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Chapter 1

Optimization: State of the Art

In this chapter, we present the methodological principles
involved in optimization, before introducing the main
optimization methods used in an industrial context.

1.1. Methodological principles in optimization

This section presents the main characteristics of modeling
of industrial optimization problems.

1.1.1. Introduction

When faced with a real optimization problem, we must
analyze the problem in a precise manner in order to choose
the best method to use. Real optimization problems
correspond to needs observed in industrial or operational
contexts, and aim to improve the performance of an economic
process connected with an operational company or
management organization. In practice, these problems are
identified by domain experts who wish to develop an
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optimization principle in order to improve the performance of
a system.

1.1.2. Modeling

The first stage in the optimization process consists of
modeling the real problem using a mathematical abstraction
that is as efficient as possible (see Figure 1.1). Using this
abstraction, it is possible to develop solution algorithms that
can be executed on a computer. This optimization process
produces a set of solution points, which can then be
implemented in the real world. In the past, there were few
choices of optimization algorithms and it was necessary to
use models that were somewhat different from reality but for
which solution methods existed. Therefore, the solutions
produced could be different from the true solution in the real
world. A classic example involves linear programming (LP)
for which we have efficient solution algorithms, but which
requires linear modeling of the problem.

Real World 

Abstraction

SolutionProblem

XoptOptimizationState
Space X

Modeling

Figure 1.1. Modeling process

The modeling stage, then, consists of characterizing the
state space and the objective space.
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1.1.2.1. State space
The state space represents the set of parameters of the

system upon which we may act in order to optimize one (or
more) objective(s). Examination of the properties of the state
space then helps us in choosing a suitable optimization
method.

In most industrial optimization problems, the variables of
the state space must remain within a subdomain defined by a
set of constraints. We obtain the following general model:{

min y = f(�x)
�xopt ∈ A ⊂ X

where X is the state space and A is the feasible space
bounded by the constraints. By studying the properties of X
and A, we can determine certain characteristics of the
solution algorithm. Thus, the properties of connectivity and
convexity of the admissible domain A are extremely
important in the right choice of an optimization method.
Within the group of convex state spaces, there is an
extremely interesting subclass for which the admissible
domain is bounded by a set of hyperplanes making up a
polytope. If, moreover, the criterion is linear, then we have a
linear optimization problem for which we may use the Danzig
simplex method, for example. In the same way, the properties
of connectivity of the state space determine whether or not it
will be necessary to allow the optimization method to violate
constraints in order to transit from one component to another
to finally reach the optimum solution.

Based on the nature of state variables, we may classify the
industrial optimization problems into three categories:

1) continuous problem

X = U1 × U2 × ...× Um

Ui ⊂ R i = 1, 2, ..,m
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We talk of optimization in a functional space when m is
infinite (as in the case of trajectory optimization).

2) discrete problem

X = I1 × I2 × ...× In
Ii ⊂ Z i = 1, 2, .., n

3) mixed problem

X = U1 × U2 × ...× Um × I1 × I2 × ...× In

Mixed problems are the most difficult of the three classes
to work with.

For certain problems, it is possible to voluntarily limit the
feasible space by eliminating a priori the subdomains which
we know will not contain the optimum. This restriction may
be more or less accurate based on the information available
for the specific problem. If, for example, we wish to optimize a
firing angle to maximize the distance achieved by a projectile,
we clearly need only to look at angles between 0 and π

2 (initial
firing angle in relation to the ground). This type of reasoning
is extremely useful in optimization algorithms as it avoids
unnecessary exploration of some areas of the state space. It
arises from a more general concept, which may be
summarized as follows: the more we can bring information to
the solution algorithm, the better this algorithm will perform.

One very important point characterizing the state space is
its dimension. Generally, the higher the dimension n of X , the
harder it will be to find the optimum.

Optimization algorithms are implemented in a
programming language which runs on a computer. Computer
memory is always limited, in spite of significant progress in
the domain. Thus, if the memory representation of a point in
the state space is large, certain methods will be hindered by
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this limitation, in particular those that use populations of
points of the state space (e.g. genetic algorithms).

Finally, we may face problems for which the state space
has an infinite dimension. This is the case for trajectory
optimization problems, where simple sampling should be
avoided as it produces moderate results. It is preferable to
use suitable decomposition bases and return to an
optimization principle in a finite space by controlling the
decomposition coefficients. The major challenge with this
type of approach is to find a base suited to the real problem
under consideration.

1.1.2.2. Objective space

The objective space represents the set of criteria that we
wish to optimize. Based on the dimension of this space, we can
identify two classes of problems:

– Mono-objective problems: this is the simplest case, insofar
as a single criterion needs to be optimized and enables a total
order relationship between points of the state space in terms
of the criterion. The objective function is thus a function of Rn

in R.

– Multi-objective problems: in this case, we need to optimize
several criteria, associated with each point of the state space,
simultaneously. The most critical aspect of such problems is
linked to the loss of the total order relationship between the
solutions. Effectively, the objective function is now a function
of Rn in Rm, where m is the dimension of the objective space.
Let �xa and �xb be two points of the state space, with which
we associate the objective vectors �ya and �yb for which each
component needs to be maximized (for example).

Finally, to simplify, let us consider m = 2 and the following
three cases:

Case 1 Case 2 Case 3
�ya = (5, 8)T �ya = (5, 8)T �ya = (5, 8)T

�yb = (3, 4)T �yb = (7, 9)T �yb = (6, 3)T
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In the first case, the two objectives of the solution “a” are
better than those of solution “b”; we may say that solution
“a” dominates solution “b”. The second case corresponds to
the opposite situation: “b” dominates “a”. In the third case,
however, it is impossible to identify a dominant solution as
one of the objectives is better in each solution; we may say
that “a” and “b” are mutually non-dominant. In the case of
multi-objective optimization, we look for these non-dominant
solutions which, are grouped into a set known as the Pareto
front.

These solutions are then examined by an expert in the
domain of application in order to identify the best solution for
implementation in the real-world context.

In the case of mono-objective problems, we may also
characterize the objective space in relation to the optima of
the criterion. We can then distinguish between two types of
optima:

1) Global optimum: �x∗

f(�x∗) ≤ f(�x) ∀�x ∈ X
X completes the state space.

2) Local optimum: x̃

f(�̃x) ≤ f(�x) ∀�x ∈ V(�̃x)
V(�̃x) vicinity of �̃x.

Within the context of industrial optimization problems, we
seek to determine global optima and try to avoid being stuck
on local optima.

The convexity of the criterion for optimization is thus a
fundamental characteristic used for the right choice of an
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optimization method. When dealing with a (strictly) convex
problem, there is only one optimum; it is therefore possible to
use a local method to identify this optimum. In the opposite
case, this local method would determine a local optimum
(often that is closest to the initial starting point).

For certain non-convex problems, the function to optimize
may present several quasi-equivalent optima which we need
to identify. In this case, we speak of a multi-mode function.
This type of problem requires a multi-mode optimization
method to extract these equivalent optima. These multi-mode
problems are generally more difficult to work with.

The continuity of the objective function is also a
determining factor in the development of an optimization
principle. For continuous problems, it is easy to approximate
the slope of the criterion and thus orient the method used for
resolution. When the criterion slope is bounded throughout
the state space, the state space is said to be Lipschitz in
terms of gradient, which allows us to guarantee the
convergence of certain optimization methods. In the opposite
case, these methods can diverge strongly in zones of
discontinuity. In the same way, if large zones of the state
space present plateaus, these methods, which use slope for
orientation, tend to be ineffective for these regions.

More generally, all optimization methods require variation
in the criterion across the state space in order to be directed
toward the optima. This is the principle of locality in
optimization. One case in which this principle is not followed
is a criterion which takes the form of a plateau, for which
only certain points of the state space present isolated peaks
(see Figure 1.2). In this example, no optimization method will
be able to find these optima.
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z=f(x,y)

y

x

Figure 1.2. Function for which the locality principle is not
respected. Each vertical black line represents the peak of the function

Another important point associated with an objective
function is whether or not the function is bounded. This
information allows us to define the termination criteria for
certain stochastic optimization methods. These methods
move through the state space in a random manner and do not
ensure convergence to a global optimum for a given execution
(proof of stochastic convergence is limited: the mathematical
expectation of the set of solutions provided across multiple
executions is equal to the global optimum of the function).
Thus, if we know the value of the criterion at the optimum
(and not its position in the state space), it is relatively easy to
terminate a stochastic method by observing the value of the
criterion for the current solution. If the value of the minima
of a positive objective function is equal to zero, a stochastic
method producing solutions with a value of the criterion close
to zero is certain to be close to an optimum and may be
terminated.

Consideration of the separability of the objective function
also allows us to simplify the optimization algorithm. Let us
take a function, f(�x), to minimize for the space X . If f(�x) =
f{g(�x), h(�x)} and if{

min f(�x)
�x ∈ X = f

{
min g(�x)
�x ∈ X ,

min h(�x)
�x ∈ X

}
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then the function f is separable. This property allows us to
independently optimize functions g and h, which may be
simpler to process. The most advantageous case is when g
and h are functions for which the state spaces are orthogonal
subspaces of X (state space of function f ) with smaller
dimensions. This reduction of the dimension allows the
resolution principle to be accelerated.

The principles of evaluation of the criterion also enable us
to select more or less suitable resolution algorithms. We may
distinguish among three different types of cases:

1) Criterion accessible in analytical form: this is the most
“comfortable” case, but is unfortunately rare in the context
of real problems. By cancelling the associated gradient, it
is sometimes possible to obtain an analytical form of the
optimum (textbook case).

2) Criterion evaluated through numerical computations
using real data: this is the most frequent of the three cases in
which we attempt to extract additional information to guide
the algorithm (gradient, Hessian, etc.).

3) Criterion evaluated using a complex simulation process:
in this case, where evaluation of the criterion is often costly
in terms of resources, it is not possible to obtain additional
information and we use methods that do not need a criterion
value in order to converge.

For certain problems, we also need to take into account the
fact that the evaluation of the criterion is affected by noise and
select a method that is not affected too much by such noise.

Finally, certain problems present dynamic criterion
landscapes which require optimum tracking techniques. The
timescale for the evolution of the criterion must be placed in
a relationship with the time needed for the optimization
algorithm to reach the optimum. If these two characteristics
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are of the same order of magnitude, we have an optimization
problem with a dynamic criterion. Currently, only artificial
evolution methods allow us to correctly solve this type of
problem.

1.1.3. Complexity

The complexity of an optimization problem is linked to the
number of operations needed to determine the optimum. In
the case of combinatory optimization problems, we consider
an instance of a problem of size n for which a resolution
algorithm has been proposed. This algorithm will execute a
number of operations K to process the problem. This number
K is generally dependent on n. Based on the type of
relationship between K and n, we can classify solution
algorithms as follows:

Notation Types of complexity
O(1) constant complexity

(independent of data size)
O(log(n)) logarithmic complexity
O(n) linear complexity
O(n. log(n)) quasi-linear complexity
O(n2) quadratic complexity
O(n3) cubic complexity
O(np) polynomial complexity
O(np. log(n)) quasi-polynomial complexity
O(2n) exponential complexity
O(n!) factorial complexity

In the same way, we classify optimization problems based
on the best algorithms for their solution. Thus, we have a
class of NP-hard problems, which cannot be solved using a
known polynomial algorithm. An examination of the
complexity associated with an optimization problem allows
us to select an optimization method.
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1.1.4. Computation time

Given that each optimization method requires a minimum
computation time, it is important to be aware of the time
we have available to produce a solution. As an example, in
the context of an optimization problem concerning airspace
sectorization, we have several months to produce a solution
(6 months is needed before implementing a new sectorization).
In the context of optimization of flight plans for a day, we have
24 h. To solve conflicts between aircraft, we have 3 min; finally,
for a problem concerning satellite frequency allocations, we
must produce a solution within 50 ms. In cases where this
constraint is critical, we need to look for parallel methods.
Two types of parallelism exist for methods using populations
of points of the state space:

– Parallelization of criterion computation: this approach
is advantageous in cases where the communication time
between processors is low in relation to the time taken to
compute the criterion.

– Islet parallelization: this allows effective parallel
calculation, even in cases where criteria are computed rapidly.

1.1.5. Conclusion

When addressing an industrial optimization problem, we
must respond to certain questions in order to create a suitable
solution strategy:

– How can the problem be modeled?

- What objectives do we wish to optimize? (Mono-
objective or multi-objective? Convex criterion? Linear?
Quantified continuous? etc.)

- What parameters can (must) we act on? (Continuous or
discrete state space? Large or infinite dimensions? etc.)
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- What are the constraints? (Connected space? Convex
space? Linear constraints? etc.)

– How much time do we have for the calculation?

– How much memory is needed for a point in the state
space?

– How complex is the problem? (NP-hard?)

– Can we relate our problem to a known problem?

In the remainder of this chapter, we will discuss a number
of solution principles used when dealing with industrial
optimization problems.

1.2. Optimization algorithms

This section provides a concise overview of the main
optimization methods by field of application.

1.2.1. Introduction

In what follows, the term “global optimization” will be
used to refer to the search for global optima of the objective
function. However, this term is somewhat ambiguous, as we
often find the term “local search” in specialist literature,
which refers to the search mechanism when it proceeds using
successive neighbors. Thus, simulated annealing is a local
search method (the tested solution is a neighbor of the
current solution); from our perspective, this is a global
optimization method (the method is, by principle, capable of
determining the global optima of the objective function).

Optimization methods may be divided into two categories:
local methods, which allow us to identify a local optimum, and
global optimization methods, which are used to determine a
global optimum.
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Finally, depending on the mechanism used to move within
the state space, we differentiate between deterministic and
stochastic methods.

We will start with a description of local methods.

1.2.2. Linear programming

In the case of a linear problem, this method is able to
determine a global optimum, but it cannot be applied to a
general global optimization problem. For this reason, this
method is classified as a local method.

LP is an extremely powerful operational research tool. A
linear program is made up of a linear objective function and
a set of constraints (equalities and/or inequalities) which are
also linear. All linear programs may be written in the following
canonical form:

max z = �cT .�x

s.c A�x ≤ �b

�x ≥ �0,

[1.1]

where �c and �x are vectors of size n, �b is a vector of size m and
A is a matrix of size m× n.

The feasible domain is then represented in the form of a
polytope (simplex).

The simplex algorithm (presented for the first time by
George Bernard Dantzig in 1947) allows us to solve LP
problems by first creating a feasible solution, which is a
vertex of a polytope, then moving along the edges of the
polytope in order to reach vertices for which the value of the
objective is increasingly high, until the optimum is reached
(in the case of a maximization).
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While this algorithm is effective in practice and
guarantees that the optimum will be found, it does not
always behave in a satisfactory manner in the worst cases. It
is possible to create an LP for which the simplex method
requires an exponential number of steps as a function of the
size of the problem. Thus, the question of whether LP was an
NP-complete or a polynomial problem remained unresolved
for a number of years.

The first polynomial algorithm for LP was proposed by
Leonid Khachiyan in 1979.

However, the practical effectiveness of Khachiyan’s
algorithm is disappointing, and the simplex algorithm nearly
always performs better. Nevertheless, this result encouraged
research into interior point methods. Unlike the simplex
algorithm, which only considers the edges of the polytope
defined by constraints, interior point methods operate inside
the polytope.

In 1984, N. Karmarkar [KAR 84] developed the projective
method. This was the first algorithm to be effective in both
theory and practice. In the worst cases, its complexity is
polynomial and experiments using practical problems have
demonstrated that the method can reasonably be compared
to the simplex algorithm.

1.2.3. Nonlinear programming (NLP)

1.2.3.1. Methods of order zero

The Nelder–Mead method is a local optimization
algorithm developped by Nelder and Mead in 1965 [NEL 65].
This method uses the concept of the simplex, which is a
polytope with N + 1 vertices in a space of N dimensions. Let
N be the dimension of the state space. We therefore begin
with a simplex of this space. In the case of a minimization,
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the method consists of replacing the point of the simplex with
the highest objective value (the least satisfactory point) by
testing several movements (reflection, expansion, contraction,
etc.).

For application, this method only requires the value of the
criterion at certain points in the state space, with no other
information. It is therefore suited to the criteria that are non-
derivable or for which the calculation of an approximation of
a gradient would be very costly. Moreover, the method is not
particularly sensitive to noise around this criterion, making
it robust. See [CON 09] and [KAR 07] for more detail on this
method.

1.2.3.2. First-order methods

To apply this type of local method, we require the gradient
(or an approximation of the gradient) of each point of the
state space. In the context of a minimization, the principle of
these methods consists of moving in an iterative manner in
the opposite direction to the gradient (or another descending
direction) at the level of the current point. This is equivalent
to replace the function f by its local linear model:

f(�x+ �h) = f(�x) +∇f (�x).�h+ o(‖�h‖)

Supposing we start from point �xn, the following point is
given by:

�xn+1 = �xn − μ∇f (�xn)

with μ > 0 as the parameter of the algorithm. We therefore
verify:

f(�xn+1) = f(�xn)− μ‖∇f (�xn)‖2 + o(μ‖∇f (�xn)‖)
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which implies the reduction of f for a sufficiently small μ.
This method is often modified by allowing μ to vary with each
iteration

�xn+1 = �xn − μn∇f (�xn)

Variants of this algorithm differ in the choice of direction
of descent and in the step size μn. These methods converge
slowly on functions which are very different to the linear
model [BER 99, NOC 06].

1.2.3.3. Second-order methods

Here, we suppose that f is of the class C2 and that we are
able to calculate its second derivatives. The principle of this
method consists of constructing, locally, a quadratic model q(�x)
of function f and seeking the minimum (�x∗) associated with
the model. The point �x∗ thus becomes the current point for the
following iteration.

In the vicinity of a point, �xk, we therefore approach f by the
quadratic function given by the second-order Taylor formula:

q(�x) = f(�xk)
+(�x− �xk)

T .∇f (�xk)
+1

2(�x− �xk)
T .∇2

f (�xk).(�x− �xk).

We thus obtain the following recursion (in the case where
the Hessian matrix

[
∇2

f (�xk)
]

is invertible):

�xk+1 = �xk −
[
∇2

f (�xk)
]−1

.∇f (�xk).

The Newton method is generally more efficient than the
gradient-based approach and converges in one iteration on
positively defined quadratic forms. However, the global
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convergence1 is not guaranteed as the Hessian may not be
invertible for certain points. The complexity of the algorithm
increases following the cube of the dimension of the problems
under consideration due to the inversion of the Hessian in
the recursion.

In practice, we generally solve the following system:[
∇2

f (�xk)
]
.�dk = −∇f (�xk).

Variable metric (quasi-Newton) methods are a robust
alternative to the Newton method. Initially developed by
Broyden, Fletcher, Goldfarb and Shanno, the BFGS method
(the name uses the initials of the four authors who discovered
it, independently, in 1970) [BRO 70, FLE 70, GOL 70,
SHA 70], allows us to construct a positively defined
approximation of the Hessian matrix at each point of the
state space. Global convergence is therefore guaranteed and
occurs considerably faster than when using the gradient
algorithm. For large-scale problems, a limited memory
variation exists: LM-BFGS [NOC 80].

1.2.4. Local methods subject to constraints

Let us consider the following problem:

min f(�x)
s.c gi(�x) ≤ 0

1.2.4.1. Projection method

In this case, the direction of descent �δx is calculated using a
method without constraints. If the result is then found to fall
outside the domain, we project the point onto the constraints.
In practice, we may face the following difficulties:

1 Convergence for any initial point.
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– calculation of the direction of projection;

– if several constraints are saturated, how should we choose
the one on which to project?

– difficulties of projection onto nonlinear constraints.

1.2.4.2. Linearization of the problem

In this case, we linearize the criterion and the constraints.⎧⎪⎨⎪⎩ f(�x+ �δx) 	 f(�x) +
(
�∇�xf

)T
�δx

gi(�x+ �δx) 	 gi(�x) +
(
�∇�xgi

)T
�δx ≤ 0

We then return to the following problem:

Minimization of
(
�∇�xf

)T
�δx in relation to �δx with

constraints:

�dxmin ≤ �δx ≤ �dxmax

1.2.4.3. Penalizations

The penalization method consists of optimizing a new
function which takes into account the constraints:

φ(�x) = f(�x) + λ(h(�g(�x))) λ > 0, h(.) ≥ 0

Using the external penalization method, h is such that:

h(α) = 0 if α ≤ 0
h(α) increases with α if α > 0

⇒ if �g(�x) ≤ 0 minimizing f(�x)
⇒ if �g(�x) > 0, the added penalization term increases.
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Using this method, it is possible that certain constraints
may be slightly overstepped. If we wish to eliminate this
possibility, it is better to use the interior penalization
(see [BOU 68]).

1.2.5. Deterministic global methods

1.2.5.1. Enumeration

Enumeration offers an interesting alternative for discrete
problems in state spaces of low dimension. This method
consists of evaluating each point in the state space and
identifying the point with the highest (or the lowest) criterion
value. This is the only possible approach in cases where the
locality principle is not respected (this principle indicates
that it is possible to approximate (or calculate) a slope at each
point in the state space). The use of this kind of algorithm is
interesting when the number of points for evaluation is
relatively small. In practice, however, many search spaces are
too large for us to find all possible solutions.

1.2.5.2. Branch and Bound

This method was initially proposed by A.H. Land and A.G.
Doigien in 1960 [LAN 60] in the context of solving linear
problems using integers.

To apply this method, we need a lower bound (in the case of
a minimization) of the criterion for any subspace of the state
space X and a principle for dividing a subspace Xi into K > 2
subspaces Xi1, ...,XiK .

If an optimal solution is found in subspace Xi, it is not
necessarily optimal for X as a better solution may be found
later in the process when evaluating unexplored areas.

If the lower bound of a given subspace is greater than the
best optimal solution found, the global solution will not be
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found in this subspace, and therefore exploration of this
subspace may be stopped.

The Branch and Bound (B&B) principle is therefore as
follows:

– Divide a problem into subproblems. We partition X into a
finite collection of subsets X1, X2, ..., XK .

– Use bounds for the optimal cost in order to avoid exploring
certain parts of the set of admissible solutions.

– The subproblems may be as difficult as the original
problem. In such cases, the subproblems themselves are
divided.

The success of this method largely depends on the
precision of the bound associated with a subspace Xi. Thus,
the closer the lower bound b(Xi) is to the true minimum of Xi,
the more effective the method will be. The main field of
application of this method is integer LP, which uses a bound
based on the relaxation of the problem in real numbers
computed using classic LP.

Interval arithmetic may be used to produce effective bounds
for continuous state spaces. This particular form of B&B is
known as “interval programming” [KEA 01].

B&B allows us to treat large-scale problems on the
condition that we have a reliable boundary. In other cases, it
is better to look to stochastic approaches. See Jaulin
et al. [JAU 88] for more information on B&B method.

1.2.5.3. The “Tunneling” method

Alfufi-Pentini et al. and Levy and Montalvo
[ALF 85, LEV 85] describe the foundations of this method,
and Cetin et al. [CET 93] discuss the most advanced concepts
in this domain.
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Principle: the two following steps are carried out in an
iterative manner:

1) Seek a local optimum �xloc.

2) Eliminate �xloc. To do this, we construct a tunneling
function T maximal in �xloc and we carry out a local search
on the new function T .

Drawbacks of the method:

– The tunneling function is difficult to create.

– Local minimization of the tunneling function is difficult.

– The method does not always produce the global optimum.

1.2.5.4. Covering methods

Principle: If f is Lipschitz with constant L, then:

∀(�x, �z) ∈ Rn × Rn|f(�x)− f(�z)| ≤ L||�x− �z||

thus, if we know the value of f at N points �x1, �x2, ..., �xN of X
(search space), we can determine sets Xi (i = 1...N) such that:

Xi ⊂ {x ∈ X |f(�x) ≥ f(�xi)− δ}

where δ > 0 is fixed. Thus, if the points �x1, �x2, ..., �xN are chosen
so that (X1,X2, ....,XN ) covers X , so:

X ⊂
(
∪N
i=1Xi

)
then the global optimum �xopt is known with precision δ, that
is: (

min
1≤i≤N

f(�xi)

)
− δ ≤ f(�xopt)
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An important specific case:

Xi = B(�xi, ε) = {�x ∈ X/‖�x− �xi‖ ≤ ε} i = 1...N

(B(�xi, ε) closed ball of center �xi and radius ε) then the problem
is solved with precision δ = Lε. Constant L, a priori unknown,
is estimated by the algorithm. If we know the value of f at k
points �x1, �x2, ..., �xk, we may use:

Lk = max
1≤j≤k

|f(�xi)− f(�xj)|
‖�xi − �xj‖

Advantages of the method:

– simple to implement;

– theoretically interesting;

– parallelizable method.

Drawback of the method:

– inefficient for large-scale problems.

1.2.5.5. Continuous deformation methods

The principle of continuous deformation methods consists
of gradually deforming a function for optimization, f0, toward
the desired objective function f1:

H(t, �x), t ∈ [0, 1]
min�x∈E f0(�x) → min�x∈E f1(�x)

f0(�x) = H(0, �x) f1(�x) = H(1, �x)

Function H in the schema above is, mathematically
speaking, a homotopy, i.e. a continuous function in the
domain [0, 1]×E. Intuitively, f0 is continuously deformed into
f1 when t varies from 0 to 1. In practice, we ensure that f0
only possesses a single optimum, which may be sought using
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an efficient local method. The difficulty therefore consists of
finding a path (t, γ(t)) of [0, 1] × E so that the following
property verifies:

∀t ∈ [0, 1] , ∀�x ∈ E , H(t, γ(t)) ≤ H(t, �x)

Intuitively, we know that all points of the path (t, γ(t)) are
optimal for E. The starting point (0, γ(0)) is obtained by local
optimization of f0. The path (t, γ(t)) is constructed step by
step.

It is not possible to construct the path (t, γ(t)) without
additional hypotheses: we will presume that the homotopy H
is such that ∂H

∂x is continually differentiable for [0, 1] × E.
Using this hypothesis and a condition stating that the path
must start at a minimum of f0, we obtain:

∂2H

∂t∂x
(t, γ(t)) + γ̇(t)

∂2H

∂x2
(t, γ(t)) = 0.

The differential equation above allows us to construct the
optimal path. The classic algorithms for solving ordinary
differential equations may be used to obtain a numerical
solution to the problem.

These methods are efficient for continuous state spaces
and are most effective for molecular conformation problems
in the pharmaceutical industry. For more information on
these methods, see [DUN 05].

1.2.6. Stochastic global methods

1.2.6.1. Tabu search

Tabu search is a metaheuristic initially developed by
Glover [GLO 86] and, independently, by Hansen [HAN 86],
under the name steepest ascent mildest descent. This method
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is based on simple principles but is nevertheless extremely
effective, combining a local search procedure with a certain
number of mechanisms which prevent it from becoming
blocked at local optima or from returning to zones which have
already been explored [CHA 96, REE 95]. It has been
successfully applied to a number of difficult combinatory
optimization problems, including vehicle routing problems
[GEN 94], quadratic affectation problems [SKO 90],
sequencing problems [WID 89], graph coloration problems
[HER 87], etc.

Basic principle: during the first phase, the tabu search
method may be seen as a generalization of local improvement
methods. Starting with any given solution �x belonging to the
set of solutions X , we move towards a solution s(�x) located in
the vicinity V(�x) of �x. To choose the best neighbor s(�x) in
V(�x), the algorithm evaluates the objective function f at each
point of V(�x), and retains the neighbor which improves the
value of the objective function f , or, in the worst cases, which
degrades it the least.

The originality of the tabu method when compared to local
methods, which stop when no more neighbors s(�x) exist which
improve the value of the objective function f , lies in the fact
that we retain the best neighbor solution even if this result
is worse than the initial solution. This criterion authorizing
degradation of the objective function, prevents the algorithm
from becoming blocked at local minima, but it does introduce
a risk of cycling. Effectively, when the algorithm has left any
given minimum by accepting the degradation of the objective
function, it may turn back on itself at the following iteration.

To solve this problem, the algorithm requires a memory in
order to temporarily retain the trace of the last best solutions
found. These solutions are declared tabu; hence, the name of
the method. They are stored in a list of given length L known
as the tabu list T . A new solution will only be accepted if it
does not feature on the tabu list. This criterion for the
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acceptance of new solutions prevents the algorithm from
cycling during visits to a number of solutions, which is at
least equal to the length of the tabu list, and directs
exploration of the method toward unexplored regions of the
state space.

The tabu list is generally generated as a circular list:
at each iteration, we eliminate the oldest tabu solution,
replacing it with the new retained solution. However, the
coding involved in a list of this type is bulky as we
must retain all the elements which define a solution. To
counteract this constraint, the tabu list of forbidden solutions
is replaced by a list of forbidden transformations preventing
all transformations which are the inverse of a recent
transformation. We thus obtain the following pseudocode:

1) calculate an initial configuration �x

2) �xbest ← �x

3) fmin ← f(�xbest)

4) T ← φ

5) k ← 0

6) as long as k < kmax then

i) k ← k + 1

ii) C ← V(�x) − {m(�x); ∀m ∈ T } (set of candidate
configurations)

iii) determine the element �y = m�x�y(�x), which minimizes
f for C (�y is one of the non-prohibited neighbors of �x);

iv) if f(�y) ≥ f(�x) then add m−1
�x�y to list T (eliminating the

oldest element of T if necessary)

v) if f(�y) < f(�x) then
– �xbest ← �y
– fmin ← f(�y)

7) return �xbest



28 Modeling and Optimization of Air Traffic

This basic version can be improved by adding an
aspiration criterion (temporary removal of the ban on
accepting an elementary transformation), intensification
principles (deepening of the search in certain regions of the
domain) and diversification principles (which encourage
exploration) [GLO 88, GLO 91, GLO 92].

In practice, we use a stochastic implementation of this
method, which consists of using a stochastic neighborhood of
the current solution (we randomly select a number N < |V(�x)|
of configurations in the vicinity of the current solution �x).

The tabu search is thus a simple method, which is easily
adapted to all types of problems (discrete or continuous). It
requires a list of past transformations, the management of
which is the critical point of the method
[GLO 88, GLO 91, GLO 92].

1.2.6.2. Simulated annealing
Simulated annealing [CER 85, KIR 83] originated in the

domain of thermodynamics. This method arose from an
analogy with the physical phenomenon of slow cooling found
in metals in a state of fusion which leads to a solid,
low-energy state. The temperature must be reduced slowly
with steps which are sufficiently long for thermodynamic
equilibrium to be reached at each temperature increment.
For materials, this low energy results in a regular,
crystal-like atomic structure.

The annealing process thus consists of bringing a solid into
a low energy state after raising its temperature, a process
which may be summarized in the following two steps:

– raise the solid to a very high temperature in order to reach
the point of fusion;

– cool the solid, following a specific temperature reduction
plan in order to reach a solid state with minimal energy.
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During the liquid phase, particles are distributed in a
random manner. The state of minimal energy is attained if
the initial temperature is sufficiently high and the cooling
time sufficiently long; if either of these conditions is not
respected, the solid enters a metastable state of non-minimal
energy (the opposite process to annealing is tempering, which
consists of cooling a solid extremely quickly).

Algorithm

In 1953, Metropolis [MET 53] developed an algorithm to
simulate the physical process of annealing on a computer.
Given a current state i of energy Ei, a state is generated by
applying a disturbance which transforms the current state
into a new state.

– If Ej − Ei ≤ 0, the state j is accepted as the new current
state.

– If Ej − Ei > 0, the state j is accepted as the new current
state with probability Pa:

Pa = e

(
Ei−Ej
kbT

)

where T is the temperature and kb is Boltzmann’s constant.

The temperature influences the probability of acceptance
of a higher energy state. For a high temperature, the
probability of acceptance at any given movement tends
toward 1: all changes will be accepted. If the cooling process
is sufficiently slow, the solid assumes the state of equilibrium
at each temperature increment. In the Metropolis algorithm,
this equilibrium is reached by generating a large number of
transitions at each temperature. Thermic equilibrium is
characterized by the Boltzmann statistical distribution. This
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distribution gives the probability that the solid will be in a
state i of energy Ei at temperature T :

Pr{X = i} =
1

Z(T )
e
−
(

Ei
kbT

)

where X is the random variable associated with the current
state of the solid and Z(T ) is the distribution function of X
allowing normalization:

Z(T ) =
∑
j∈S

e
−
(

Ej
kbT

)

In the simulated annealing algorithm, we can apply the
Metropolis algorithm to generate a sequence of solutions in
the state space S. To do this, we create an analogy between a
multi-particular system and our optimization problem using
the following equivalences:

– The admissible solutions represent the possible states of
the solid.

– The function to optimize represents the energy of the
solid.

We then introduce a control parameter C, which plays the
role of the temperature.

Let Ck be the value of this parameter and Lk the number
of transitions generated at iteration k. Using this notation,
we can summarize the principle of simulated annealing in the
following manner.

At the beginning of the process, the values of Ck are high,
allowing us to accept transitions with major degradation of
the criterion, thus exploring the state space in a homogeneous
manner. As Ck decreases, only transitions which improve or
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barely damage the criterion are accepted. Finally, as Ck tends
toward zero, no deterioration of the criterion will be accepted,
and the simulated annealing algorithm behaves in the same
way as a local search algorithm.

Algorithm 1.1. Simulated annealing
Require: �xi, C0, L0, k = 0

repeat
for l = 0 → Lk do

Generate a solution �xj from the neighborhood S�xi
of

the current solution �xi;
If f(�xj) < f(�xi), then �xj becomes the current solution;
Otherwise, �xj becomes the current solution with

probability p = e

(
f(�xi)−f(�xj)

Ck

)

end for
k=k+1
Calculate (Lk, Ck)

until Ck 	 0

The simulated annealing algorithm may be used to solve a
large number of combinatory optimization problems with
properties of stochastic convergence to an optimal solution,
but presents the drawback of only working on a single point
of the state space (something which is problematic in cases
with several quasi-optimal solutions) and is not suitable for
multi-objective optimization. See [AAR 89, ING 89, ING 96]
for additional information on this technique.

1.2.6.3. Stochastic Branch and Bound

Principle: the principle of Stochastic Branch and Bound
method is the same as the deterministic branch and bound
method, with the use of statistical results in order to
eliminate parts of the search area which do not contain the
global optimum.
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Let us take the following problem:{
min f(�x)
�x ∈ X

Let η be the random variable for which realizations are the
values of f and of which the distribution function is F . We
wish to find an estimator of the theoretical minimum M of the
random variable η defined by:{

P (η ≥ M) = 1 and
∀ε > 0 P (η ≥ M + ε) < 1

Under certain hypotheses on the function F , we can
determine an optimal linear estimator of M , denoted MN ,
using the N values of f in the sample κ = {�x1, �x2, ..., �xN}.

We are also able to calculate the confidence interval of
asymptotic level 1− γ associated with M of the form:

lN,γ = [inf
N,γ

(f), sup
N,γ

(f)]

where γ > 0 is fixed.

We thus obtain:

lim
N→∞

P [M ∈ lN,γ ] = 1− γ

Advantages of the method:

– Robustness.

– The parameters N, γ, etc. are easily controlled by the user.

– Tests have shown a linear evolution of the number of
points generated with the size of the problem.
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This is widely recognized as one of the most effective
methods.

Drawback of the method: there are currently no
demonstrations of stochastic convergence associated with this
method.

1.2.7. Genetic algorithms

Genetic algorithms are inspired by the theory of evolution
proposed by Charles Darwin in the 19th Century.

According to Darwin’s theory, a population of individuals
evolves through the mechanisms of sexual reproduction.
Those individuals who are best suited to their environment
reproduce more than other individuals, thus promoting the
most appropriate characteristics. For example, a giraffe with
a longer neck than others of its species will have access to
more food, and consequently has an improved chance of
survival and reproduction. The descendants of this giraffe
will also have particularly long neck, and the average neck
length in the giraffe population will increase. An algorithm
based on this theory was first proposed by John Holland in
the early 1970s [HOL 75]. From a set of approximate
solutions (the population), we select two good solutions and
recombine them to produce a new solution. At the same time,
we generate new genes using a mutation operator in order to
promote exploration of the state space. In parallel with this
process, we eliminate the least suitable solutions using a
selection process. By repeating this process, the adaptation of
the population increases and converges to a solution to the
problem.

These algorithms will be discussed in greater detail in
Chapter 2.
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1.2.8. Conclusion

As we have seen, a wide variety of optimization algorithms
exist, each suited to a certain category of problems. These
algorithms may be classified into the following:

– Deterministic:

- local: LP and NLP;

- global: enumeration, B&B, continuous deformation
methods.

– Stochastic:

- Global: tabu search, simulated annealing, evolutionary
algorithms, stochastic branch and bound.

The associated performances are shown in table
represented in Figure 1.3.

PL

PNL

RS

TAB

HOM

BBS

EA

Lin N Lin DiscCont Mu OMu MGLOG Di

BB

Figure 1.3. Comparison of performances of optimization. When a method
can be used for a class of problems, a dot is shown where the line and column
meet. The size of the point reflects how suitable the method is for the class
of problems: the larger the point, the better suitable the method is for the
specified problem type

The top row of the figure represents the classes of problems:

– Lin: linear problem;
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– N Lin: nonlinear problem;

– Cont: continuous state space;

– Disc: discrete state space;

– L Di: large dimension;

– GLO: global optimum search;

– Mu M: multi-mode search (problem with several quasi-
equivalent optima);

– Mu O: multi-objective problem.

The column lists the main classes of optimization
algorithms:

– LP: linear programming;

– NLP: nonlinear programming;

– BB: branch and bound;

– TAB: tabu method;

– SA: simulated annealing;

– SBB: sotchastic branch and bound;

– HOM: homotopic approach;

– AE: artificial evolution.




