most connected variable
with previously ordered variables. In a particular case, max-cardinality may choose as
the first variable the one that has the largest number of neighbors.

min-bandwidth: the minimum bandwidth heuristic [ZAB 90] minimizes the
bandwidth of the constraint graph. The bandwidth of a constraint graph is the
minimum bandwidth over all orderings on variables of that graph. The bandwidth of
an ordering is the maximum distance between any two adjacent variables in the
ordering. Zabih claims that an ordering with a small bandwidth will reduce the need
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for BJ because the culprit variable will be close to the variable where a dead-end
occurs. Many heuristic procedures for finding minimum bandwidth orderings have
been developed and a survey of these procedures is given in [CHI 82]. However,
there is currently little empirical evidence that min-bandwidth is an effective
heuristic. Moreover, bandwidth minimization is NP-complete.

Another SVO heuristic that tries to exploit the structural information residing in
the constraint graph is presented in [FRE 85]. Freuder and Quinn have introduced the
use of pseudo-tree arrangement of a constraint graph in order to enhance the research
complexity in centralized CSPs.

DEFINITION 1.18.– A pseudo-tree arrangement T = (XT , ET ) of a constraint graph
G = (XG, EG) is a rooted tree with the same set of vertices as G (i.e. XG = XT )
such that vertices in different branches of T do not share any edge in G.

The concept of pseudo-tree arrangement of a constraint graph has been
introduced to perform searches in parallel on independent branches of the
pseudo-tree in order to improve the search in centralized CSPs. A recursive
procedure for heuristically building pseudo-trees have been presented by Freuder and
Quinn in [FRE 85]. The heuristic aims to select from GX the minimal subset of
vertices named cutset whose removal divides G into disconnected sub-graphs. The
selected cutset will form the first levels of the pseudo-tree, while next levels are built
by recursively applying the procedure to the disconnected sub-graphs obtained
previously. Incidentally, the connected vertices in the constraint graph G belongs to
the same branch of the obtained tree. Thus, the tree obtained is a pseudo-tree
arrangement of the constraint graph. Once the pseudo-tree arrangement of the
constraint graph is built, several search procedures can be performed in parallel on
each branch of the pseudo-tree.

Although SVO heuristics are undoubtedly cheaper because they are computed
once and for all, using this kind of variable ordering heuristics does not change the
worst-case complexity of the classical search algorithms. On the other hand,
researchers have expected that dynamic variable ordering (DVO) heuristics can be
more efficient. DVO heuristics were expected to be potentially more powerful
because they can take advantage of the information about the current search state.

1.2.2.2. Dynamic variable ordering heuristics

Instead of fixing an ordering as is done is SVO heuristics, DVO heuristics
determine the order of the variables as search progresses. The order of the variables
may then differ from one branch of the search tree to another. It has been shown
empirically for many practical problems that DVO heuristics are more effective than
choosing a good static ordering [HAR 80, PUR 83, DEC 89, BAC 95, GEN 96].
Hence, researchers in the field of constraint programming had so far mainly focused
on such kind of heuristics. Therefore, many DVO heuristics for solving constraint
networks have been proposed and evaluated over the years. These heuristics are
usually combined with search procedures performing some form of look ahead (see
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sections 1.2.1.5 and 1.2.1.7) in order to take into account changes on not-yet-
instantiated (future) variables.

The guiding idea of the most DVO heuristic is to select the future variable with
the smallest domain size. Henceforth, this heuristic is named dom. Historically,
Golomb and Baumert [GOL 65] were the first to propose the dom heuristic. However,
it was popularized when it was combined with the FC procedure by Haralick and
Elliott [HAR 80]. dom investigates the future variables (remaining sub-problem) and
provides choosing as next variable the one with the smallest remaining domain.
Haralick and Elliott proposed dom under the rubric of an intuition called the fail first
principle: “to succeed, try first where you are likely to fail”. Moreover, they assume
that “the best search order is the one which minimizes the expected length or depth of
each branch” [HAR 80]. Thus, they estimate that minimizing branch length in a
search procedure should also minimize search effort.

Many studies have been carried out to understand the dom heuristic, a simple but
effective heuristic. Following the same principle of Haralick and Elliott saying that
search efficiency is due to earlier failure, Smith and Grant [SMI 98] have derived
from dom new heuristics that detect failures earlier than dom. Their study is based on
an intuitive hypothesis saying that earlier detection of failure should lead the
heuristic to lower search effort. Surprisingly, Smith and Grant’s experiments refuted
this hypothesis contrary to their expectations. They concluded that increasing the
ability to fail early in the search did not always lead to increase its efficiency. In
another work, Beck et al. (2005) showed that in FC (see section 1.2.1.5) minimizing
branch depth is associated with an increase in the branching factor. This can lead FC
to perform badly. Nevertheless, their experiments show that minimizing branch depth
in MAC (see section 1.2.1.7) reduces the search effort. Therefore, Beck et al. do not
overlook the principle of trying to fail earlier in the search. They propose to redefine
failing early in a such way to combine both the branching factor and the branch depth
as was suggested by Nadel [NAD 83] (for instance, minimizing the number of nodes
in the failed subtrees).

In addition to the studies that have been carried out to understand the dom,
considerable research effort has been spent on improving it by suggesting numerous
variants. These variants express the intuitive idea that a variable that is constrained
with many future variables can also lead to a failure (a dead-end). Thus, these
variants attempt to take into account the neighborhood of the variables as well as
their domain size. We present in the following a set of well-known variable ordering
heuristics derived from dom:

dom+deg: a variant of dom, dom+deg, has been designed in [FRO 94] to break ties
when all variables have the same initial domain size. dom+deg heuristic breaks ties
by giving priority to the variable with the highest degree (i.e. the one with the largest
number of neighbors).
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dom+futdeg: another variant breaking ties of dom is the dom+futdeg heuristic
[BRÉ 79, SMI 99]. Originally, dom+futdeg was developed by Brélaz for the graph
coloring problem and then applied later to CSPs. dom+futdeg chooses a variable with
smallest remaining domain (dom), but in case of a tie, it chooses from these the
variable with the largest future degree, that is the one having the largest number of
neighbors in the remaining sub-problem (i.e. among future variables).

dom/deg: both dom+deg and dom+futdeg use the domain size as the main
criterion. The degree of the variables is considered only in case of ties. Alternatively,
Bessiere and Régin [BES 96] combined dom with deg in a new heuristic called
dom/deg. The dom/deg does not give priority to the domain size or degree of
variables but uses them equally. This heuristic selects the variable that minimizes the
ratio of current domain size to static degree. Bessiere and Régin have been shown
that dom/deg gives good results in comparison with dom when the constraint graphs
are sparse but performs badly on dense constraint graphs. They considered a variant
of this heuristic which minimizes the ratio of current domain size to future degree
dom/futdeg. However, they found that the performance of dom/futdeg is roughly
similar to that of dom/deg.

Multi-level-DVO: a general formulation of DVO heuristics that approximates the
constrainedness of variables and constraints, denoted Multi-level-DVO, have been
proposed in [BES 01a]. Multi-level-DVO heuristics are considered as neighborhood
generalizations of dom and dom/deg and the selection function for variable xi they
suggested is as follows:

H�
α (xi) =

�
xj∈Γ(xi)

(α(xi)� α(xj))

| Γ(xi) |2

where Γ(xi) is the set of xi neighbors, α(xi) can be any syntactical property of the
variable such as dom or dom/deg and � ∈ {+,×}. Therefore, Multi-level-DVO take
into account the neighborhood of variables which have shown to be quite promising.
Moreover, they allow using functions to measure the weight of a given constraint.

dom/wdeg: conflict-driven variable ordering heuristics have been introduced in
[BOU 04]. These heuristics learn from previous failures to manage the choice of
future variables. A weight is associated with each constraint. When a constraint leads
to a dead-end, its weight is incremented by one. Each variable has a weighted degree,
which is the sum of the weights over all constraints involving this variable. This
heuristic can simply select the variable with the largest weighted degree (wdeg) or
incorporating the domain size of variables to give the domain-over-weighted-degree
heuristic (dom/wdeg). dom/wdeg selects among future variables the variable with
minimum ratio between current domain size and weighted degree. wdeg and
dom/wdeg (especially dom/wdeg) have been shown to perform well on a variety of
problems.
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In addition to the variable ordering heuristics we presented here, other elegant
dynamic heuristics have been developed for centralized CSPs in many studies
[GEN 96, HOR 00]. However, these heuristics require extra computation and have
only been tested on random problems. On other hand, it has been shown empirically
that MAC combined with the dom/deg or the dom/wdeg can reduce or remove the
need for BJ on some problems [BES 96, LEC 04]. Although the variable ordering
heuristics proposed are numerous, we have yet to see any of these heuristics to be
efficient in every instance of the problems.

Besides different variable ordering heuristics designed to improve the efficiency
of search procedure, researchers developed many look-ahead value ordering (LVO)
heuristics. This is because value ordering heuristics are a powerful way of reducing
the efforts of search algorithms [HAR 80]. Therefore, the constraint programming
community developed various LVO heuristics that choose which value to instantiate
to the selected variable. Many designed value ordering heuristics attempt to choose
the least constraining values next, that is the values that are most likely to succeed.
Incidentally, values that are expected to participate in many solutions are privileged.
Minton et al. [MIN 92] designed a value ordering heuristic, the min-conflicts, that
attempts to minimize the number of constraint violations after each step. Selecting
min-conflicts values first maximizes the number of values available for future
variables. Therefore, partial solutions that cannot be extended will be avoided. Other
heuristics try to select values maximizing the product first [GIN 90, GEE 92] or the
sum of support in future domain after propagation [FRO 95]. Nevertheless, all these
heuristics are costly. Literature is rich on other LVOs, to mention a few
[DEC 88, FRO 95, MEI 97, VER 99, KAS 04].

1.3. Summary

We have described in this chapter the basic issues of centralized CSPs. After
defining the CSP formalism and presenting some examples of academic and real
combinatorial problems that can be modeled as CSPs, we reported the main existing
algorithms and heuristics used for solving centralized CSPs.


