
Chapter 1

Mathematical Examination
of Dielectrics

1.1. Introduction to dielectrics

The ideal insulator is a substance with infinite resistivity.
In the real world, insulators have resistivity values which
are very high, but finite. Table 1.1 gives an indication of the
resistivity of a number of insulators, expressed using the
MKSA (Meter, Kilogram, Second, Ampere) system.

PolyPropylene PolyImide Epoxy Phlogopite Mica Silica Glass

1015 1014 1013 1012 1011

Table 1.1. Resistivity of a number of dehydrated insulators
expressed in [Ω.m] at 20°C

For many applications, the value which best characterizes
a material’s insulating capacity is its relaxation time – the
time constant of a condenser of any form using that material.
This time is given by the following equation [1.1]:
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where ε is the permittivity and ρ the resistivity.

If we take the value of ε to be that in a vacuum – ε0 – we
can see that for ρ = 1010 [Ω.m], the relaxation time of charges
through the insulator is close to a fraction of [s]; hence, this
is not a good insulator. The accepted materials in
electrotechnics have relaxation times ranging from around a
[s] to several [min] or more; in exceptional conditions, we
have even seen relaxation times of around a [year].

The relaxation time is directly involved in the value of the
electrical loss angle δ with alternating current (AC). Indeed,
if conduction is the only cause of loss, and if the time
constant τ is around a second, the loss angle will be too great
for long-term operation at industrial frequencies without the
risk of accident [1.2]:
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Whilst solid insulators, both organic and mineral-based,
can easily deliver sufficiently high relaxation times, liquids
are usually far too conductive to be usable. Only a very few
aromatic hydrocarbons, including the infamous
PolyChloroBiphenyl (PCB or pyralene) or the Mono-
Dibenzyl-Toluene (used by Jarylec in Isère) have taken their
place in industry, alongside mineral-based oils; other liquids,
such as a1cohol, acetone and nitrobenzene, rarely reach
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values above 104 or l05 [Ω.m] due to their sensitivity to the
slightest electrolytic contamination.

Alongside resistivity per se, which depends on conduction
in the volume, in practice we often find surface resistivity,
which characterizes surface conduction. Many insulators
which have very high volume resistivity actually conduct
current quite easily along their surface. The most common
example is that of a sheet of glass, covered with a layer of
water condensation, and therefore no more insulating than
wood when not hot-air dried. Other substances, such as
paraffin and ebonite, do not present this problem. Yet it is
meaningless to express this surface resistivity in numerical
terms without drawing the connection between it and
external causes such as humidity, temperature, etc. The
surface resistance Rs of an “insulator” is expressed in [Ωm],
and is calculated by using equation [1.3].

'.s
lR R
l

= [1.3]

where R is the measured resistance between two electrodes
(placed at the surface of the insulator) of length l
(transversal to the field) and separated by a distance l'
(longitudinal to the field). The measured resistance R
therefore relates to a rectangular “insulating” surface with
long side l and short side l', and the surface resistance Rs is
measured in a square “insulating” surface.

1.1.1. Polarization

Like any material, a dielectric material contains the “two
electricities” in equal and considerable quantities, but unlike
with conductors, these electricities cannot circulate within
the materials under the influence of the field.

If we look at a molecule of dielectric, it contains positive
and negative charges. These charges are not free: they are
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connected by an elastic force which is something like a
spring. If we subject the molecule to an electrical field, the
charges cannot move about within the insulator under its
influence; the positive charge pulls on the spring in the
direction of the field, the negative charge pulls in the
opposite direction, and the result is that the spring becomes
tenser and the two charges move apart from one another
slightly. This separation is practically proportional to the
field. Under its influence, the molecule is therefore
transformed into a system with two equal positive and
negative charges, a small distance apart. This is what is
known as a doublet or dipole, and the appearance of dipoles
constitutes the polarization of the dielectric. If the field is
removed, the springs bring the charges back into contact and
the polarization disappears (we shall see in Chapter 2 that
there are other mechanisms which lead to macroscopic
polarization of the material).

1.1.2. Ionization

When we pull too hard on a spring, it will eventually
break. Thus, we may imagine that with a critical value of the
electrical field, the charges that the springs were holding
would suddenly become free, with the insulator becoming a
good conductor. In practice, this phenomenon of ionization of
the molecules does not occur homogeneously throughout the
volume. We shall see later on (in Chapter 2) that ionization
phenomena can lead to the breakdown of the material at
values of the macroscopic electrical field that are far less
than the critical value mentioned above.

The value of the breakdown field strength is one of the
most important characteristics of the insulator. It goes
without saying that in practice, we allow ourselves a
significant safety margin. The maximum field is generally
expressed in [MV.m–1] (Table 1.2).



Mathematical Examination of Dielectrics 5

Air Silica glass Jarylec (liquid) Phlogopite mica PolyEthylene
3 20 35 60 300

Table 1.2. Dielectric strength under direct current (DC) of a
number of insulators, expressed in [MV.m–1], with a thickness

of around a [mm] at 25°C

The values encountered in practice are highly variable
depending on the impurities: transformer oil contaminated
with a little water vapor has a strength (or “rigidity”) of
15 [MV.m–1]; when perfectly free of water, this value can
reach up to 500 [MV.m–1]. The “vacuum” itself is not a perfect
insulator: with a field strength of around 100 [MV.m–1],
the negative charges are torn away from metals – a
phenomenon which is greatly facilitated by an increase in
temperature (thermo-electronic effect) and by light (photo-
electric effect).

In addition, ionization may be caused by friction
(triboelectric effect), X-rays and particle/molecule collisions.

The positive and negative charges into which the insulator
molecule is split are called “ions”, which is a Greek word
meaning “to walk”. In effect they are charges moving
(or “walking”) under the influence of the field, once the spring
holding them has been broken.

1.1.3. Polarized dielectrics

Polarization is the characteristic property of dielectrics.
Here, we propose looking at the potential produced by
dipoles.

Calculation of the potential produced by a dipole

Let us consider two electrical charges +q and –q,
separated by a length L, and calculate the potential
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produced at O at a distance r which is far greater than L
(see Figure 1.1):

Figure 1.1. Potential and dipole moment
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This equation can also be written in vector form:
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If we have multiple dipoles in the vicinity of a point in
space, the expression of V becomes:
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This system of doublets is equivalent to a single doublet
whose electric moment would be the geometric sum of the
electric moments. If we now consider an element with volume
dv containing doublets with many directions: the point O is
practically at the same distance from each of them, and
grad(1/r) is the same for all of them, so the moment of dv is
the resultant dm of the moments in the volume dv. Thus, we
are able to define the polarization vector:

/ : electric moment per unit volumeP dm dv=
 

Calculation of the potential produced by a polarized
dielectric

Let us now consider a finite volume for which we know
the vector P at all points.
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With regard to the second term, note that the potential V
created by a charge with volume density ρ is:

0 volume

1 . .
4. .

V dv
r
ρ

π ε
= 

By identification, we can say that div(P) has the
dimension of a volume density of charge, and thus write
that ρ'=-div(P).

With regard to the first term:

– if we apply Green/Ostrogradsky’s theorem:

volume surface

1 .. . .n Pdiv P dv ds
r r

  = 
  



– finally, remember that a surface density of charge σ
gives us a potential V:

0 surface

1 . .
4. .

V ds
r
σ

π ε
= 

By identification, we can say that n.P has the dimension
of a surface density of charge and thus write that σ'=n.P.

Hence, the polarized dielectric produces the same
potential as charges with a volume density ρ'=-div(P) and a
surface density σ'=n.P. We then speak of an equivalent
fictitious charge density. The charges involved in the
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dipolar bonds that cause the phenomenon of polarization of
the dielectric are generally referred to as bound charges.

Let us try to give an idea of what this means.

Figure 1.2 represents the polarized dielectric and the
different dipoles which make it up. These dipoles form
chains; they touch, and the effect of a + pole is compensated
by the – pole of the next dipole. Hence, only the last poles in
the chain, at the surface of the dielectric, are involved. This
electricity has a charge density of σ'. The direction of the
chain at each point is P, and σ' will be greater the more
perpendicular the chain is to the surface – i.e. σ'=n.P.

Figure 1.2. Representation of a uniformly-polarized dielectric
and the dipoles which make it up

In a dielectric, there may be incomplete chains which do
not reach the surface at both ends (see Figure 1.3). In this
case, we have uncompensated charges within the material. If
the rows are parallel, there is no ρ'; for a line to begin, there
must be a separation. We then say that the vector P diverges
and ρ'=–div(P).

With the Maxwell-Gauss equation (or Poisson’s equation),
we see that generally in a polarized dielectric, the electrical
field E is not conservative (equation [1.4]):
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( )
0
:Maxwell-Gauss equationdiv E ρ

ε
=


[1.4]

however ' ( ) 0 : generally the case with a polarized dielectricdiv Pρ = − ≠


0

1hence ( ) . ( ) 0div E div P
ε

= − ≠
 

Figure 1.3. Representation of a divergently-polarized dielectric
and the dipoles which make it up, around a flaw causing an

uncompensated charge

Note finally that on passing through the surface of the
dielectric, because of the density σ'=n.P, the normal
component of the field experiences a jump in value
(equation [1.5]):

' . 0n Pσ = ≠


[1.5]

0

'thus ( ) 0nE
σ
ε

Δ = ≠

1.1.4. Electrical induction

Everything we have just seen leads us to define electrical
induction. Consider the induction vector or electric
displacement D [1.6]:
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0.D E Pε= +
  

[1.6]

where ( ) 0 in dielectrics with no free chargesdiv D =


If in the dielectric there are real charges other than those
equivalent to polarization – which occurs, for instance, if we
have conductors within the dielectric, or if the dielectric is
electrified by friction, by depositing of ions on it, etc. – we
have [1.7]:

( ) : density of real chargesdiv D ρ=


[1.7]

If we wish to apply Gauss’s theorem to real charges not
equivalent to polarization, we apply it to the induction
rather than to the electrical field.

1.1.5. Move from one dielectric to another

The field and the induction usually exhibit a discontinuity
on moving from one polarized medium to another.

We shall use the notation EN and ET to denote the normal
and tangential components of the field in the first medium,
and E'N and E'T for its components in the second. Consider
(Figure 1.4) two nearby points located on either side of the
limitrophe surface S.

Figure 1.4. Representation of the normal and tangential components
of the field in two limitrophe media
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What is the value of the field at these two points?

If a + charge makes an infinitesimal move parallel to S,
only the tangential component is involved. We can
therefore envisage the closed cycle MNN'M' where E and
E' are involved alternately. As E derives from a potential,
the work generated along this circuit is zero; we can also
consider it to be negligible along the segments [M,M'] and
[N,N']. We can also write d(M,N)=d(M',N'), and therefore
ET.d(M,N)=E'T.d(M',N'), which gives us E'T=ET.

From the surface S, let us take a small surface s and
take it to be the base of a very flat cylinder whose bases
can be considered equal. The induction flow D across this
closed surface is equal to the sum of the real charges not
due to polarization. (Note: because of lack of density in
the real volume ρ, it may happen that there is a real
density σ on the separation surface). Across the lateral
surface, the induction flow is negligible, as this surface is
infinitely small. Thus, we can write that the total flow of
D across the bases is: s.D'N-s.DN=s.σ, so that D'N-DN=σ.
Thus, when the density σ of the real charges (not due to
polarization) is null, D'N=DN.

The equations E'T =ET and D'N-DN=σ are valid in all unit
systems and for all dielectrics.

1.1.6. Move from a dielectric to a conductor

In any conductor at equilibrium, the internal electrical
field E and the induction field D are null. In the dielectric,
we deduce from the transition equations that E'T=0 and
D'N=σ. Thus, we show that the field is always normal to the
conductor, in line with Coulomb’s theorem.
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Figure 1.5. Field in the vicinity of a conductive sphere placed
in a polarized dielectric

1.1.7. Energy contained in a dielectric

The density of energy stored in a dielectric by plunging it
into an electrical field E satisfies equation [1.8]:

21/ . .
2

W v Eε= [1.8]

The following calculation proves it.

Calculation of the potential energy of polarization
of 1[m3] of dielectric

Let us imagine that this dielectric serves as an
insulator in a flat condenser, whose electrodes of surface
area S are separated by a distance e. The voltage is
therefore linked to the electrical field by the relation
V=E.e, and the charge is linked to the induction by the
relation Q=S.σ=S.DN.

Where V is the voltage, if we apply a charge dQ to the
casing, the energy injected into the condenser is
dW=V.dQ, meaning that dW=E.e.S.dDN.

By integration, the energy of the condenser is:

0

. . .
D

NW e S E dD= 

and the density of energy in the dielectric is:
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0

/ .
D

NW v E dD= 

This can also be written in vector form as follows:

0

/ .
D

NW v E dD= 

 

The integral of E.dDN thus represents the energy needed
to polarize 1[m3] of dielectric.

This energy is not really a recoverable potential energy
unless E is a unique function of D or, more strictly
speaking, if there is no hysteresis. This condition is fulfilled
in the following cases:

– perfect dielectrics:

0. where = . rD Eε ε ε ε=
 

– anisotropic perfect dielectrics:

.i ij jD Eε=
 

εij being a constant tensor independent of Ej (which is the
case with crystals);

– “ferro-electric” substances.

In certain temperature ranges, E is no longer a linear
function of D, but there is no hysteresis.

In the first two cases, because of the linear relations
between E and D, the energy density can be written
without the integral:

1/ .
2

W v E D=
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In the case of an isotropic perfect dielectric, we can also
write:

21/ . .
2

W v Eε=

1.2. Perfect dielectrics

Experience tells us that in many dielectrics, polarization
is proportional (approximately) to the electrical field
(equation [1.9]):

0. . where is the susceptibility (> 0)P Eχ ε χ=
 

[1.9]

This observation may appear obvious, in that the
polarization is the result of the application of the electrical
field. The two vectors P and E are therefore parallel and
proportional.

On the other hand [1.10]:

0 0. .(1 ) . .rD E Eε χ ε ε= + =
  

[1.10]

where εr>0 is the dielectric power or the specific inductive
power, also known as the dielectric constant. The expression
“dielectric constant” is practically the only term in common
usage today.

This leads to a significant simplification, because div(D)=0
leads to div(E)=0, which in turn leads to div(P)=0, which
finally yields ρ'=0. Thus, a perfect dielectric has only a
surface density of bound charges (equation [1.11]):

' .n Pσ =
 [1.11]

and its energy per [m3] is equal to [1.12]:
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21/ . .
2

W v Eε= [1.12]

Note that gases are perfect dielectrics.

The same is also true of liquids, provided the frequency is
below a certain limit, which is generally at least several
megahertz. However, with liquids, we have to take account
of losses due to their conductivity. Liquids with a high
dielectric constant (εr >10) cannot be used as insulators,
because their conductivity is too high.

Heterogeneous solids are the most imperfect dielectrics.
Conversely, certain homogeneous polymers (polyethylene:
-[CH2-CH2]n-, polystyrene: -[CH2-CH(Ph)]n-) are practically
perfect, even at very high frequency. In general, with solids
used as insulators, εr varies between 2 and 8, except in
certain ceramics specially formulated for condensers where εr
reaches 100.

To characterize a perfect dielectric, we only need to know
its dielectric susceptibility χ; thus we know εr, which is the
“specific inductive power” (Table 1.3).

Gases Liquids Solids

εr≈1 εr = 2 to 100 εr = 2 to 1000

Table 1.3. Order of magnitude of the dielectric constant εr (static)

1.2.1. Refraction of force- and induction-lines

Determination of the line of force refraction law

To the general relations: E'T =ET and D'N–DN=σ, we must
add D=ε.E and D'=ε'.E' where ε= ε0.εr (the lines of force and
of induction are therefore identical). Consider (Figure 1.6)
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the angle φ' (or φ) formed by D' (or D) with the normal to
the surface. We then have:

' 'tan ' and tan
' '
T T T T

N N N N

E D E D
E D E D

ϕ ϕ= = = =

so:

' '. 'tan ' '. . .
tan ' . ' '

N N NT T

T N T N N

D D DD E
D D E D D

εϕ ε
ϕ ε ε

= = =

When σ=0, D'N=DN then we get the simplified force-line
refraction law:

tan ' '
tan

ϕ ε
ϕ ε

=

Figure 1.6. Refraction of lines of force on moving from
one medium to another

The lines of force move closer to the normal when they
pass from a dielectric into air. We can express this fact by
saying that dielectrics attract the lines of force. If ε'r<εr then
φ'<φ. If, for instance, εr=100 and if φ is not overly large, the
lines come out of the dielectric into the air in an almost
normal direction.

There is a similar formula in the case of magnetism: for
unsaturated iron, μr is very large, so tanφ#0; the lines of force
in the air are practically normal to the surface of the iron,
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which is approximately a magnetic force equipotential
surface.

All the above results on the refraction of lines of force are
valid on condition that DN=D'N, meaning that the surface
density σ is null at the separation surface between the two
dielectrics. This point is generally accepted unquestioningly,
which is a serious mistake.

Indeed, charges may reach the surface by any conductive
phenomenon in dielectrics. Exactly as happens in the case of
combination of condensers, we cannot be certain that the
density σ will remain null unless the field is generated by
alternating current and its frequency is sufficient.
Otherwise, if it is continuous or if only its average value is
non-zero, the inevitably conductive phenomena will cause a
density σ and the force-line refraction will therefore be
reversed, unless the resistivities ρ (or ρ') and dielectric
constants ε (or ε') of the different media satisfy the relation
ρ.ε=ρ'.ε'=ρ''.ε'', which expresses that the time constants τ=ρ.ε
of these media are the same.

There is a particularly striking example which shows
the enormous errors which can occur with the conventional
refraction law if we do not take account of the density σ.
Such is the case with solid dielectrics immersed in an
ionized gas and subjected to a DC electrical field. If these
solids have high resistivity, like most plastic materials
used in electrotechnics, and if the air is sufficiently ionized,
as is the case in the vicinity of a high-voltage piece of
machinery, we may consider that the amount of charge
which reaches the dielectric through the air cannot
practically be evacuated by conduction through it. In other
words, the gas is much more conductive than the solid. In
these conditions, ions will accumulate on the surface of the
solid, forming a more or less dense layer. If a state of
equilibrium is reached (which is not always the case, with
the layer sometimes being swept by a disruptive discharge
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when it reaches a certain density), this means that the
electrical field can no longer deposit ions on the surface, so
its normal component in the air is null. The final shape of
the lines of force is therefore the same as if the solid’s
dielectric constant, instead of being higher than that of air,
had become zero. The lines of force in the air are tangents
to the surface instead of being nearly normal to it.

1.2.2. Field in the vicinity of a charged conductor

We have already established that in the vicinity of a
conductor immersed in any dielectric, ET=0, meaning that
the field is normal to the conductor (the surface is an
equipotential surface) and DN=σ.

In a perfect dielectric placed at the surface of a conductor,
E'=σ/ε (Figure 1.7, left). The involvement of ε is explicable by
the appearance of an electrical density with fictitious charge
σ' which is opposite to the density σ of the conductor, and has
the opposite sign.

Thus, we can replace this dielectric with the plane of
fictitious charge σ'=n.P equivalent to its polarization
(Figure 1.7, right). The field at point M' therefore has the
expression E'=(σ'+σ)/ε0. Thus, we derive the relation [1.13]
between σ' and σ.

0
1' / ( ') / ' 1
r

E σ ε σ σ ε σ σ
ε

 
= = +  = − − 

 
[1.13]

If ε increases, with the value of σ remaining constant, E'
decreases, and the removal of the field (from the dielectric) is
almost total with a high value of ε (though this is only true if
the charges in the conductors are constant); the same is true
in magnetism for substances with high permeability.
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Figure 1.7. Dielectric in the vicinity of a charged
conductor: calculating the field

1.2.3. Electrostatic pressure

Calculation of the ordinary electrostatic pressure
with the energy

Remember that the variation in energy dξ is equal to the
work of the forces:

. because . and . [ ]d p dv F p dS d F dl Jξ ξ= = =

Remember the expression for the volume electrostatic
energy:

2 3
0

1/ . . [ / ]
2

W v E J mε=

From this, we deduce the following equality and the
expression of the pressure:

2 2
0 0

1 1. . . . . . [ ]
2 2

E dv p dv p E Paε ε=  =

Thus, when the volume of the conductor increases, the
domain of E decreases, and with it the energy that it holds.
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The same reasoning is valid if the conductor is immersed
in a dielectric, but here the electrostatic pressure is the
resultant of the forces exerted on the conductor and the
dielectric:

2
21 1. . [ ] or indeed . [ ]where /

2 2
p E Pa p Pa Eσε σ ε

ε
= = =

Thus, electrostatic pressure tends to cause an increase in
the volume of the conductor.

1.2.4. Corresponding elements

Consider two conductors C1 and C2 and an induction tube
which runs from the first to the second, and then close this
surface with Σ1 and Σ2 (see Figure 1.8). According to Gauss’s
theorem, the flux Φ of induction D across this closed surface
is null. Thus, we are able to show the electrical charges
carried by two corresponding elements which are perfectly
opposite [1.14]:

0 ' 'q q q qΦ = = +  = − [1.14]

When the elements are in total influence, i.e. when the set
of field lines emanating from one conductor leads to the
other conductor, then the first conductor carries a charge
which is totally opposite to the second.

Figure 1.8. Illustration of corresponding elements
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1.2.5. Equilibrium in a system of conductors

The equilibrium of a system of conductors placed in a
vacuum is determined if we know the charge Q or the
potential V for each of the conductors. The same is true when
the conductors are surrounded by a perfect dielectric.

In the vacuum, we base our reasoning on the following
equality ([1.15]):

2
0

1 1. . .
2 2k k

k
W Q V E dvε= =  [1.15]

If V=0 or Q=0 for each of the conductors, W=0, then the
triple integral of E2.dv is a sum of positive quantities which
can only be null if E is null everywhere.

The same thought process can be employed for a system of
conductors immersed in a perfect dielectric. The quantity
εr.E2 which replaces E2 in the energy expression is always
positive: hence, its integral can only be null of it is null
everywhere, meaning that E=0.

The state of a system of conductors immersed in a perfect
dielectric is therefore determined completely by knowing the
total charge or the potential for each conductor.

If, however, the dielectric is imperfect, the reasoning is no
longer valid. We can perform a calculation which shows the
following equality ([1.16]):

. . .k k
k
Q V E D dv= 

 
[1.16]

However, in general, this quantity is no longer equal to
the energy, and we can no longer state definitively that it
will be positive. The usual properties for systems of
conductors disappear: thus, the casings on both sides of a
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condenser may be taken to the same potential, but this does
not necessarily mean that their charge will be null. In
addition, the system’s energy is no longer really null either,
although ½.ΣkQk.Vk=0 if we consider V=0, because residual
charges may gradually appear.

1.2.6. Capacities and influence coefficients

Firstly, it should be remarked upon that the distribution
of the potential does not change if we fill the whole space
with a homogeneous dielectric, because the equation
div(E)=0 remains valid. The volumetric density ρ' is null and
the surface density of the bound charges σ' is such that
σ+σ'=σ/εr. From the viewpoint of the field and the potential,
it is as if σ had been divided by εr.

We conclude that the distribution of the electricity on the
conductors and of the field in space is the same as if there
were no dielectric, except that the field and the potential are
εr times less than in the vacuum, while the charges of the
conductors remain the same. This can also be stated as
follows:

– where the potentials of the conductors are assumed to
be constant, their charges are εr times greater than in the
vacuum. The capacities and influence coefficients are
therefore multiplied by εr.

Note that this result is true only if the whole space
between the conductors is filled with a dielectric. Thus, the
dielectric medium has to extend to infinity, or at least extend
to fill the enclosed space containing the conductors.

With regard to the forces which are exerted on the
conductors, the electrostatic pressure ½.ε.E2 can be written
as ½.σ2/ε. Hence, if the charges remain constant, the forces
are εr times lesser than in the vacuum. This tendency can
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also be seen is the expression of the force of interaction
between two point charges (equation [1.17]).

2
0

1 . '.
4 r

q qF
rπε ε

= [1.17]

The above results apply to condensers. We can see that
the capacity of a closed condenser, completely filled with a
dielectric, is multiplied by εr. This is valid for modern models
of condensers which are practically closed (although not
rigorously, with the exception of the spherical condenser).

This can be seen by a direct reasoning process in the case
of a flat condenser. Consider V1 and V2 to be the potentials of
the casings. The field between them is uniform, and we have:
V1-V2=e.E (e being the distance between the casings). In
addition, in a dielectric material: E=σ/ε, where σ is the
density of the free charge carriers on the surface of the
metal. However, the total charge is Q=σ.S, which gives us
equations [1.18] and [1.19]:
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. .

.
e Q eV V
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σ
ε ε

− = = [1.18]

1 2

.Q SC
V V e

ε
 = =

−
[1.19]

Let us now examine what happens if only part of the gap
between the casings is filled with dielectric, as illustrated by
Figure 1.9.

Figure 1.9. Electrode/vacuum/dielectric/electrode condenser
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1 2 '. ' .V V E e E e− = + [1.20]

however:
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but:
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[1.24]

If e=0, we again see the well-known formula. Let us note
in passing that the induction D retains the same value
everywhere, as it is perpendicular to the surface between the
dielectrics (equation [1.25]):

0. ' .D E Eε ε= = [1.25]

1.2.7. Calculation of the interstitial field

It is possible to calculate the field and the induction, as
well as the capacities and influence coefficients, on the basis
of data relating to the system of conductors in the vacuum,
in both the following cases, where the dielectric only
partially fills the space between the conductors:

– the dielectric is bounded by equipotentials (Figure 1.10);

– the dielectric is bounded by force tubes (Figure 1.11).
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With the first hypothesis, we have the same problem as
for the previous condenser. The field and induction are
normal to the surface of the dielectric. If this surface carries
no real charge, we have D'N=DN. If the conductors carry the
same charges, the induction everywhere is the same as if
there were no dielectric, because in the vicinity of the
conductors it is always D=σ. On the contrary, the field is
smaller in the dielectric; instead of being D/ε0, it becomes
D/ε. With constant charges, the differences in potential (DP)
between the conductors are smaller. The problem is
equivalent to that found for condensers with cascaded
arrangements of dielectrics and vacuums.

With the second hypothesis, the field and induction are
tangents to the surface of the dielectric, so ET=E'T. If the
conductors exhibit the same DPs, the field everywhere is the
same is if there were no dielectric. Conversely, the induction is
greater in the dielectric: it is ε.E instead of ε0.E. The charges
and capacities of the conductors are greater with constant
potentials. The problem is equivalent to that of parallel
condensers.

Figure 1.10. Interstice parallel to the equipotentials

Figure 1.11. Interstice parallel to the induction tube
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It is important to note that in any crack in the
dielectric transversal to the lines of force, there
appears a field E'=εr.E. The gas which fills the
crack is therefore far more susceptible to
ionization than that which surrounds the
dielectric outside. This explains why the
introduction of a cylindrical insulating column
between the casings of an air-insulated flat
condenser can considerably hasten breakdown in
air along the column. Although in principle the
field is unchanged, it is considerably increased in
the interstitial space remaining between the
bases of the column and the casings, and
breakdown results from this. We can verify that
this occurs with a voltage that decreases with an
increasing value of the dielectric constant of the
column. Conversely, if the air is replaced by a
liquid whose constant is greater than that of the
solid, no such phenomenon occurs.

Box 1.1. Careful of cracks!

1.2.8. Depolarizing field

When a piece of a perfect dielectric is immersed in an
electrical field E, we must not allow ourselves to believe that
the polarization is P=χ.ε0.E, and the induction D=ε.E,
because the (bound) polarization charges which appear on
the surface of the dielectric greatly modify the primitive
field. This modification is always a decrease. For this reason,
we say that any dielectric creates a depolarizing field
(similar to the demagnetizing field with soft iron). Only with
dielectrics of very low susceptibility (gases) can the
depolarizing field be discounted. Conversely, when the
dielectric constant is high, the influence of the depolarizing
field is very significant.
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The simplest example of a depolarizing field is provided
by conductors (carrying fixed charges) surrounded by a
dielectric with constant εr (Figure 1.12). If, before the
introduction of the dielectric, the intensity of the field at a
given point is E, we would find – if we ignore the
depolarizing field – that the induction should become ε.E in
the presence of the dielectric. In actual fact we know that
this result is entirely false, and that in reality the field is
divided by εr, such that D does not change when we introduce
the dielectric.

Figure 1.12. Charged conductive sphere immersed in a perfect dielectric

The effect of the depolarizing field is more difficult to
calculate when the dielectric fills only some of the space in
which the field is.

As our first example, let us consider the case of a
dielectric sphere with constant εr (Figure 1.13) or
(Figure 1.15).
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Figure 1.13. Dielectric sphere immersed in a uniform field
and then removed

If we ignored the depolarizing field E', we would say
simply that the sphere acquires a polarization P=χ.ε0.E, but
this approach is wrong.

Calculating the depolarizing field in a dielectric
sphere

If we make the analogy suggested by Figure 1.14, we obtain:

0 0 0 0

.' . .
3. 2 3. 2 3. 3.

L L L PE ρ ρ ρ
ε ε ε ε

− −= + = − = −
   

(on the axis of polarization)

Figure 1.14. The field of a polarized sphere is the sum of the fields
produced by two uniformly-charged spheres placed a distance L apart

Calculating the polarization and the induction in a
dielectric sphere

Uniform polarization P produces a depolarizing field:
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Figure 1.15. Dielectric sphere extracted from a
uniformly-polarized medium

The formulae relating to P and D demonstrate the
influence of the depolarizing field. If χ is small in comparison
to the unit, the value of εr is close to 1. Obviously P=χ.ε0.E
and P is significantly smaller than ε0.E. However, once εr
reaches the value of a few units, then P is of the same order
as ε0.E; for instance, if εr=4, P=3/2.ε0.E and D=2.E.ε0. If εr is
very large, the induction – instead of being great – is simply
equal to 3.E.ε0.

The hypothesis that the depolarizing field is uniform is
borne out by the fact that a density in the form σ0.cos(θ) on a
sphere causes a uniform field inside it. Indeed, it is the
density which appears on a conductive sphere immersed in a
uniform field.

The simplicity of the above calculation is due to the fact
that the depolarizing field is uniform. This property is
common to all dielectric quadrics immersed in a uniform
field. If the external field is not directed along one of the axes
of symmetry of the quadric, the depolarizing field forms an
angle with it but retains its uniformity.

For each axis of the quadric, we can define a coefficient of
depolarizing field A, which gives us the depolarizing field E'
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created by a polarization P parallel to that axis
(equation [1.26]):

0
' . PE A

ε
= −


[1.26]

The sum of the coefficients for the 3 axes of the quadric is
equal to 1. This property enables us to immediately find the
coefficient of the 1/3 sphere because of symmetry.

As a particular example of a quadric, we can take a blade
with parallel faces perpendicular to the field (Figure 1.16a).
Thus, the depolarizing field is E' = −P/ε0 and D = ε0.E.
Hence, the effect of the depolarizing field is maximum.

Similarly, a circular cylinder whose generatrices are
perpendicular to the external field (Figure 1.16b) will yield
E'=-P/2.ε0 and D=2.ε0.E.

Figure 1.16. Depolarizing field in different (quadric) geometric forms:
a) slip; b) cylinder ┴E; c) cylinder //E; d) ellipsoid //E; e) ellipsoid ┴E

Conversely, if the same (infinite) cylinder is parallel to the
field (Figure 1.16c), the depolarizing field is null and D=ε0.E.
The coefficient 1/2 is found immediately by thinking that it
is valid for 2 axes of the quadric because of the revolution
symmetry, whereas, for the axis of revolution, the coefficient
is zero.
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It is easy to calculate the depolarizing field of an ellipsoid
of revolution whose large axis is parallel to the external field
(Figure 1.16d). Since we know that the polarization is
uniform and parallel to the axis, we need only calculate the
coefficient of depolarizing field A1 in the center. With
uniform polarization P, we find [1.27]:

2

1 2 3
1log 2
12. .

b eA e
ea e

 + = −  −  
[1.27]

(a = large axis, b = small axis, e = excentricity). The
coefficient of depolarizing field A2 for a field perpendicular to
the axis of revolution (Figure 1.16e) is obtained by writing
that the sum of the three coefficients is 1. Hence, it is equal
to equation [1.28]:

2

2 2 3
1 11 log 2
2 12. .

b eA e
ea e

  + = − −   −    
[1.28]

When we are no longer dealing with a quadric, the
depolarizing field is no longer uniform, even if the primitive
field is uniform. The calculation is generally more difficult,
because it is a problem much like that of equilibrium of
conductors. It is precisely because the problem of equilibrium
of conductive quadrics is simple that we also have simple
results for dielectric quadrics.

A difficult problem, for example, is that of a dielectric bar
with a circular cross-section and of finite length, immersed
in a uniform field parallel to its axis. We can easily see that
the depolarizing field cannot be uniform and that the real
polarization must decrease towards the extremities, forming
a considerable angle with the axis, so that the surface
polarizing charges cover not only the end surfaces, but also
the lateral surface near to the extremities, as we can see in
real life. However, if the bar is relatively long and narrow,
we can accept that the polarization is essentially uniform
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throughout the majority of its volume. This is equivalent to
viewing it as an ellipsoid with greatly elongated revolution.

The depolarizing field coefficient can then be calculated
approximately in the center as being (1−cos(θ)) with θ=r/2.l
or noticeably (r2/(2.l2))/(4) (remember that r is the radius
and l is the length of the bar).

Yet it may be remarked upon that this result does not
coincide with the coefficient relating to the ellipsoid with
supposed greatly-elongated revolution. It is likely that the
coefficient of the ellipsoid represents a better approximation,
because – for both the bar and the ellipsoid – there are
charges on the lateral surface, which are not taken into
account by the simplified formulation, and which increase
the depolarizing field.

All these developments on the depolarizing field in the
dielectrics are mathematically identical to those encountered
in magnetism with regard to the demagnetizing field.

Numerically speaking, there are certain differences in the
orders of magnitude. The dielectric constants are generally
less than the magnetic permeability of the iron, but there are
no phenomena resembling saturation, except in the rather
rare case of “ferro-electric” substances (titanates, Rochelle
salt).

1.3. Forces exerted on polarized dielectrics

1.3.1. Forces exerted on a rigidly-polarized solid
dielectric

To begin with, we shall assume that the polarization is
rigid, meaning that it is independent of the external field
applied.
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We shall also suppose that there are no real charges, for
which we know the calculations.

In a uniform field, a piece of dielectric is subject only to
torque force. Indeed, as the total polarization charge is null,
the resultant of the electrical forces is also null
(equation [1.29]):

. . 0F q E E qΣ Σ Σ= = =
 

[1.29]

Each dipole m is subjected to torque (equation [1.30]):

m EΤ = ∧
  

[1.30]

The geometric sum of these torques is given by
equation [1.31]:

( ) ( )m E m EΣ Σ∧ = ∧
   

[1.31]

The vector Σm thus represents the electric moment of the
piece of dielectric.

In a non-uniform field, there are both torque and a
resultant.

We can easily verify that the potential energy of a dipole
of moment m in an electrical field of intensity E is: W=-m.E.
The resultant R of the forces acting on the dipole is thus
(equation [1.32]):

. .x
W m E ER m
x x x

∂ ∂ ∂= − = =
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[1.32]

For a piece of dielectric, we would thus have
(equation [1.33]):
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ER P dv
x

∂=
∂


[1.33]
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It is easy to show that we can replace the dipoles or
polarization with fictitious densities ρ' and σ' in calculating
the forces.

The energy of the dielectric in the field E is [1.34]:

. . . .W P E dv P gradV dv= − = 
   

however:

( . ) . .div V P V divP gradV P= +
   

thus:

( . ). . .W div V P dv V divP dv= − 
 

. . . . .W nV P dS V divP dv= − 
  

hence:

. '. . '.W V dS V dvσ ρ= −  [1.34]

W is the energy in the field of potential V with charges of
densities ρ' and σ'.

Thus, we need only calculate the forces exerted by the
field E on the elementary charges ρ'.dv and σ'.dS.

The above results relate only to solid dielectrics. Only in
this case are we able to add torques, consider a resultant and
say that the global energy determines the forces entirely. In
addition, only solids can be rigidly polarized.
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1.3.2. Forces exerted on a solid perfect dielectric

If we now look at a solid dielectric – this time not rigidly
polarized but perfect – the results are different, although the
action of the external field on each dipole remains the same.
Indeed, it is now the diminished external field of the
depolarizing field which determines the polarization.

In a uniform field, a piece of solid perfect dielectric can
only be subject to a torque force, but this torque is zero
whenever the depolarizing field is colinear with the external
field. Such is the case of a sphere or a quadric immersed in a
uniform field parallel to one of its axes. On the other hand, if
an ellipsoid, for instance, is subjected to an oblique field, its
polarization is not parallel to the field because the
coefficients of the depolarizing field are not the same for all
three axes. This results in a torque tending to bring the large
axis parallel to the field. The same result is seen with a
cylindrical bar.

These phenomena are absolutely comparable to those
observed with ellipsoids or soft iron bars in a magnetic field,
or even simply with iron filings.

In the case of electrostatic, iron filings mimic the behavior
of textile fibers or animal hairs which undergo high-energy
orientation effects in a field and form chains between the
electrodes. This phenomenon is damaging at high voltage
levels, because these filaments greatly encourage sparking.
The effect of fiber orientation is largely exploited in
electrostatic flocking, a technique whereby a (sticky) surface is
covered with perpendicular fibers, which produces a highly
desirable fake velvet effect.

If m is the moment of the piece of dielectric in the uniform
external field E, the torque is always T=m∧E. For instance,
in the case of a dielectric ellipsoid, we can take the axes to be
those of the ellipsoid. In addition to the three components Ex,
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Ey and Ez, there are three corresponding components Px, Py

and Pz determined by the coefficients of the depolarizing field
Ax, Ay and Az. Remember that:
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The torque components are calculated as follows:

. .x y z z yT m E m E= −

Yet the dipole moment of the ellipsoid of volume v is
m=P.v because P is uniform, so:
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These components are obviously all zero if the field is
directed along one of the axes of the ellipsoid. If the field is in
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one of the ellipsoid’s planes of symmetry, the torque is
perpendicular to it; it is maximal when the field forms a 45°
angle with the axes.

Sometimes, we use a dielectric ellipsoid to measure the
dielectric constant by looking for the maximum torque in a
given field.

If the solid perfect dielectric is subjected to a non-uniform
field, we can always find the resultant moment and the
resultant of the forces by looking for the polarization at each
point, or the fictitious charge equivalent to polarization. For
a given state of polarization, the mechanical action of the
external field is the same as if the dielectric were rigidly
polarized. In order to find these forces, we need only look at
what has already been said about them.

Very frequently, at all points of the dielectric, we know
the total field (final, internal, macroscopic) rather than the
external field (initial, applied).

Unlike what takes place, for instance, with a distribution
in volume of real charges, where the force per unit volume is
dF=ρ.E.dv, E being the total field and ρ the charge density,
we cannot say that the force exerted on an element with
volume dv made of the solid perfect dielectric of polarization
P is P.(dE/dx).dv or the torque P∧E.dv, where E is the total
field. This gives us absurd responses. Thus, the torque
P∧E.dv would always be zero because P=χ.ε0.E, but in
general this is not the case. The reason is that the
contribution of the element of volume dv to the total field
does not tend toward zero with decreasing dimensions of the
element.

Indeed, if the element is spherical, of radius a, its moment
is approximately P.a3, and the field that it creates is around
P.a3/a3, or in other words, around P. Conversely, an element
with volume containing a density ρ has a charge of around
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ρ.a3 and creates a field of around ρ.a3/a2=ρ.a, which tends
toward zero as a does. Hence, the forces exerted on an
element of polarized volume cannot be calculated on the
basis of the total field, which contains an unwanted
contribution of finite value, from the element in question
itself.

The total field cannot be used to calculate the
action of the rest of the dielectric (and of other
electrified substances) on the element.

Box 1.2. Limitation of the total field

The only method that we can use is the energy method. In
order to calculate the resultant and the resultant moment of
the forces applied to a piece of solid perfect dielectric, we
calculate the total energy of the system [1.36]:

21 . . .
2

W E dvε=  [1.36]

and we evaluate the variations dW/dx of that energy in an
infinitesimal translational (dx) or rotational movement (dα)
of the dielectric. If the potentials are constant during that
movement, we would have:

x
WR
x

∂= +
∂

WT
α

∂= +
∂

and if the charges are constant, we use the same formulae
but with minus signs.
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Calculating the forces exerted on a dielectric slip
contained in a flat condenser

A flat condenser has a dielectric slip, which can slide
between the casings with no friction (see Figure 1.17).

Figure 1.17. Flat condenser with a moving dielectric slip
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2 2slip airW E v E vε ε= +

If the slip moves horizontally, the energy does not
change; thus, the resulting force has no horizontal
component. With an upward vertical movement Δx, we have
Δvslip=a.e.Δx and Δvslip=Δvair. Hence:
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That is, a vertical upward force:
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2

F a e Eε ε= −

Thus, the slip is attracted to those regions where the field
is strongest – this is an extremely common phenomenon.

1.3.3. Forces exerted on a liquid dielectric

Liquid dielectrics are always perfect (conduction apart), so
we are dealing with the same conditions as in the previous
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case. However, we cannot compound the forces applied to a
liquid; as the liquid is supposed to be in a state of
equilibrium, the electrical forces result in a pressure
additional to that caused by gravity, capillary forces, etc.
This pressure can also be calculated by an energy method.

Calculation of the forces exerted on a dielectric liquid
in a flat condenser

A flat condenser with horizontal casings is partially
filled with a dielectric liquid. When a potential difference is
applied, the level of the liquid tends to rise. The pressure,
which – in the immediate vicinity of the surface – was equal
to atmospheric pressure, then becomes less.

Figure 1.18. Force exerted on a liquid in a flat condenser

In order to calculate this drop in pressure, we need only
imagine a movement of the surface – e.g. a rise. If eair and
ediel are the thicknesses of air and liquid between the
casings, the capacity of the condenser is:
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and the energy:
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If the liquid rises by Δx, the energy changes by:
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so we have the pressure:
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Yet the field in the air is equal to:
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If the dielectric is free to rise, it fills the whole of the
condenser. Were we to balance out this pressure with a
drop in level by a height h, we would have h.ρ.g=p.
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1.3.4. Electrostriction

In our calculations, we have thus far assumed solid
dielectrics to be non-deformable and liquids incompressible.
In reality, this is not the case. Solids are elastic, and liquids
are compressible, and the dielectric constant changes with
such deformations. From this, it results that the compression
of a liquid, for instance, leads to a change in energy, and that
consequently, we see in an electrical field an additional
pressure relating to compressibility, which is not accounted
for by our previous calculations. This pressure tends to cause
a contraction of the liquid, which we call electrostriction.

Quantification of the phenomenon of electrostriction
of a liquid in a flat condenser

A flat condenser is filled with liquid; this liquid fills a tube
which ends in an area where there is no field. When voltage
is applied, the liquid contracts and moves back down the
tube. The pressure inside the condenser has thus increased.

Figure 1.19. Illustration of the phenomenon of electrostrition
of a liquid in a flat condenser

To find out how much the pressure has increased by, as
before, we need only write:

.p v WΔ Δ− =
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However:

21 . . .
2

W E vΔ Δε=

where v is the volume of the condenser.

Thus:
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The increase in pressure p is the same as the electrostatic
pressure:

2.~
2
Ep ε

which is a tiny fraction of an atmosphere.

The actual contraction of the liquid, therefore, is
extremely slight.

Electrostrition in solids has significant applications,
because it enables us to transform electrical energy into
elastic deformation and construct oscillating electrostatic
motors which can be rather powerful (e.g. quartz or titanate
ultrasound generators).

1.4. Dielectric losses

Dielectric losses occur when E is not a unique function of
D. We have seen that the energy supplied to a dielectric per
unit volume is equal to [1.37]:
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[1.37]



46 Dielectric Materials and Electrostatics

If we describe a closed cycle, this integral is zero only if
E assumes the same values with the same values of D.
Otherwise, there is ultimately an energy exchange between
the dielectric and the voltage source. Experience shows us
that the energy is absorbed by the dielectric, and that almost
all of it is given off in the form of heat.

The energy dissipated per cycle per unit volume is
therefore equal to the integral [1.38]:

/ .cycle
cycle
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[1.38]

However, as [1.39]:

0.D E Pε= +
  

[1.39]

this integral is reduced to [1.40]:
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[1.40]

If E and P are colinear, we can represent their variations
on the coordinates plane (E,P), obtaining a hysteresis cycle
whose area represents the energy dissipated per cycle.

The hysteresis cycle is generally elliptical in shape, except
if the losses are due to the ionization of gas vacuoles or if we
are dealing with titanates, which give curves similar to those
for ferromagnetic media.

We can also characterize the imperfections of a dielectric
by way of another concept: the loss angle.

Suppose we have an imperfect-dielectric condenser,
subject to an AC field with pulsation ω=2π.f. We have the
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relation: I''=V/Z''. I'' is the quadrature component of the
current, Z'' is the purely imaginary component of the
condenser’s impedance, given by Z''=1/(C'.ω), where C' is
the condenser’s capacity expressed in [Farads]. From this,
we can deduce the strength of the current running through
the condenser [1.41]:

'' '. . and ' '. . .sinI C V I C Vω ω ϕ= = [1.41]

The power required by such a condenser is [1.42]:

. .cosP V I ϕ= [1.42]

where φ is the phase-shifting of the voltage in relation to the
intensity. With a perfect dielectric φ=-π/2, and in this latter
case, P=0 – in other words, the condenser integrally restores
the energy that it receives.

If the dielectric is imperfect, φ=δ-π/2, then we have
P=V.I.sin(δ)≠0, where δ characterizes the losses, and is
called the loss angle (Table 1.4). However, the imaginary
component I' of the current I is I.cos(δ)=V.C'.ω, which gives
us equation [1.43]:

2 2'. . . tan '. .2 . .tanP C V C V fω δ π δ= = [1.43]

As the RMS of the voltage V and the maximum voltage Vm

are linked by the relation Vm=V.√2, the losses also have the
following expression ([1.44]):

2'. . . .tanmP C V fπ δ= [1.44]

Finally, if we use Wm to denote the maximum energy of
the condenser and Wp the energy lost during one cycle, we
have: P=f.Wp and Wm=1/2.C'.Vm2, which gives us the energy
lost in a cycle [1.45]:
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.2 .tanp mW W π δ= [1.45]

PolyVinyl Chloride Epoxy Phlogopite mica Jarylec PolyPropylene

δ=10–1 δ≈10–2 δ≈10–3 δ≈10–3 δ≈10–4

Table 1.4. Order of magnitude of the loss angles δ [radians] of certain
dehydrated dielectrics at f=50Hz and T=25°C

Calculation of the order of magnitude of the losses

If δ is around 0.1, the energy dissipated per cycle is 0.62
times the maximum energy. The losses may therefore reach
a considerable value.

Consider a 200 [µF] condenser, operating at Vm=100 [V].
Its maximum energy Wm is such that:

6 21 .200.10 .100 1[ ]
2mW J−= =

If its insulator has a loss angle of around 0.15, it
dissipates one [Joule] per cycle. Over the course of 50
periods, this loss adds up to 50 [Watts].

Let us now consider a cable whose dielectric is
characterized by εr=5; suppose that Em=1 [MV/m]. Per m3

of material, we have:

2 6 2
9

1 1 5. . . .(10 ) 22 [ ]
2 2 36 .10m mW E Jε

π
= = =

If the cross-section of the dielectric is S=10 [cm2], a
meter of cable represents a volume of 103 [cm3]. Hence,
Wm=0.022 [J]. If δ=0.15, Wp≈Wm=0.022 [J], and if
f=50 [Hz], P=1.1 [W]. For 1 [km], therefore, the losses are
equal to 1.1 [kW].
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Dielectric hysteresis has been demonstrated with radio,
where the frequencies are high. Currently, dielectric losses
are observed in numerous applications, and generally have
an unfavorable effect. The dielectric losses are high with
strong fields and high frequencies.

Since the loss angle generally increases with temperature,
as the temperature rises its value increases, and the risk of
breakdown is increased. This is one of the reasons why the
issue of insulation is more difficult with AC voltage than
with DC.

At high frequencies, even if the field is slight, the losses
are still considerable because a very large number of cycles
take place each second (f=105 [Hz] at 1010 [Hz] in practice).

If the power is negligible, there is no heating, but we
witness a damping effect which is harmful to the quality of
the circuit (resonance). This is why all radio condensers use
air or mica strips, to minimize losses.

If the power is high, we see a heating effect which may
continue until the insulation melts or is destroyed. In ultra-
short-wave devices where the frequencies are extremely
high, of around 1010 [Hz], dielectric losses are extremely
problematic; hence, we use solid insulators as little as
possible.

On the other hand, dielectric hysteresis has useful
applications. It is sometimes necessary to heat an insulator,
developing heat uniformly throughout its mass, because given
that insulators are generally very poor heat conductors, it is
difficult to heat them quickly using conventional methods
without subjecting certain points to extremely high
temperatures. Thus, we can quickly vulcanize large pieces of
rubber, quickly melt plastic material, dry wood, etc., to say
nothing of microwave ovens!
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1.5. Residual charges

Residual charges in condensers are also caused by
dielectric hysteresis. Consider a flat condenser using an
imperfect dielectric. When the charge is released, by running
a conductor between its casings, the DP becomes null, but
the dielectric remains polarized: its polarization is P. On the
two faces of the insulating strip, it gives rise to polarization
densities +P and –P, which create a field P/ε0 inside. Given
that the DP between the casings is null, they must generate
an equal and opposite field and have opposite densities.
Hence, each casing bears a P.S if S is its surface. With all
means of communication between the casings having been
removed, if we wait a certain amount of time, the
polarization gradually disappears. The charges of the
casings, which have been retained, create a field which is no
longer compensated by that of the polarization charges and,
consequently, a DP between these casings. The condenser is
once again charged and will give rise to a residual discharge
when the casings are joined by a conductor.

Residual charges are particularly marked with solid
dielectrics. Condensers can remain charged for days after an
installation has been shut down, even when we believe all
danger has been averted. We remedy this situation by
shunting high-energy condensers with a fairly high discharge
resistance so as not to cause any appreciable dissipation of
service.

It is very important to point out that the phenomenon is
only possible because the charge of the condensers no longer
determines its equilibrium state, and that with a non-null
charge their corresponding DP may be null or non-null
depending on the polarization of the dielectric. Thus we can
see how, if the insulator is imperfect, it is no longer enough
to know the charge or the potential of each conductor to
determine the equilibrium state of the system.
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1.6. Electrets

The curious phenomena presented by electrets, which
were discovered in the 1930s, offer a particularly striking
example of residual charges.

Electrets are obtained by allowing certain waxes to
solidify in an electrical field. Thereby we obtain pars which
(apparently) exhibit permanent and constant polarization
(like a magnet) – hence the name.

In fact, we cannot be dealing with real polarization of the
dielectric, because of the constant presence of ions in the air
which tend to neutralize it. In addition, when exposed to a
highly conductive medium (e.g. humidity, ionized air, etc.),
the electret seems to lose these properties, but it regains
them if it is left in a sheltered environment for a certain
amount of time, and particularly if we remove its external
field by short-circuiting its poles, as we do with a magnet
with its casing.

These recovery capabilities of the electret show that it is
constantly changing, and that the apparent constancy of its
polarization in favorable conditions simply results from the
fact that its effective external field is limited to a set value
by the fixed ionization of the air, which becomes very intense
when we draw near to 3 [MV/m]. If the electret keeps its
field in spite of the ions in the air and regains it after
exposure to a conductive medium, it is because its true
polarization is constantly decreasing, so that definitive
equilibrium between the field from the electret and the field
from the ions fixed to its surface is never reached.

The total amount of electricity that the electret can
exchange throughout its lifetime can be measured by
definitively destroying it by melting it between two plates
connected by an electrometer. This quantity is infinitely
greater than the amount of electricity required to create the
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electret’s external field. In addition, it is noteworthy that the
permanent dipole moment of a molecule is approximately
3.3×10–30 [C.m] (the elementary charge is 1.6×10–19 [C] and
the interatomic distance is around 10–10 [m]) and that 1 [m3]
of matter with density 1 and molecular weight 200 contains
a moment (106/200).6×1023×3.3×10–30, so a polarization of
P=1.10–2 [C/m2]. However, a polarization P=2.67×10–5 [C/m2]
is sufficient to generate the critical field for air,
E=P/ε0=2.67×10–5×36π×109=3.02×106 [V/m]. A gradual
decrease in the initial polarization is therefore sufficient to
maintain the external field in spite of the presence of ions.

1.7. Characteristics of an insulator

From the above discussion, we can see that the
characteristics which it is helpful to specify for industrial
insulators are: resistivity, dielectric rigidity, the dielectric
constant, the loss angle and the mechanical qualities.

– Resistivity: in general, it is sufficient, with the exception
of poor insulators (woods) and many liquids.

– Dielectric rigidity: this is the maximum electrical field
which the material can withstand before breakdown. This
field depends on the conditions of use. In addition, we can
only estimate it to within a certain order of magnitude, so
have to leave a safety margin.

Ionization of the dielectric does not occur for a specifically
determined value of the field. It also depends on the way in
which it is applied. If the voltage is applied suddenly, the
dielectric generally deals with it less well than if it is applied
gradually. With repeated electric shocks (where voltage is
applied for a period of time of around a microsecond),
breakdown of the dielectric occurs at a level of voltage which
is often very low if subjected to a great many shocks. Hence,
it is impossible to state that a dielectric will break down at a
given level of voltage or strength of field. What we do is to
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quote the rigidity – for example for alternating current of
50 [Hz] applied for a determinate length of time.

If the dielectric is solid, it is destroyed upon passage of a
spark, which creates a permanent conductive channel. In an
organic dielectric, it is carbon; in a ceramic, it is a fracture.

Liquid or gaseous dielectrics regenerate quickly when the
ions have recombined (such is the case in compressed air
circuit breakers). With liquids, we have to take account of
the products of decomposition created by the spark, which
may be problematic when there is repeated initialization.

The sudden disappearance of an electrical current (for
instance sudden discharge of a condenser after gradual
accumulation of charge) has the same dangerous effect as a
shock: after a certain number of these “negative” shocks, the
dielectric experiences breakdown, although it could
withstand the same level of voltage indefinitely if it were
kept constant.

The issue of the tenacity of an insulator is thus a highly
complicated one and, in practice, must be examined on a
case-by-case basis. The results obtained in a given case tell
us nothing concrete about the behavior of the same dielectric
in different circumstances. For instance, we would need to
look at the behavior with direct current and alternating
current at low, medium, high and very high frequencies, and
with shock voltage (here specifying the law of establishment
of the voltage).

Generally, it is with constant DC supply that the
performances of insulators are best.

– The dielectric constant: this determines the capacity of
devices insulated with the dielectric (cables, condensers,
etc.). It is generally very low in high-voltage insulation and
high in condensers with an energy storage function.
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– The loss angle: this characterizes the losses from
hysteresis. When dealing with AC, it is crucial to know the
loss angle – all the more so at higher frequencies. At low
frequency (LF), we only need to worry about the loss angle
for condensers, cables, etc., where the field is strong. At high
frequency (HF), all the insulators of a device need to be
studied from this point of view. The loss angle also depends
on the frequency – it generally passes through a certain
number of maxima, and then decreases as the frequency
increases. Thus, we have to know it for various frequencies.

– The mechanical qualities: the mechanical qualities such
as toughness, resilience, etc., are also greatly important.

Name εr (f=50Hz) Es [MV/m] (DC) δ[rad] (f=50Hz)

PolyPropylene 2.2 600 10–4

PolyLactic Acid 2.5 500 –

PolyEthylene 2.3 300 10–4

Polyimide (Kapton) 3.5 250 10–3

Air (30 atm) 1 70 0

Phlogopite mica 6 to 8 60 10–3

Epoxy 3.5 19 10–2

Air (1 atm) 1 3 0

Table 1.5. Dielectric characteristics of dehydrated insulators
a few [mm] in thickness at T=25°C. Es is the breakdown

threshold field strength

1.8. Pyro and piezo-electricity

Hitherto, we have examined the polarization of insulators
by the electrical field. Some crystalline substances are
permanently polarized in the absence of any field. Each of
their molecules forms a dipole and the moments of these
dipoles are oriented the same way, so that every volumetric
element has a non-zero polarization.
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Yet it is not possible to immediately see this polarization.
Indeed, the air constantly contains a small number of ions
(free electrical charges) due to ionization by cosmic rays and
the natural radioactivity of all things (10–20 ion-electron
pairs per second per cm3). These ions are subjected to the
field produced by the polarized crystal; regions with a
positive polarization density σ'=P.cos(α) receive negative
ions; negative regions receive positive ions. Thus, the ions
form a layer of electricity which destroys the field produced
outside by polarization, and the phenomenon continues until
compensation is perfect, and the ions in the surrounding air
are no longer subjected to any force.

Thus, a permanently-polarized substance has its
polarization masked by the fixation of ions from the air,
which it is impossible to get rid of. However, if by any means,
we alter the polarization, this alteration will be perceptible
until the substance has received the additional ions needed
to re-establish compensation – i.e. for a few hours at least.

Apart from the action of an external electrical field, there
are two causes which can alter permanent polarization:

– a variation in temperature (pyroelectricity);

– a mechanical action (piezoelectricity).

We can easily explain these effects by saying that these
factors, by dilatation or compression, alter the density of
molecules, i.e. the number of dipoles per unit volume. The
total moment per unit volume, or polarization, varies at the
same time.

1.8.1. Pyroelectricity

This phenomenon, which has long been known, has no
practical advantage. It is to be seen in tourmaline, for
instance. A splinter of tourmaline, when heated, attracts
light substances.
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As we might imagine, the polarization – or more precisely,
the variation in polarization – is proportional to the
variation in temperature; it changes sign with it. Conversely,
if we polarize a pyroelectric substance, its temperature
changes.

This thermal effect is a consequence of the second law of
thermodynamics; we can work back to this law by
considering that the temperature variation tends to be
opposed to the cause which gives rise to it – the change in
polarization due to the field. Of course, the thermal effect
changes direction as the field does.

1.8.2. Piezoelectricity

Unlike pyroelectricity, piezoelectricity – which was
discovered fairly recently (in the late 19th Century) – is of
crucial technical importance.

The crystal used should have no center of symmetry; thus
in principle, it should exhibit the optical phenomenon of
rotary polarization. In earlier years, only quartz was used.
Nowadays, we also use Rochelle salt (potassium sodium
tartrate), and many different synthetic compounds
(e.g. titanates with high dielectric constants). Piezoelectricity
is closely linked to electrostrition.

An oblong block of piezoelectric quartz, cut to appropriate
proportions (see Figure 1.20), produces the following
phenomena:

If a traction force is applied to the faces ABCD and
A'B'C'D', we witness the appearance of a polarization P
perpendicular to faces ADD'A' and BCC'B'. This polarization
is proportional to the traction force and changes direction if
the traction becomes compression. We see the same results
for pressure exerted on the faces ADD'A' and BCC'D'. The
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polarization P caused by a pressure of 1 [kg.cm2] is 2.07×
10–7 [C/m2]. If the pressure is applied to the faces ABCD and
A'B'C'D', we have to multiply F by the ratio of AA' to AB.
Finally, a force applied to the faces ABB'A' and DCC'D' has
no effect.

Conversely, if the quartz is placed in an electrical field
perpendicular to the faces ADD'A' and BCC'B', polarization
of it leads to a contraction in the direction of AB and a
dilatation in the direction of AA', or vice versa, depending on
the direction of the field, which is the same is electrostrition.

Figure 1.20. Representation of a block of piezoelectric quartz

As the polarization P is proportional to the pressure F/S,
if P and F are colinear (which is often the case), the fictitious
charge Q'=P.S and the force F are proportional. This gives us
the “piezoelectric charge coefficient” KQ = Q'/F = const
[C/N]. For quartz, it is 2.10–12; for titanates, it might be 100
times greater.

If the transducer is insulated, it gives us a voltage for
which the various expressions stem from equation [1.46]:

.PU e
ε

= [1.46]
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' 'Hence: . . .
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C is the capacity of the transducer and e the thickness.

We also write that ([1.47]):

. . where [V.m/N]Q
U U

KeU K F K
S ε

= = [1.47]

With ceramics, KU ≈10–2. Thus, we can easily obtain
several hundred volts with lamellae of a few millimeters
thick, subject to a force of a few [Kg/mm2].

Materials with a large ε have the advantage of having a
proper capacity C which is large in comparison to that C' of
the associated equipment, so the voltage obtained may
practically be that generated by the transducer alone, so that
[1.48]:

. . . . where '/ 1
.(1 '/ ) U
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= ≈ = <<
+

[1.48]

Piezoelectricity is used to convert a mechanical force to an
electrical force. As piezoelectric substances have marked
electrostrictive properties, we can use them to produce a
mechanical force from a DP, which is in fact an application of
electrostrition.

1.8.2.1. Pressure measurement

It is clear that quartz could be used to measure all sorts of
mechanical forces. It has the great advantage of being a
dynamometer with very low inertia and requiring only a very
slight movement of the point of application of the force being
measured. These two remarkable qualities make it an ideal
dynamometer, infinitely superior to spring dynamometers or
dead-weight dynamometers. It is used in innumerable
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devices, especially when the forces being measured change
rapidly, as is the case when recording the pressure in
combustion engines.

Figure 1.21. Principle of measurement of polarization
(and indirectly of pressure)

To make use of quartz, we place it between the casings of
a condenser, one of which is grounded and the other is
connected to an electrometer (Figure 1.21). On both faces of
the quartz, the polarization P creates densities ±P which
cause a field P/ε and a DP P.e/ε, where e is the thickness.
For this to be the case, the capacity C' of the electrometer
must be very small in relation to that of the quartz
condenser C. Indeed, this condenser and the electrometer
have the same charge Q. We have Q=C'.V, with V
representing the DP measured by the electrometer. The
charge Q of the condenser gives rise to a DP: V=Q/C', which
results from that P.e/ε produced by the quartz. Hence, the
electrometer measures (equation [1.49]):

. . ' .P e q P e CV V
C Cε ε

= − = − [1.49]

This means that [1.50]:

.
.(1 '/ )
P eV
C Cε

=
+

[1.50]
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The ratio of C' to C must therefore be very small for
maximum sensitivity. Hence, we can see the interest of very
low-capacity electrometers.

1.8.2.2. Space charge measurement

A space charge, when trapped in an elastic medium and
subject to a pulsed field, produces a characteristic acoustic
signal around itself. This is essentially the phenomenon
upon which the Pulsed Electro-Acoustic (PEA) method is
based.

In order to give a clearer idea of the principle behind this
method, consider a sample of thickness d with a layer of
negative charge ρx of thickness Δx at depth x (see
Figure 1.22). By total influence, this layer causes charges ρd

and ρ0 such that ρd=(-x/d).ρx and ρ0=((x-d)/d).ρx. The
application of a pulsed potential up(t), by way of “Coulombian
force”, causes a transitory displacement of the space charges
around their abscissa position x. Waves of elementary
pressure pΔ(t) from each charged zone, the amplitude of
which is proportional to the local density of the charges, then
propagate at the speed of sound in the sample vp and then in
the output electrode ve. Under the influence of these
variations in pressure, the piezoelectric sensor delivers a
voltage vs(t) which is characteristic of the range of pressures
encountered. The distribution of the space charge within the
sample can then be calculated using equation [1.51].

Nevertheless, a calibration procedure needs to be carried
out. The aim of this is to eliminate the unknown H(ν) which
represents the transfer function in the chain of
measurements (waveguide + piezoelectric transducer
+ amplifiers – see Figure 1.23). For this purpose, we have an
uncharged sample to which we apply a constant voltage U;
the surface density of charge per electrode is thereby
discovered. To this we add an electrical field pulse up(t), with
the hypothesis that the capacitive charges due to the pulsed



Mathematical Examination of Dielectrics 61

field are negligible in comparison to all the other charges,
and thus we record vs1(t).

Figure 1.22. Principle of measurement of the space charge using the PEA
method; a) when subjected to a pulse field, the charged zones generate
acoustic waves; b) the piezoelectric sensor therefore delivers a voltage vs(t);
c) appropriate signal processing then yields a spatial distribution of the
image and trapped charges

1.8.2.3. Pressure generation

Piezoelectric substances serve to produce mechanical
effects, using their electrostrition. Thus, they are used in the
production of ultrasound. A generator produces an A/C
difference in potential which is applied to a quartz or
titanate condenser; the dielectric which is alternately
polarized undergoes synchronous contractions and
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dilatations by electrostrition, and emits the corresponding
sound. As the losses are very slight, the yield is good and it is
easy to produce sounds at 50 [kHz] with powers of around a
[kW]. These ultrasounds are greatly absorbed by air, but far
less by water; they may be used for explorations by
sounding, for instance.

Figure 1.23. Principle of the reference procedure (calibration).
The reference signal corresponds to the electro-acoustic
signal produced by the capacitive charges located on the

electrode adjacent to the piezoelectric sensor
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1.8.2.4. Timebase generation

Quartz is likely to vibrate mechanically like any elastic
substance (e.g. springs, tuning forks, etc.), but is able to
produce extremely high frequencies (a million periods per
second), and its damping is very slight. Exploiting its
piezoelectric properties, we can use it in a lamp or a
transistor which sustain its oscillations by electrostrition.
Thereby, we obtain quartz oscillators which use little
power but whose frequency is very well defined; these
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oscillators serve as “pilots” for the more powerful oscillators
used in telecommunications networks. As the frequency is
perfectly constant at a given temperature, the period of a
quartz crystal can serve as a time marker. We see quartz
clocks, wherein an oscillator is used, with a frequency
demultiplier, to drive a synchronous motor, which in turn
drives the hands round. These clocks give a definition of the
time which is at least equal and possibly superior to that
obtained by the rotation of the Earth. They are found,
notably, as timebases in computers and watches.

1.9. Currents in extended conductors

In many cases, the current, instead of circulating only in
the wires, spreads out throughout the entire mass of a
conductor extended in all three dimensions: electrolysis
baths, grounding, etc. In addition, the mathematical
properties of the distribution of current in conductors have
very important applications in electrical engineering,
aerodynamics and hydrodynamics.

1.9.1. Current density

Hitherto, we have only looked at the intensity of currents,
i.e. the amount of charge passing through the section of a
conductor in one second. This intensity is similar to the
flowrate in a water pipe. We now introduce the concept of
current density, which is similar to the velocity of water in
the pipe. Suppose for simplicity’s sake that only one form of
electricity (positive or negative charge) is mobile (as happens
in metals); consider ρ the volumetric density of that
electricity and v its velocity vector (this velocity varies from
case to case, from a few [µm/s] to a few [mm/s]). If we
consider an element with surface ds within the conductor,
the “volume of electricity” passing through ds in one second
(f=1[Hz]) is, by definition, the flow of v through ds, i.e. f.v.ds,
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and the amount of electricity which would have passed
through will be equal to that volume multiplied by the
volumetric density ρ, so f.ρ.v.ds. This amount of electricity
passing through ds in one second is the intensity dI through
that element.

We can say that the intensity dI of current passing
through an element with a given surface is equal to the flow,
through that element, of the vector ρ.v. This vector is called
the “current density”, and is denoted by a lowercase i, with
the notation I being reserved for the intensity of a current,
which is a scalar rather than a vector (because it is a flow).

If both types of electricity are mobile, with volumetric
densities ρ and ρ', and velocities v and v', the total amount of
electricity passing through an element will be the algebraic
sum of the flow of + and – charges. This means that the
current density will be: i=ρ.v+ρ'.v'. The volumetric densities
ρ and ρ' have opposite signs, but the same is true of v and v',
and it is clear that the currents produced by the movement
of both forms of electricity are added to one another.

In summary, the intensity of current passing over a
surface S traced in a conductor is equal to the flow across
that surface of the current density vector i. This density has
the dimensions of a current divided by a surface, and can be
expressed in [A/m2]. In industry, it is also common to use
[A/mm2].

We use the term “streamlines” for the lines tangent to the
current density at all their points, and “streamtube” for a
tube similar to a force tube formed of such lines. The outer
surface of a conductor in a permanent regime is a
streamtube: the velocity v of the electricity remains tangent
to it, in the same way as the velocity of a fluid remains
tangent to the walls of the pipe within which it is flowing.
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1.9.1.1. Application: conductivity of an electrolyte

In an electrolytic solution, we accept that there are
positive and negative ions, with each of them representing
an electricity density ρ and having mobility K. This mobility
is the velocity assumed by the ion in the unit electrical field.
Hence, we have v=K.E.

In the case of a binary electrolyte such as NaCl, there are
only two sorts of ions to deal with. In addition, the total
density of electricity is quite obviously null throughout the
entire volume of the element (the slightest deviation from
this law would produce extremely intense electrical fields,
which are incompatible with the conductivity of the
medium). Hence, we have i=(K+.ρ++K-.ρ-).E. Yet ρ+=-ρ-=ρ.
Remembering that the two mobilities have opposite signs, we
get: i=(K++|K-|).ρ.E=σ.E, where σ[S/m] is the conductivity.

In water, the mobility of the ions is around 10-8 [m2/(s.V)].
With a solution containing one molecule-gram of salt per
liter of totally ionized solvent, we have a density of ionic
charge of around 10+8 [C/m3]. The conductivity is therefore
approximately 2 [S/m], or the resistivity is 0.5 [Ω.m]. The
greatest conductivity is seen in acids, and the H+ ion has
exceptional mobility in water.

1.9.2. Expression of Ohm’s law in an extended
conductor

Consider a cylindrical wire traversed by a current. The
streamlines are parallel to the generatrices. The field E in
the wire is uniform and also parallel to the generatrices,
because the potential varies proportionally to the length,
according to Ohm’s law. Take S to be the section of the wire,
I the intensity of current, and VA and VB the potentials at the
two ends. Ohm’s law is written as VA-VB=R.I; yet i=I/S,
meaning that VA-VB=R.i.S; in the conductor, E is uniform,
parallel to the direction of movement of the electrical
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charges: VA-VB=E.l, so i=E.l/(R.S). Hence, R=E.l/i.S but
i=E/ρ, so R=ρ.l/S where ρ represents the resistivity of the
medium.

At all points on a wire, according to Ohm’s law, therefore,
E and i are proportional to one another. As they are
governed by the same linear equation, we can write i=E/ρ,
and if we set σ=1/ρ (conductivity), we get i=σ.E.

This means that the velocity of the charges is proportional
to the applied force, so the friction is viscous. This is the
general expression of Ohm’s law, which is valid in extended
media. Hence, the lines of force and the streamlines are one
and the same.

In order to apply the relation E=ρ.i, we need to use
consistent units. In the practical system, the unit of DP is
the [V]; if we take the [m] to be the unit of length, the unit of
field is the [V/m]; the unit of density will be [A/m2] and the
unit of resistivity [Ω.m].

Thus, let us look for the prevailing electrical field in a
copper wire for a density of 3 [A/mm2] (the average density
used in industry). Hence, we have: i=3.106 [A/m2] and
ρ=2.108 [Ω.m], so E=6.10-2 [V/m]. This field is absolutely tiny
in relation to those which may exist in insulators, caused by
electrostatic phenomena, which are around 100 [kV/m], so
107 times larger. This explains why, in ordinary
electrodynamic experiments, with small circuits, the
electrical fields and the DPs are extremely small in
comparison to those which electrostatic phenomena are
capable of generating.

In addition, the above calculation shows that, for a copper
line which is normally used, with current density 3 [A/mm2],
the voltage loss is 6×10-2 [V/m]. As the voltage loss must be a
small fraction of the total voltage in order for the
performance of an electricity transport line to be acceptable,
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we can see that the voltage in such an electricity transport
line must be proportional to its length, if we want to make
proper use of it. If we allow for 1 [kV] per [km] of cable, we
limit the voltage loss to 6% with a single-wire line, and 12%
with a two-wire line. We can, of course, use lower voltages
than those prescribed by the 1 [kV/km] rule. If we do so, we
have to increase the cross-section of the copper in order to
limit the current density and therefore the voltage loss.

1.9.3. Conservation of current density

In the permanent regime, the current density is a
conservative vector. If we consider an enclosed surface traced
in the conductor, the total amount of electricity contained in
that surface is constant, and the total current through that
surface is zero. Thus, the flow of current density traversing
any enclosed surface is zero; the current density is a
conservative vector, meaning that div(i)=0. Yet because i is
proportional to E according to Ohm’s law, we also have
div(E)=0. Thus, the electrical field is conservative, in an
ohmic conductor and in a vacuum. If there is no
electromotive force in the conductor, E is derived from a
potential, V; hence, it has all the properties of a static field in
the vacuum, i.e. it is derived from a potential and is
conservative. It is worth noting that the equation div(E)=0
means that the algebraic density of charges is null inside the
conductor, which seems incongruous with the fact that there
is a current running through it. This is known as the
Kirchhoff paradox. Its explanation has already been given.

1.9.4. Distribution of current in an extended medium

In general, the current is fed into the medium by metallic
electrodes. If the resistivity of these electrodes is far less
than that of the medium (electrolysis, for instance) the DPs
between the points of the same electrode are practically



68 Dielectric Materials and Electrostatics

negligible in comparison to the DPs between the electrodes.
Thus, we can agree that the surface of an electrode is an
equipotential. Hence, if the conductive medium is externally
delimited by a surface S, the surfaces of the electrodes being
S1, S2, etc., the field will be normal to the surface of the
electrodes, because they are equipotentials. The problem of
the distribution of current in the medium is very similar to
the problem of equilibrium of the conductors; it even becomes
identical if the surface S is rejected at infinity.

We are going to demonstrate a premise which is very
similar to that already seen with equilibrium of conductors:
if, for each electrode, we know either the potential or the
total current that it brings to the medium, then the field,
current density and potential at all points in the medium are
completely determined uniquely.

The demonstration is the same as in electrostatic. We
begin with equation [1.52]:

2( . ) . . ( ) because 0div V E V divE E grad V E divE= + = − =
   

[1.52]

and we apply Green’s theorem to the vector V.E, the
integration volume being the volume filled by the conductive
medium. Thus, we have [1.53]:

1 2

2. ( . ). .( . ).
v v S S S
E dv div V E dv n V E ds

+ +
− = =  

  
[1.53]

The flow V.E across S is null, because E, like i, is tangent
to S. We still have the flows across the surfaces of the
electrodes, which – from what we have always seen – are
(V1.Q1+V2.Q2+…)/ε, where V1 and Q1 are the potential and
the static charge of electrode 1. If we use the notation E1 for
the total current originating in that electrode, there is a very
simple relation between I1 and Q1. Indeed, according to
Gauss’ theorem, Q=ε.φ(E), with φ(E) being the flow of E
across the surface of the electrode. However, because E=ρ.i
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(from Ohm’s law), we have φ(E)=ρ.φ(i), and because the flow
of i is the total current I originating in the electrode, we get:
Q1=ρ.ε.I1, and hence [1.54]:

2
1 1 2 2 1 1 2 2. ( . . ...) / ( . . ...)

v
E dv V Q V Q V I V Iε ρ= + + = + + [1.54]

If we suppose for each electrode that either V=0 or I=0,
the triple integral E2.dv is null; hence E and i are null
everywhere. If V or I is given for each electrode, the
distribution of E and i is unique. Indeed, if there were two
solutions, the difference between them would be a
distribution corresponding to a null value of V or I for each
electrode, i.e. identically null.

We have seen that the distribution of E is identical to that
which would be realized in the vacuum, the electrodes being
insulated conductors, if the medium is extended to infinity,
or at least to very great distances in relation to the
dimensions of the system of electrodes. There is another case
where this identity is strictly correct: where we choose a
surface S delimiting the conductive medium to be a surface
which is universally tangential to the field existing in the
vacuum between the electrodes. At that time, this field
satisfies all the conditions which the field must fulfill in the
conductive medium: being normal to the electrodes and being
tangent to S. Because the solution is unique (for given values
of the potentials), it is the sought solution. Hence, the two
fields are identical. Consider, for instance, the field between
two cylinders with any base, which are parallel and infinite.
This field is universally normal to the direction of the
generatrices. If we fill the gap between two planes
perpendicular to that direction with a conductive medium,
we shall see that the field is universally tangent to those
planes. The distribution of the field is thus the same, in the
slice of the conductive medium contained between the two
planes, and between the two infinite insulated cylinders.
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1.9.5. Power dissipated by the Joule effect

In electrostatic, the quantity ½.ε.E2 represents the energy
contained by each [m3] of insulator. Here, the analogous
quantity is E2/ρ, and as we shall see, it represents the power
dissipated by the Joule effect per [m3] of conductor.

Consider an element of streamtube with section ds and
length dl. The DP between the extremities of the element is
dV=E.dl and the current intensity is I=i.ds. The dissipated
power is therefore [1.55]:

. . . . . .dP dV dI E i ds dl E i dv= = = [1.55]

dv being the volume of the element. As i=E/ρ, we have
P=(E2/ρ).dv, this means that the power per [m3] is indeed
E2/ρ. The integral [1.56] thus represents the total power
dissipated by the Joule effect in the conductive medium:

21P E dv
ρ

=  [1.56]

This power is therefore equal to V1.I1+V2.I2+…, which is,
of course, evident to begin with.

1.9.6. Resistance of the conductive medium

Suppose for simplicity’s sake that there are only two
electrodes. The resistance R of the medium is defined by
V1–V2=R.I. Yet, as we know from our earlier discussion,
I=Q/(ρ.ε), with Q being the charge of an electrode, meaning
that R=(V1–V2)/I=(V1–V2).ρ.ε/Q=ρ.ε/C, because C=Q/(V1–V2).

In general, we have a network of resistance Rij connecting
the conductors i and j – this network is equivalent to the
extended network Rij.Tij=ρ.ε, and Tij being the capacity
coefficients, which are all positive.



Mathematical Examination of Dielectrics 71

The applications of the above results are many and
important. We shall now give some examples.

1.9.6.1. Application: electrolysis bath

Suppose the electrodes are cylindrical and coaxial, with
radii R1 and R2. If the height of the liquid is h, the capacity C
is [1.57]:

2 1

2. . .
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hC
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which gives us the resistance [1.58]:
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ρ
π

= [1.58]

If the electrodes are two cylinders with radius a,
separated by a distance d, their capacity is [1.59]:
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Hence, we get the resistance [1.60]:
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Note that this result is valid only if the dimensions of the
bath are extremely large, because the field of two parallel
cylinders outside of one another extends to infinity. If the
bath is of limited dimensions, the resistance is higher
because the space available to the current is more restricted.

1.9.6.2. Application: grounding

The medium can be viewed as being infinite if the depth of
the electrode is extremely great in comparison to its
dimensions. If it is a sphere with radius a, the resistance is
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ρ/(4.π.a). Thus, this resistance is independent of the
distance from the other grounding rod. This remarkable
result accounts for the practical advantage of grounding
mechanisms. Their resistance is independent of the distance,
whereas with a wire it is proportional. Given that the
resistivity of the ground is around 100 [Ω.m], let us calculate
the resistance of a grounding mechanism comprising a disk
one meter in radius. Its capacity is 70 [pF], so the resistance
is ρ.ε/C or 12.5[Ω]. In spite of the low conductivity of soil,
which is nearly 1010 times less than that of copper, the
resistance of the ground-return circuit is less than that of a
wire-return circuit over distances of more than a few dozen
[km]. In fact, there are two grounding mechanisms, which
means the resistance of an ground-return circuit is 25 [Ω].
Note that the formula is valid only for a depth of the probe at
least ten times less than the dimensions of the electrode. If
the probe is at a lesser depth, the resistance is increased.
The resistance would be doubled if the electrode only
penetrated to half the depth in the ground, because the
current would only traverse half of the lines of force.
Grounding mechanisms are used less nowadays than they
used to be, but are still in use for the protection of people and
property.

1.9.6.3. Application: insulation resistance of a cable

If we know the capacity of a cable (irrespective of the
dielectric power of the insulator) and the resistivity of its
insulator, we can immediately calculate its insulation
resistance. Take a cable with capacity 2 [µF]; if the dielectric
constant εr=2, the capacity C in the formula is 1 [µF]. If the
resistivity of the insulator is 1011 [Ω.m] the insulation
resistance is 1011/(36.π.109.10–6), so around 1 [MΩ].

1.9.6.4. Application: studying the electrical field in a vacuum

Nowadays, the study of the distribution of the electrical
field in the vicinity of a system of conductors has become
extremely important in technological engineering. Indeed, it
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is through knowledge of this field that we are able to tell
whether the insulator surrounding the conductors will be
capable of withstanding. The distribution of the electrical field
plays an even more important role in all electronic devices
such as amplifier tubes, electron cannons, accelerators,
microscopes, etc.) where it controls the movement of charged
corpuscles (electrons or ions) and, generally, in all issues to do
with corpuscular optics. Yet the complete mathematical
solution to the problem, except in the simple cases discussed
above, is often too complicated. However, it is possible to get
around the difficulty by replacing the system of conductors to
be studied with a system of similar electrodes immersed in a
bath of conductive fluid (ordinary water). On condition that
the bath is big enough, the distribution of the electrical field
around the conductors in a vacuum or around the electrodes
in the bath is the same. Between the electrodes, we establish
DPs proportional to those which should exist between the
conductors with an AC source so as to avoid electrolytic
polarization. We then use a needle or probe that is mobile in
the three dimensions, which enables us to measure the
potential at every point in the bath. This potential is
measured with a potentiometer, by way of a zero method.
When we move the probe so the indicator on the
potentiometer remains at zero, it describes an equipotential.
Mechanical devices can be used to show the probe’s position
on a graph at all times. Thus, we can easily trace the different
equipotentials. The field can be deduced from this
easily, because the DP ΔV between two neighboring
equipotentials is equal to the field E multiplied by their
distance Δx: ΔV=E.Δx.

1.9.6.5. Application: release of heat in a bath

We frequently use the Joule effect to heat electrolysis
baths, or bains-marie (double boilers). The heat released per
second per [m3] of the bath is E2/ρ, so we can see that it is
far greater in the vicinity of the electrodes, where E is high,
than in the middle of the bath, and that it is greatest at the
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points of the electrodes, where E is very high (point power).
This shows that the heating thereby obtained is very
irregular, and that we cannot expect a uniform temperature
unless we use electrodes forming a field E which is more or
less constant.

1.9.6.6. Application: electrolysis

The amount of material washed away or deposited on an
electrode is proportional to the amount of electricity which
has passed through it. The quantity of material involved per
[cm2] – that is, the thickness of the material – is proportional
to the amount of electricity which is passed per [cm2] in a
given time-period, i.e. the current density. Hence, in
electrolysis, the current density determines the rate of
deposit or of erosion. It is the current density which it is
essential to know for successful electrolysis. As i is
proportional to E, we can see that the rate of deposit or
erosion is, at each point of the electrode, proportional to the
density of surface charge which exists on that electrode. The
thickness of metal deposited or removed will therefore be
very great at the points and the corners (point power) and
null in hollow areas (hollow conductors). Hence, the
deposition of material will be highly irregular. We regularize
it by using multiple electrodes and stirring the pieces in the
bath. If we wish to deposit material on the inside of a cavity,
this can obviously not be done, even if the cavity walls are
pierced with holes. The only way to do so is to introduce a
special electrode which goes right to the center of the cavity.

We can illustrate these phenomena with the following
experiment: a soluble anode has the form of a stick. It starts
being eroded at its end, where the values of the field and
density are greatest. However, as the erosion attack
continues, the point size and the field increase further, the
point becomes sharp and the erosion then occurs only at that
point. The stem therefore gradually becomes shorter, whilst
remaining sharp. The same is true in batteries, where the
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zinc is in the shape of a cylindrical stick. If the erosion is
most marked at a given point of the zinc, the stick shrinks at
that point and, as the field increases with an increase in
curvature, the erosion is concentrated more and more at that
point, and the zinc stick ends up being broken in two.

One very important application of point power in
electrolysis is electrolytic polishing. The part needing to be
polished serves as an anode in an appropriate electrolysis
bath – usually a highly viscous liquid such as a mixture of
acetic anhydride and perchloric acid. As the current density
is far greater on the outcrops than in the hollows, the
outcrops are the first to be eroded, and the piece is polished
in very little time.

1.9.6.7. Application: hydrodynamics and aerodynamics

As we have seen, the velocity vector in the flow of an
incompressible fluid is conservative, and therefore satisfies
div(v)=0, like the electrical field in a conductor. In practice, it
is not only water and other liquids that can be regarded as
incompressible: air can too, so long as its velocity does not
surpass 100 [m/s]. In addition, it often happens that the
velocity vector derives from a potential (velocity potential).
Thus, we have a total similarity between this velocity vector
and the electrical field in a conductor. In order to study the
movement of air around the wing of an airplane, we would
make a model of the wing and immerse it in a vessel filled
with a conductive liquid, in which two flat, parallel
electrodes are producing a uniform field. This field
represents the velocity of a uniform stream of air. When we
place the model of the wing into the vessel, the streamlines
are deformed, as they have to remain tangent to the
insulators, and mimic the streamlines of air around the
wing. By tracing the equipotentials, we can obtain these
lines and calculate the electrical field, i.e. the velocity of air
proportional to it. Knowing this velocity at all points enables
us to calculate the pushing force exerted on the wing by the
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moving air. This method is of crucial importance in fluid
mechanics. The accuracy of these results is, however, limited
by the fact that air is no longer incompressible at velocities
approaching, or greater than, the speed of sound. In
hydrodynamics, we do not have this drawback, so we can
determine the flow around turbine blades, ship rudders, etc.

1.9.6.8. Application: grounding

We have previously seen how grounding enabled us to
achieve lower resistances than those using a wire, no matter
what the distance. Ground return was commonly used on
telegraph lines. On telephone lines it is not used, because in
the ground there are natural currents constantly circulating
which are very slight, but nevertheless appreciable. These
currents cause DPs between the different points of the
ground, and these DPs would give rise to considerable
parasitic currents in telephonic devices, which are highly
sensitive. In the Aurora Borealis (the Northern Lights),
these currents are amplified and could themselves interfere
with telegraphic transmissions. The return of intense
industrial currents through the ground is not practical, and
is even forbidden. The reason is that these currents,
circulating in the ground, would produce considerable DPs
between the different points. Thus, between the different
grounding rods in a telegraph network, there would be
significant DPs (of around one [V]), which would create
intense parasitic currents in the devices. In distribution
networks, there is always one pole connected to the ground,
so that the DP with the ground is fixed and cannot reach its
dangerous value (under the influence of atmospheric
electricity), but the systematic use of the ground as a return
conductor is formally prohibited. In addition, using a system
of balanced currents (e.g. a three-phase star arrangement)
for energy transport, it is always possible to obtain the
economic advantages of ground return without any of its
disadvantages.
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Let us remember that ground telegraphy operation
(referred to as TPS for télégraphie par le sol) was used by the
armed forces during WWI (1914–1918), before the
development of wireless communication. The transmitter was
composed of a musical frequency alternator, connected to two
grounding rods A and B, a few dozen meters apart. In the
ground, the electrical field created by A and B was
comparable to that of two equal and opposite point charges.
At the receiver post, on average about a kilometer away, there
were another two grounding rods C and D, connected to a
telephone. The electrical field created by A and B caused a
maximum DRP between C and D, when AB and CD were on
the line running between the two posts. This DP caused a
current in the telephone. It was advantageous to augment the
bases AB and CD as much as possible, so as to increase the
electrical field and the DP that it created. Note that the power
consumption at the transmitter was more or less independent
of the distance between A and B, as the resistance does not
depend on the distance between the two rods, which are
assumed to be relatively far apart. TPS was abandoned and
replaced by wireless communication. In military telephony,
ground return is often used, in order to spare the wire. The
drawback to this is that it means an enemy, even far away,
can listen to the telephonic conversation using two grounding
rods linked to an amplifying device. It should be noted that
these considerations offer an advantage only in the type of
positional war such as that fought between 1914 and 1918.

1.9.7. Deviation of the electrical current when crossing
the surface separating two conductors

Not content with studying the field E in a vacuum, we can
also study it in dielectrics. This problem is interesting with
regard to the construction of cables and insulators.

Consider two media with conductivity σ and σ' separated
by the surface S (Figure 1.24). For the current density and
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the field, we shall define normal and tangential components,
as we did for the field and induction with regard to
dielectrics. E derives from a potential if there is no
electromotive force. Thus, we can use the same reasoning as
for dielectrics, and we find that ET = E'T.

Figure 1.24. Illustration of the deviation of electrical current on passing
from one conductive medium σ to another σ'

Let us now look at the normal components of i, which is
conservative because the regime is permanent. By the same
reasoning process which shows the equality of DN and D'N,
we find iN = i'N. Thus, we have the relations: ET = E'T and
iN = i'N, and because i = σ.E, we also have iT = σ.ET, iN = σ.EN,
i'T = σ'.E'T and i'N=σ'.E'N, similar to DT = ε.ET, etc.

Furthermore, if φ' is the angle that the current density i'
forms with the normal to the surface of separation and φ is
the similar angle between i and the normal, we have the
equations:
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Thus:

tan ' '
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ϕ σ
ϕ σ

= [1.61]

This result is similar to that which we found for
dielectrics [1.62]:

tan ' '
tan

ϕ ε
ϕ ε

= [1.62]

This is of interest when studying an electrical field where
there are insulators other than a vacuum – e.g. the field in a
cable insulator placed in air. We then consider a cable, raised
to the potential V. We immerse it in a liquid with
conductivity σ. Beside it, we place a model of the insulator,
with conductivity σ', such that σ'/σ=ε'r/εr, with ε'r being the
dielectric constant of the insulator and εr that of air
(that is, 1).




