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Visual Tracking by Particle Filtering

1.1. Introduction

The aim of this introductory chapter is to give a brief
overview of the progress made over the last 20 years in visual
tracking by particle filtering. To begin (section 1.2), we will
present the theoretical elements necessary for understanding
particle filtering. Thus, we will first introduce recursive
Bayesian filtering, before giving the outline of particle
filtering. For more details, in particular theorem
demonstrations and convergence studies, we invite the reader
to refer to more advanced studies [CHE 03b, DOU 00b,
GOR 93]. We will then explain how particle filtering is used
in visual tracking in video sequences. Although the literature
is abundant on this subject and evolving very fast, it is
impossible to give a complete overview of this subject. Next,
section 1.3 presents certain limits of particle filtering. Toward
the end, we specify our scientific position in section 1.4 and
the methodological axes that allow a part of these problems
to be solved. Finally, section 1.5 gives the current state of the
main large families of approaches that are concerned with
managing large-sized state and/or observation spaces in
particle filtering.
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1.2. Theoretical models

1.2.1. Recursive Bayesian filtering

Recursive Bayesian filtering [JAZ 70] aims to approximate
the state of a hidden Markov process, which is observed
through an observation equation. Let {x0:t} = {x0, . . . ,xt} be
this process, where xt is the state vector, yt the observation at
instant t and the two models:{

xt = ft(xt−1,ut)
yt = gt(xt,vt)

[1.1]

The first equation is the state equation, with the state
transition function ft between the instants t − 1 and t, and
the second is the observation equation, giving the
measurement of the state through an observation function gt.
ut and vt are independent white noises.

All information necessary for approximating x0:t is
contained in the a posteriori density, also known as the
filtering density, p(x0:t|y1:t), where y1:t = {y1,y2, . . . ,yt}, in
which we can prove, by applying the definition of conditional
probabilities, that it follows the following recursive equation
for a known [CHE 03b] t ≥ 1 (p(x0):

p(x0:t|y1:t) =
p(yt|y1:t−1,x0:t)p(xt|x0:t−1,y1:t−1)p(x0:t−1|y1:t−1)∫

x0:t
p(yt|y1:t−1,x0:t)p(x0:t|y1:t−1)dx0:t

[1.2]

Under the Markov hypothesis, p(yt|y1:t−1,x0:t) = p(yt|xt)
(the observations at different instants are independent
between themselves given the states and do not depend
on the state at the current instant) and
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p(xt|x0:t−1,y1:t−1) = p(xt|xt−1) (the current state only depends
on the previous state), equation [1.2] becomes:

p(x0:t|y1:t) =
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)∫

x0:t
p(yt|xt)p(x0:t|y1:t−1)dx0:t

[1.3]

The state transition equation is represented by the density
p(xt|xt−1) and is linked to the ft function. This density is
also called the transition function and gives the probably
state xt at the instant t, given its previous state xt−1. The
observation equation is represented by p(yt|xt) and is linked
to the function gt. This density is also called the likelihood
function and gives the probability of making the observation
yt given the state xt. We can see that equation [1.3] is
recursive and it decomposes into two primary stages that we
detail below.

1) The first stage, known as prediction step, allows
approximating the a posteriori density p(x0:t|y1:t−1) using
the transition distribution p(xt|xt−1) and the previously
approximated density p(x0:t−1|y1:t−1).

2) The second stage, called correction step, allows obtaining
the a posteriori density p(x0:t|y1:t), using the likelihood
distribution p(yt|xt), which depends on the new observation.
This a posteriori density represents the density of the
probability to have the set of states x0:t, among all the possible
states, given the history of the observations y1:t.

In order to obtain calculable estimators of x0:t, we can use,
for example, the conditional mean, given by:

Ep[F(x0:t)] =

∫
x0:t

F(x0:t)p(x0:t|y1:t)dx0:t [1.4]

where F is some bounded function. If the densities are
Gaussian, then there exists a solution (analytical expression
of the Gaussian parameters to approximate) given by the
Kalman filter [KAL 60]. Otherwise, the whole of equation [1.4]
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is not calculable directly. We can invoke, under special
conditions, the solutions given by the following types of
methods:

– analytical (extended Kalman filter [JAZ 70], unscented
Kalman filter [JUL 97]) that approach the law from a
Gaussian sum and are better adapted to weakly nonlinear and
unimodal cases, which is nonetheless not appropriate for most
problems of vision;

– numerical (approximations by discrete tables, division
into parts) that are, most of the time, complex to solve, not
very flexible and only adapted to state spaces of a small size.

Most of the time, in vision, solutions are not adapted as
the integrals are not directly calculable. For the general case
(non-parametric and multi-modal densities), it is necessary to
make use of numerical approximations, such as those provided
by sequential Monte-Carlo methods, which we will present in
the following section and that are the methodological heart of
this work.

1.2.2. Sequential Monte-Carlo methods

Sequential Monte-Carlo methods, also known under the
name of particle filters (PFs), were studied by many
researchers at the beginning of the 1990s [GOR 93, MOR 95]
and combine Monte-Carlo simulation and recursive Bayesian
filtering. Today, they are widely used in the computer
visualization community. Before detailing the principle of
particle filtering, we need to introduce importance sampling.

1.2.2.1. Importance sampling

Once the a posteriori density defined by equation [1.3] has
been approximated, we can evaluate the estimator given in
equation [1.4]. The Monte-Carlo method allows us to
approximate this integral with the realization of a random
variable distributed according to the a posteriori density.
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Unfortunately, we are almost never able to sample following
this law, so to solve this problem, we introduce a proposal
function (or importance function) q(x0:t|y1:t), whose support
contains p(x0:t|y1:t) and from which we can sample. The
conditional mean is then given by:

Ep[F(x0:t)] =

∫
x0:t

F(x0:t)
p(x0:t|y1:t)

q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

= Eq

[
F(x0:t)

p(x0:t|y1:t)

q(x0:t|y1:t)

]
[1.5]

With N realizations x
(i)
0:t ∼ q(x0:t|y1:t), i = 1, . . . , N , we can

approximate the previous estimator by:

Êp[F(x0:t)] =
1

N

N∑
i=1

F(x(i)
0:t)

p(x
(i)
0:t)|y1:t)

q(x
(i)
0:t|y1:t)

[1.6]

The law of large numbers allows us to show that this
estimator almost certainly converges toward Ep[F(x0:t)] when
N tends to infinity. Thus, we define the importance weights

by w
∗(i)
t =

p(x
(i)
0:t|y1:t)

q(x
(i)
0:t|y1:t)

=
p(y1:t|x(i)

0:t)p(x
(i)
0:t)

p(y1:t)q(x
(i)
0:t|y1:t)

, whose expression

requires the calculation of the integral
(p(y1:t) =

∫
x0:t

p(y1:t|x0:t)p(x0:t)dx0:t), which is generally
impossible. We can nevertheless show that the following
equation is usable [DOU 01]:

Êp[F(x0:t)] =
1

N

N∑
i=1

F(x(i)
0:t)

w
(i)
t∑N

j=1w
(j)
t

with

w
(i)
t ∝ p(y1:t|x(i)

0:t)p(x
(i)
0:t)

q(x
(i)
0:t|y1:t)

[1.7]

This estimator almost certainly converges when N tends to
infinity. Then, it is sufficient to make the importance sampling
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recursive, to obtain the particle filtering algorithm described
below.

1.2.2.2. Particle filter

The idea is thus to represent and to approximate
empirically the a posteriori density by a weighted sample of
size N {x(i)

0:t, w
(i)
t }, i = 1, . . . , N such that:

p(x0:t|y1:t) ≈
1

N

N∑
i=1

w
(i)
t δ

x
(i)
0:t

(x0:t) [1.8]

where the individuals x
(i)
0:t, also called particles, are the

realizations of the random variable x0:t (state of the object)
in the state space (δ being the Dirac function). Every particle
is therefore a possible solution of the state to approximate and
its associated weight represents its quality according to the
available observations. Hence, the sample St = {x(i)

0:t, w
(i)
t }Ni=1

at the instant t is calculated from the previous sample
St−1 = {x(i)

0:t−1, w
(i)
t−1}Ni=1, so as to obtain an approximation (via

sampling) of the filtering density p(x0:t|y1:t) at the current
instant. For this, three stages are necessary: i) a state
exploration stage, during which we propagate the particles
via the proposal function, ii) a stage for the evaluation (or
the correction) of the particle quality, which aims to calculate
their new weight and finally iii) an optional stage for particle
selection (re-sampling). The generic particle filtering scheme
(SIR filter – sequential importance resampling), between the
instants t− 1 and t, is summarized in the algorithm below.

1) Representation of the filtering density p(x0:t−1|y1:t−1)

with a set of particles {x(i)
0:t−1, w

(i)
t−1}, i = 1, . . . , N .

2) Propagation, or exploration of the state space, with an
importance (or proposal) function:

x
(i)
t ∼ q(xt|x(i)

0:t−1,y1:t) [1.9]
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3) Correction, or evaluation of the particle quality, with
observations, by calculating the weights:

w
(i)
t =

p(x
(i)
0:t|y1:t)

q(x
(i)
0:t|y1:t)

∝
p(yt|x(i)

t )p(x
(i)
t |x

(i)
t−1)p(x

(i)
0:t−1|y1:t−1)

q(x
(i)
0:t|y1:t)

[1.10]

Assuming that q(x(i)
t |y1:t)= q(x

(i)
t |x

(i)
0:t−1,y1:t)q(x

(i)
0:t−1|y1:t−1),

we have:

w
(i)
t ∝

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)p(x

(i)
0:t−1|y1:t−1)

q(x
(i)
t |x

(i)
0:t−1,y1:t)q(x

(i)
0:t−1|y1:t−1)

∝ w
(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1,y1:t)

[1.11]

The weights are then normalized w̃
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

.

4) Approximation of the filtering distribution expectancy,
the a posteriori law at instant t:

E(F(x0:t)) ≈
1

N

N∑
i=1

w̃
(i)
t F(x

(i)
0:t)

5) Resampling (if necessary).

The equations below allow us to approximate the
trajectory of the objects, but they can also allow to
approximate only their state at instant t, by simply
integrating over x0:t−1. In practice, this amounts to replacing
x0:t and x0:t−1, respectively, by xt and xt−1 in the algorithms.
In the rest of this work, depending on the applications, either
one or the other possibility will be studied.
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Once the theoretical framework is defined, we will discuss
the problem of visual tracking by particle filtering in the next
section.

1.2.3. Application to visual tracking

The PF has been used in numerous disciplines, such as
communication, networks, biology, economy, geoscience, social
sciences, etc. In image processing, it has been used in many
domains (medical imagery, video analysis, meteorological
imagery, robotics, etc.), for various applications such as
segmentations or tracking in video sequences, which is the
primary subject of our research.

Visual tracking poses many problems, among which
the changes in appearance or illumination, occlusion, the
appearance and the disappearance of objects, environmental
noise and erratic movements are just a few examples.
Particle filtering allows us to represent the arbitrary densities,
focusing on specific regions of the state space and managing
multiple models. It is easy to implement, robust to noise and
to occlusions, although this requires taking a certain amount
of precautions, among which:

– the choice of the state model xt, defined by a set of
information that characterizes the object to track;

– the choice of observations yt, which allow identifying the
object to track;

– the definition of an importance (or proposal) function q to
propagate particles in a way that will guide the search in the
state space;

– the definition of a likelihood function p(yt|xt), which will
link the current state of the object to the observation;

– the choice of the resampling method in order to avoid the
problem of degeneration, which we will explain further in this
section.
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We will later give several solutions suggested by the
literature to each of these points.

1.2.3.1. State model

The choice of a model xt for the state depends on the
available knowledge and the characteristic differences of the
object that we would like to track. In this part, we describe
how to model the state xt of an object.

The most common method to represent an object is to use
its geometric characteristics, in particular its position in the
image (this is the case of the illustration in Figure 1.3). The
2D form can be given by a set of arbitrary points
[ARN 05a, ARN 07, VER 05b] or specific points, such as edges
[DOR 10, DU 05], contour points [CAR 10, CHE 01, LAK 08,
MOR 08, XIA 08] or reference points [TAM 06]. Classical
forms are also used, such as rectangles [BRA 07a,
HAN 05b, HU 08, LEI 06, LEI 08, PÉR 02, WAN 09] or
ellipses [ANG 08, MAG 09, NUM 03a], as well as forms
interpolated by splines [LAM 09, LI 04a, LI 03]. We can also
use level-sets [AVE 09, RAT 07a] or active contours
[RAT 05, RAT 07b, SHE 06]. Finally, more evolved models
integrating the relations between sets of pixels
[HOE 10, HOE 06] are sometimes used. Among 3D forms, we
use simple shapes (parallelepipeds, spheres) [GOY 10,
MIN 10, MUÑ 10, ROU 10], thin 3D mesh of the face
[DAI 04, DOR 05], the human body [GAL 06] or the hand
[BRA 07c, CHA 08], as well as the contours [PEC 06].

Recently, numerous studies were conducted on the
tracking of articulated objects, in which an object was
modeled by a set of 2D or 3D shapes linked between
themselves by articulations [BER 06, BRU 07, QU 07,
SIG 04, YU 09]. The appearance models are also used, which
require learning color [MAR 11, WAN 07], thumbnails
[BHA 09], illumination [BAR 09, SMA 07], the exposure
[WAN 05] or multiple shapes [BRA 05, GIE 02]. We also find
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more exotic appearance models using blur [SMA 08] or
laser [GID 08] information. Finally, the state can be described
by movement information, given by the refined
transformations [GEL 04, KWO 08, MEI 09], velocity and/or
acceleration [BLA 99a, CUI 07, VER 05a, DAR 08b] (we
sometimes talk about auto-regressive models) or the
trajectory [BLA 98a].

Naturally, these models are often combined to improve the
description of the object, which increases the size of the state
space, often making calculations unacceptable. We then need
to make a compromise between the quality of the description
and the computation time. Figure 1.1 gives several examples
of state models used in tracking by PF.

1.2.3.2. Observation model

Here, again, the choice of the observation model yt

depends on the available information. In visual tracking, this
information is extracted from the images, which are
generated by different types of sensors, the number of which
can vary. Many approaches work directly on pixels, which are
often filtered during a simple pre-processing
stage [BHA 09, GEL 04, GON 07, KAZ 09, KHA 06, SCH 07]
or simply on pixels of the area from the extracted
foreground [CHE 03a]. The difference between these
approaches depends on the form of acquisition, which can
supply, for example, fluorescent [LAM 09],
2D [SHE 06, SMA 08] or 3D [CHE 08] microscopic,
infrared [PÉT 09] or even ultrasound [SOF 10] imagery. Note
that for the color, we primarily use RGB
representations [CZY 07, HU 08, MAG 05a, MAG 07,
MAR 11, NUM 03a] and HSV [LIU 09, MUN 08b, PÉR 02,
PER 08, SNO 09] (the latter being generally more adapted to
vision problems, as it is less sensitive to changes in
illumination). Other types of sensors are sometimes used,
providing information such as distance and depth maps
[ARN 05a, BER 06, LAN 06, MUN 08b, ZHU 10], movement
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maps [SCH 06], laser data [CUI 07, GID 08, GOY 10],
projective images [ERC 07], occupation [MUÑ 09] or
sound [CHE 03a, PÉR 04] maps. Figure 1.2 gives several
examples of these.

Figure 1.1. Some examples of state models used to represent
the object to track. Form left to right, top to bottom, a model
integrating illumination [BAR 09], an articulated model [SIG 10a], a
trajectory [BLA 98a], a 3D facial mesh [DOR 05], level sets [AVE 09],
a sphere [ROU 10], a set of points-of-interest [ARN 07], areas and
their relations [HOE 10], a rectangle [BRA 07a], edges [DOR 10], an
ellipsis [MAG 09] and appearance models [MAR 11]. For a color version of
the figure, see www.iste.co.uk/dubuisson/tracking.zip

1.2.3.3. Importance function

The importance function, or the proposal function,
q(xt|x(i)

0:t−1,y1:t) makes it possible to guide particles, between
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two instances, in the state space in order to have a priori
approximation of the density of the tracked object. Its choice
is essential, since if the particles are propagated in
inappropriate areas, the tracking will fail.

Figure 1.2. Several examples of images modalities that are used as
observations for tracking by PF. From left to right: infrared [PÉT 09],
ultrasound [SOF 10], 2D microscopy [SMA 08], occupation map [MUÑ 09],
depth map [ZHU 10] and Charge-Coupled Device (CCD) [PÉR 04]. For a
color version of the figure, see www.iste.co.uk/dubuisson/tracking.zip

The most common choice for the importance function is the
transition function p(xt|xt−1). In this case, the importance
weight is proportional to the likelihood function, as
equation [1.11] becomes w

(i)
t ∝ w

(i)
t−1p(yt|x(i)

t ). This filter is
more commonly called Bootstrap or the CONDENSATION
algorithm [GOR 93, ISA 98a]. Here, we do not use the a priori
information on the changes between the two instants, which
are often modeled by two random Gaussian steps around the
previous state approximation (see example illustrated in
Figures 1.3(d) and 1.3(f)) or auto-regressive models from the
first to the second order, integrating information on
kinematics (velocity, acceleration). We can also retrieve the
transition from the past [ISA 98a]. The problem with
sampling the transition function is that if the transition
model is inappropriate, most particles generated via this
model will be “lost”, as they will not be corrected properly.
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Figure 1.3(f) shows the areas of particle diffusion (in blue)
and of observation characterization (in red) (see color version
of the figure): if these areas do not overlap, then the tracked
object will be lost. The necessity to use an optimal importance
function for visual tracking becomes obvious once the object
can perform sudden movements that we can neither
anticipate not model.

Hence, numerous works attempted to best approximate
the optimal importance function, which generates particles
randomly, and which thus plays an essential role in particle
filtering [DOU 01, PIT 99, MER 00]. It has been shown that
the optimal importance function (in the sense of minimizing
the variance of the sample) needs to integrate the last
observation and that it is then written
q(xt|yt,xt−1) [DOU 00b]. Unfortunately, in most computer
visualization problems, this expression is unknown and we
have therefore searched for other solutions using the current
observation. For example, a mix between the classical
transition density and the detection function defined by a
learning algorithm is used in [LU 09]. Other proposal
functions are deducted from learning, for example movement
over time [SHO 11]. A simulation taking advantage of an
approximation of a displacement field by optical flow of the
scene has also been suggested in [ARN 07], and in the
partially linear context, allows extracting the optimal
proposal function.

Other works suggested migrating the particles toward
regions with high likelihood. This is the case of auxiliary
particle filtering [PIT 99], which pre-selects the particles to
propagate according to their link with the most recent
observation. The proposal function of each of the particles can
also be defined by an extended [TAN 96] or
unscented [JUL 97] Kalman filter, in order to approximate
the optimal proposal function by a Gaussian probability
density. In the case of likelihood sampling [TOR 04], the
particles are sampled directly from the likelihood density.
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a) b)

c) d)

e) f)

Figure 1.3. A simple problem for following the center of a region containing
a person between the instants a) t − 1 and b) t: the state space is defined
by the Cartesian position parameters (x, y) of the center of the region (so
we have |X | = 2). c) At the instant t − 1, we have an estimate of the
position of the enclosing box (in red) and we wish to estimate its new
position at the instant t. d) The proposal function is a random Gaussian
walk around the previous approximated position of the object and is used
to spread the particles in the state space. e) The likelihood, obtained from
the Bhattacharyya distance [BHA 43] between the color distribution in the
enclosing box approximated at t− 1 (image (c)) and in the target histograms,
will be able to affect the weight of the particles. f) The influence areas of
these two densities in the image space with the proposal function in blue
and the likelihood function in red: the higher the tint of the pixel, the
more value is attributed to the density. For a color version of the figure, see
www.iste.co.uk/dubuisson/tracking.zip
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In fine, there are many proposal functions whose definition
is based on the characteristics of the image and that are often
related to the problem or the context. Among these ad hoc
solutions, we can mention the works suggested in [ISA 98b],
where an auxiliary contour is used to generate samples, or
those described in [PÉR 04], which detect salient points
according to precise characteristics (color, movement) that
are centered on normal distributions, thus modeling the
proposal function by a Gaussian mixture. Finally,
in [SUL 01], the particles are guided with the density
supplied by the appearance model.

1.2.3.4. Likelihood function

The likelihood function gives us a reason to believe in the
validity of the observation yt, given the state xt of the object.
The way that we perceive this belief leads to first represent
synthetically the available information based on the current
observation yt, and then calculate the difference by
comparison to the synthetic representation of an ideal
situation. For example, this difference E can measure the
similarity or the distance between the model of the previously
estimated state and the model of the target corresponding to
a hypothesis (or particle). Particle filtering determines the
probabilistic framework in which this belief is modeled by a
probability density p(yt|xt), and therefore a common
definition of the likelihood function is given by
p(yt|xt) ∝ e−λE2 , where λ is the deviation parameter that
makes the likelihood more or less pronounced.

There are several detailed studies on likelihood, generally
made in a specific context. For example, a study on the choice
of measure for similarity to compare color models using
histograms is provided in [DUN 10], while the influence of
the deviation parameter λ is studied in [LIC 04]. The choice
of the likelihood function is directly related to the information
used to characterize the tracked object. The literature is
abundant on this subject. We often use color models described
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by histograms, as laid out in the early articles [PÉR 02], as
well as many others [JAW 06, NUM 03b, SAT 04, WU 08b],
where the Bhattacharyya distance allows measuring the
similarity of two histograms (see the illustrations in
Figures 1.3(e) and 1.3(f)). Other measurements have also
been used, such as the Jensen–Shannon divergence [PER 08],
the diffusion distance [LU 09] and the Earth Mover’s
Distance (EMD) distance [KAR 11]. Likelihood is also based
on other types of information, such as the
contours [MAC 99a], the foreground [LEI 08], statistics on
pixel [LAM 09, MAG 05b, PAL 08], the shape
[CAR 10, RAT 07b], the texture [LAO 09], the appearance
(combination of shape and texture) [HOE 10, LEI 06,
ZHO 04] as well as characteristic features [ARN 05b, DU 05].

Naturally, with the amount of information, the current
trend is to combine likelihoods, often by multiplying them,
under the independence hypothesis, in order to be able to
handle multi-object, multi-characteristic, multi-modal or
multi-view tracking problems. Examples of these will be
given in Chapter 2.

1.2.3.5. Resampling methods
The particle filter and its variants all use a resampling

stage in order to avoid the issue of degeneration in particles,
that is the cases where the weight of every particle
except one is close to zero. In practice, the variance of
the importance weight w

(i)
t increases over time, which has

dramatic consequences on the tracking. There are several
resampling methods and their goal is always the same:
duplicate particles with high weight and, implicitly, eliminate
those with low weight. A theoretical comparison of their
advantages and downsides is given in [DOU 05]. Here we
outline five methods most used in tracking.

– Multinomial resampling [GOR 93] (the most used)
consists of selecting N numbers ki, i = 1, . . . , N , according
to a uniform distribution U(0, 1). The sample St = {x(i)

t , w
(i)
t }
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is replaced by a new sample S ′
t = {x(D(ki))

t , 1
N } where D(ki)

is a unique integer j such that
∑j−1

h=1w
(h)
t < ki ≤

∑j
h=1w

(h)
t .

If (n1, . . . , nN ) indicates the number of times when particles
of St are duplicated, then (n1, . . . , nN ) is distributed according
to the multinomial law M(N ;w

(1)
t , . . . , w

(N)
t ) (the descendants

of the particles conjointly follow a multinomial law). In
other words, by sampling with replacement N times the
probability M

(
1;w

(1)
t , . . . , w

(N)
t

)
, we obtain N new particles

i.i.d. according to p(xt|y1:t), with a weight of 1/N .

– Stratified resampling differs from multinomial
resampling by randomly selecting ki according to the uniform
distribution U( i−1

N , i
N ).

– Systematic resampling [KIT 96] randomly selects a
number k according to U(0, 1

N ) and then defines ki such that
ki =

i−1
N + k.

– Residual resampling [LIU 98] is very efficient for
reducing the variance of the set of particles inducted
by the sampling state. First, for each i ∈ {1, . . . , N},
n′
i = �Nw

(i)
t 	 duplicate particles x

(i)
t of St are inserted

into S ′
t. The remaining N −

∑N
i=1 n

′
i particles are selected

randomly according to the distributionM(N−
∑N

i=1 n
′
i;Nw

(1)
t −

n′
1, . . . , Nw

(N)
t − n′

N ), for example through multinomial
resampling. The weights of the S ′

t particles are all equal to
1/N .

– Weighted sampling is defined as follows. Let g : X 
→
R be a strictly positive continuous function and ρt be the
multinomial distribution defined by ρ

(i)
t = g(x

(i)
t )/

∑N
j=1 g(x

(j)
t )

for i = 1, . . . , N . Take k1, . . . , kN , independently according
to the probability ρt. We construct the set of particles S ′

t =

{x(ki)
t , w

(ki)
t /ρ

(ki)
t }Ni=1. It has been shown in [MAC 00a] that S ′

t

represents the same probability distribution as St, focused on
the modes of g (the usual choice for g is therefore the likelihood
function). Note that, in contrast to other methods, weighted
resampling does not affect particles with a weight of 1/N .
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A problem may occur if the sample is resampled too often:
the representation decays (sample impoverishment), as the
highest importance weights are duplicated too many times
and the sample is reduced to a single particle. Moreover,
every resampling stage diminishes the statistical
independence of the particles, which is a strong assumption
necessary for the convergence of the filter. Therefore, the
decision to resample must be made at an opportune moment,
in order to avoid increasing the variance of the sample, as
well as to maintain a reasonable number of “good” particles
(i.e. with relatively high weights) over time. One solution is to

resample when N eff
t =

(∑N
i=1(w

(i)
t )2

)−1
reaches a threshold

value, that is when the amount of “good” particles becomes
too small (in practice, often fixed at 75% of N ).

1.3. Limits and challenges

There are many versions of the PF [CHE 03b, DOU 01,
MAS 01] and its primary appeal is its capacity to process and
represent arbitrary densities, maintain multiple hypothesis,
take into account non-Gaussian noise and to focus on areas of
state spaces. Furthermore, it is relatively simple to
implement and extend, robust to “noisy” backgrounds and to
occlusions, rendering it rather suitable for problems in vision.
In spite of this, the PF suffers from a certain number of
downfalls. One of the previously discussed issues is that of
particle degeneration, i.e. the loss of particle diversity in a
sample, which can only be solved through regular
resampling, by using an optimal proposal function or, failing
that, a function approaching the optimum, whose choice is
therefore critical. The choice of the resampling frequency
must also be made with caution. Finally, the optimal number
N of particles is impossible to define, as it is mostly
dependent of the targeted application.

Nevertheless, the major problem, which remains a large
constraints in this methodology, is quite certainly the
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calculation complexity. Indeed, the amount of particles
necessary for good tracking increases exponentially with the
size of the spaces in which the state and observation models
are defined [MAC 00b]. The first applications of particle
filtering in the domain of our interest concerned tracking the
position of objects corresponding to the center of an enclosing
box [NUM 02, PÉR 02, RUI 01] or contours [MAC 99a,
TOR 01], by considering sometimes complex schemes
integrating several objects, occlusions or changes of
appearance, as shown in Figure 1.4.

Figure 1.4. Some results of the tracking obtained by the first suggested
approaches, from left to right, top to bottom: tracking an object represented
by its deformable contour [MAC 99a], tracking a face with changes in
scale [RUI 01], tracking two faces with occlusion management [PÉR 02] and
tracking a face with appearance changes [NUM 02]. For a color version of
the figure, see www.iste.co.uk/dubuisson/tracking.zip
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The current tendency is to use as much information as
possible for tracking, either by mixing different observation
sources (several views, several forms of acquisition) or by
refining the models that we use for the objects tracked, which
requires increasing the number of parameters of the state
vector and therefore the size of the space in which the latter
is defined. To give an example, tracking human beings
requires more and more precision and the models tend
toward complex articulated objects similar to those in
Figure 1.5(a), which entail a very large state space. The new
representations of human movement [GUE 12], as well as the
basis for testing tracking algorithms, such as HumanEva
[SIG 10a], direct research toward characterization of posture,
behavior recognition, gait analysis or even the detection of
events such as falling over, which require more and more
precise models. We also seek to have a fine analysis of
movement and deformation, as illustrated in Figure 1.5(b) for
the case of a deformable surface or interacting hands. Finally,
taking into account a large number of objects in the same
tracking scheme, in particular by integrating relations
between them to improve their tracking, is also important. In
Figure 1.5(c), we can see two applications for which we need
to track a large number of objects simultaneously: for
analyzing automatically the game tactics in a sport or for
characterizing the behavior of a crowd. Currently, the PF
does not allow doing this: when there are too many objects,
they need to be tracked individually and a module for
measuring interactions must be added as a post-process to
make analysis. If a lot of progress aimed toward integrating
increasingly complex models (see examples in Figure 1.1) was
made over the past 10 years, tracking is sometimes slow and
the solutions are often constrained to optimize their
implementation (for example simplifyed hypotheses are used
to bypass the complexity of certain calculation or models that
can only be used for a certain type of application).
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a)

b)

c)

Figure 1.5. Examples of complex tracking cases that still do not have an
efficient solution in particle filtering. a) Complex modeling of a human body,
from left to right by articulated object with a fine representation [SIG 10b],
by multiple skeletons [BER 11] or by free and deformable shapes [FRE 10]. b)
Tracking a deformable 3D surface [WAN 11a] and modeling the interaction
between two hands [OIK 12]. c) Tracking multiple objects in a dense
environment, from left to right are cases studied in [HUO 12] and [ZHO 12].
For a color version of the figure, see www.iste.co.uk/dubuisson/tracking.zip
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1.4. Scientific position

The application examples mentioned previously are
currently infeasible with particle filtering, as the modeling
still requires too many parameters. We could stop at the
results provided by other approaches in the domain; however,
we believe that new models of PFs that manage large state
and observation spaces better would offer new perspectives
on the research in the domain of tracking. Indeed, the
management of multiple hypothesis naturally integrated into
this filter could be fully exploited, if we were not constrained
to using representations defined in small state and
observation spaces. The management of large state and
observation spaces is hence, in our opinion, a major current
challenge to tackling future research problems. For this
purpose, several avenues can be used. First, the definition of
new data representation models, as complete and as compact
as possible, is essential. In other words, integrating the
wealth of the representation resulting from multiple
characteristics used for representing the object in particle
filtering is the first avenue to follow. Second, as we stated,
particles are spread in the state space with the aim to
optimally sample the filter density. Another way to solve the
problem of the very large size of the state and observation
space is therefore to provide models that more cleverly cover
these spaces. For this purpose, we can either focus the search
in the state space, in order to only cover interesting areas, or
decompose it in sub-spaces, where sub-calculations can be
made. We provide solutions using these different avenues in
Chapters 2, 3 and 4 of this book.

1.5. Managing large sizes in particle filtering

The algorithms that tackled the problem of large sizes of
state spaces can be roughly divided into three primary
classes: those that reduce the size of the space, often by
adding constraints to the model, those that use a local search
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and finally those that decompose the space into sub-spaces of
a lesser size.

The first class of approaches adds constraints to the
mathematical model in order to reduce the size of the state
space to explore. In many articles, this is accomplished by
introducing the physical constraints of the articulate object
into the tracking model [BRU 09, OIK 11]. In particular, this
type of approach is very popular in human tracking. Hence,
in [VON 08], the constraints are introduced during a
simulation stage, while in [BRU 07, HAU 10b], they are
included directly in the proposal function constructed
specifically to follow a person. Other approaches adding
constraints add a priori information to the
object [HAU 10a, COV 00, HAU 11], exploit the knowledge of
its behavior [DAR 08a] or take into account its interaction
with the environment [KJE 10].

The second class of approaches, often known as
optimization oriented approaches, is a set of algorithms that
combine particle filtering with local search
techniques [MIN 86]. Given the stochastic nature of the filter
and the combinatorial size of the state spaces of the objects,
the PF is never guaranteed to produce a set of particle
positions sufficiently close to the modes of the density to
approximate. Thus, combining the filter with local search
techniques can improve significantly its capacity to focus on
these modes. For this reason, optimization approaches are
very popular within the community working on object
tracking. Among these techniques, we can mention the
gradient descent methods that were specifically studied in
this context. For example, stochastic gradient descent was
successfully combined with particle filtering [HOF 11] and
new stochastic meta-descent approaches were suggested in a
constrained space [BRA 07b], giving the efficient smart
particle filter [BRA 7d]. Particle swarm optimization
techniques are also used conjointly with the
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filter [WAN 06, LI 11, JOH 10, KRZ 10]. Here, the idea is to
apply evolutionary algorithms inspired by social animal
behavior (birds, fish, bees, ants, etc.) to evolve the particles in
accordance with their own experience, as well as that of their
neighbors (for a complete review of these techniques, we
recommend the lecture of [DAS 11]). Similarly, the
introduction of population-oriented meta-heuristics and
genetic algorithms was used in the context of particle
filtering [SÁN 05a]. Simulated annealing was also introduced
into particle filtering, giving the renowned annealed PF
(APF) (or particle filtering with simulated
annealing) [DEU 05]. APF adds iteration of pseudo-simulated
annealing to the resampling, in order to spread the particles
in the state space and hence position them closer to the
modes of the density to approximate. Naturally, there are
other optimization-oriented methods (such as the scatter
search [PAN 08a], etc.) that we cannot list here, as they are
not the main subject of this work. Nevertheless, all of these
approaches share the commonality of being a compromise
between the quality of the approximation of the estimated
density and the velocity of convergence. Unfortunately, given
their local nature, although many of these approaches may
converge rapidly to a local minimum near their starting
point, they require a lot more time to converge to the overall
minimum, which, in addition, is not systematically
guaranteed. Hierarchic approaches tried to resolve these
problems by adopting a strategy of progressively refining the
search space, starting from a general description of the state
space to end on a finer one, giving a complete description. The
progressive particle filter [CHA 10] is an example of this.
Finally, it is important to mention that all of these methods
assume that every required observation is available at every
instant, which is unfortunately not necessarily the case in
practice.

The third class of approaches exploits the natural
decompositions of state and observation spaces into a set of
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sub-spaces of a more reasonable size, where particle filtering
can be applied. Partitioned sampling (PS) [MAC 99b] is
probably the best known here. It uses the fact that in many
problems, both the dynamics and the likelihood can be
decomposed. The key idea is to substitute the application of
the filter to the whole space with a sequence of applications to
the sub-spaces, therefore significantly accelerating the
process. Despite recent improvements [SMI 04, DUF 09], PS
suffers from too high a number of necessary resamplings,
which increases the noise, leading to a decrease in tracking
quality over time. An equivalent type of decomposition is
used in [KAN 95], in the context of dynamic Bayesian
networks (DBNs). Here, the proposal density of the predictive
stage is decomposed as a product of conditional distributions
in each node of the DBN at the current instant. The
predictive stage is then executed iteratively on each node of
the network, according to the topological order by using the
proposal distribution of the node based on its parent in the
network. In [ROS 08], the sampling idea suggested
in [KAN 95] is combined with the resampling scheme
from [MAC 99b] in order to create a particle filtering
algorithm well adapted to DBN. This algorithm can be seen
as a generalization of PS. By following the topological order of
the network for sampling and resampling the particles every
time a node is explored, the particles with low likelihood in a
sub-space are excluded, while those with a high likelihood are
multiplied. The effect is similar to that of the weighted
resampling in PS. Another approach coming from the
Bayesian community is the non-parametric belief propagation
algorithm [SUD 10, ISA 03]. It combines particle filtering
with the loopy belief propagation algorithm
[PEA 88, YED 05], in order to accelerate calculations (at the
price of worse approximations). It was successfully applied to
the large-size problem [SUD 04, SIG 03, BER 09, IHL 04,
LAN 06]. Another popular approach is the Rao-Blackwellized
PF (RBPF) for DBN [DOU 00a]. By using the natural
decomposition of joint probability, RBPF decomposes the



26 Tracking with Particle Filter for High-dimensional Observation and State Spaces

state space into two parts, following these conditions: the
distribution of the second part, based on the first, can be
estimated with a Kalman filter. The distribution of the first
part is estimated by particle filtering. As the size of the first
part is smaller than the whole space, its sampling stage
needs less particles, and the variance of the estimation can
therefore decrease. Although RBPF is very efficient at
reducing the size of the problem, it cannot be applied to any
Bayesian network, as the state space cannot always be
decomposed in the manner that it assumes (i.e. assuming a
part of the space to be linear). The work suggested
in [BES 09] is a parallelized PF dedicated to Bayesian
networks, which uses the same probabilistic decomposition of
the joint distribution in order to reduce the number of
particles required for tracking. The state space is divided into
a set of independent sub-spaces. The particles are hence
generated independently in the sub-spaces according to
different proposal densities. This approach offers real
flexibility in terms of proposal density choices. Nevertheless,
their definition requires the underlying Bayesian network to
have certain structural properties, which limits the
generalization of this algorithm.

1.6. Conclusion

We presented in this chapter the elements fundamental to
the introduction and the definition of sequential Monte-Carlo
methods, as well as their use in the context of tracking in
video sequences. In particular, we have shown to which point
the community was active in tracking with PF, making it
evolve very fast. Nevertheless, this also allowed us to
highlight a certain number of challenges that motivated our
research. Specifically, the management of large state and
observation spaces, which we see as a major challenge to
undertake in the years to come, caught our attention. Later
in this work, we discuss several solutions that allow us to
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advance in this direction. These methodological fields affect,
on the one hand, the modeling of the data to process, as well
as its representation, and, on the other hand, the exploration
of the state space by focusing or by decomposition.



 


