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Control Theory: Basic Concepts

This chapter presents basic concepts of control theory, which will be used in
the remaining book.

In section 1.1, we present the general control/plant model. In section 1.2, we
explain why the introduction of digital sensors and actuators in systems has
fundamentally modified the issue of controlled stability. Finally, we introduce
the model of switched systems, and explains their advantages compared with
general systems (section 1.2.3). We then explain in section 1.3 how the notion
of invariant sets can be used for proving safety and stability properties of
controlled systems.

1.1. Model of control systems

A control system is generally divided into a controlled part, called
a plant, and a controller. The plant is generally described as a dynamic
time-invariant, possibly uncertain, system governed by equations of the
form:�

ẋ(t) = f(x(t), u(t), w(t)) [1.1]
y(t) = g(x(t)), [1.2]
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where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input
y(t) ∈ Rp is the output, w(t) ∈ W ⊂ Rq is a disturbance (or external
input) and W is an assigned compact set. We will refer to Rn as the
state space of the system. The general theory of control focuses on
feedback control: the controller is fed with state signal x(t) coming
from the plant, and issues a control input u(t) to the plant. A typical
layout of a feedback control system is shown in Figure 1.1. Under
general conditions (continuity for u and w, and Lipschitz property for
f ), the system admits a unique solution x(t) on R≥0. Equations [1.1]
and [1.2] are often simplified by disregarding w(t), and assuming that
y = x.

Figure 1.1. Control/plant model

An important subclass is the linear time-invariant (LTI) framework,

for which [1.1] and [1.2] become:

�
ẋ(t) = Ax(t) +Bu(t) + Ew(t)

y(t) = Cx(t)
for matrices A, B, C, E of appropriate size with constant coefficients.
A discrete-time LTI system is a system governed by an equation of the
form: x(t+ 1) = Ax(t) +Bu(t) + Ew(t).

When a system is governed by an equation of the form
ẋ(t) = Ax(t), where A is a matrix whose eigenvalues have negative
real parts, the origin is a stable equilibrium point to which the system
converges from any initial point of Rn. Given a plant governed by an
equation of the form ẋ(t) = Ax(t) + Bu(t) with (A,B) ∈
Rn×n × Rn×m, a typical problem of linear control theory is to find a
stabilizing controller governed by an equation of the form
u(t) = Kx(t) with K ∈ Rm×n. This essentially amounts to finding
coefficient values of K that make the real parts of the eigenvalues of
A+BK negative.
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1.2. Digital control systems

1.2.1. Digitization

With the emergence of digital computers, a control system has to
handle data that come from the periodic sampling of signals. In such a
context, a control system is said to be sampled data or digital control
system. There, a system described by differential equations (which
involve continuous-valued variables that depend on continuous time) is
controlled by a discrete-time controller described by difference
equations, which involve continuous-valued variables that depend on
discrete time. As explained in [ANT 02], a digital control system can
be divided into three parts, the plant, the interface, and the controller as
shown in Figure 1.2.

Figure 1.2. Digital control/plant model (from [ANT 02])

The system to be controlled (plant) is modeled as a time-invariant
continuous-time system governed by equations [1.1] and [1.2] where,
for the sake of simplicity, we disregard disturbance and assume that
the output function is the identity map (i.e. we have ẋ = f(x, u) and
y = x).
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The controller is a discrete event system modeled as a deterministic
automaton. The action of the controller can be described by equations
of the form:�

s̃[n] = δ(s̃[n− 1], x̃[n])

ũ[n] = φ(s̃[n]),

where δ is the state transition function of the controller and φ is the
output function of the controller. Tildes are used to indicate that the
particular signal is made up of symbols. The index n is here analogous
to a time index in that it specifies the order of the symbols in the
sequence. An argument in brackets, for example, x̃[n], represents the
nth symbol from a set. The input signal x̃ and the output signal ũ
associated with the controller are a sequence of symbols, rather than
continuous-time signals. Note that there is no delay in the controller:
the state transition, from s̃[n − 1] to s̃[n], and the controller symbol,
ũ[n], occur immediately after the occurrence of plant symbol x̃[n].

The controller and plant cannot communicate directly because each
utilizes different types of signals. Thus, an interface is required that
can convert continuous-time signals to sequences of symbols and vice
versa. The interface consists of a memoryless map γ called actuator,
and a memoryless map α called generator. The actuator converts a
controller symbol ũ[n] to a constant plant input of the form
u(t) = γ(ũ[n]). Since the plant input, u, can only take on certain
constant values, where each value is associated with a particular
controller symbol, the plant input signal u(t) is piecewise constant, and
may change only when a controller symbol occurs. Such a piecewise
continuous command signal issued by the actuator is illustrated in
Figure 1.3. The generator is a function α that maps the real-valued
state vector x(t) of the plant into a plant symbol of the form
x̃[n] = α(x(t)). Note that x̃ does not change continuously, but only
when a plant event occurs. There are two different models of plant
event: in the state-triggered model, a plant event occurs when the plant
state x crosses the boundary of two predefined state regions; in the
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time-triggered model, a plant event occurs periodically when the signal
x̃ issued by the generator corresponds to a periodic sampling of the
plant output x, as illustrated in Figure 1.4.

Figure 1.3. Staircase command signal u(t) issued by the actuator as it
receives controller symbols ũ[1], ũ[2], . . . at time t1, t2, . . . (from [ANT 02])

Figure 1.4. Controller symbols x̃[1], x̃[2], . . . produced by the generator by
sampling of the plant output signal x(t) (time-triggered plant event model)

(from [ANT 02])

Note that, since it is assumed that there is no delay in the controller,
the command signal u(t) issued by the actuator is synchronized with
the signal x(t) issued by the generator. In the time-triggered model, the
command u(t) is therefore itself periodic. (In Figure 1.4, the stair length
is constant and equal to τ .)
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1.2.2. Quantization

Digitization also has an effect sometimes known as quantization
(see, e.g., [PAT 05]). Suppose that the signal u now takes its values on
a finite domain U , instead of a dense (possibly bounded) domain or an
infinite discrete domain. This means that, in Figure 1.3, the plant input
signal u(t) is a staircase signal that can take only a finite number of
values. In such a situation, there are many systems (even LTI systems)
for which there is no control function that ensures stabilization, that is
convergence to a unique equilibrium point (see, e.g., [BRO 00]). The
controller can only achieve practical stability, that is convergence into
a bounded set instead of a single point for general stability The goal is
then to synthesize controllers that are capable of steering the system to
within sufficiently small neighborhoods of the equilibrium. The size of
the final set within which the trajectories are confined is a measure of
performance of the controlled dynamics. Hence, for a quantized
system, the notion of minimal invariant set (once a proper notion of
size has been defined) is useful for describing zones of practical
stability.

1.2.3. Switching

A switched system is a digital quantized control system that consists
of a finite family of continuous subsystems and a rule that controls the
switching between them. More precisely, we have the following
definition:

DEFINITION 1.1.– A switched system is a quadruple
S = (Rn, U,U ,F), where Rn is the state space; U = {1, . . . , N} is
the finite set of modes; U is the set of piecewise constant functions from
R≥0 to U , continuous from the right; and F = {f1, . . . , fN} is a
collection of smooth vector fields indexed by U .

A switching signal of S is a function u ∈ U . A piecewise C1 function
x : R≥0 → Rn is said to be a trajectory of S if it is continuous and there
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exists a switching signal u ∈ U such that, at each t ∈ R≥0 where the
function u is continuous, x is continuously differentiable and satisfies:

ẋ(t) = fu(t)(x(t)).

The times at which the switching signal changes its values are
called the switching instants. The scheme of switched systems is
represented in Figure 1.5. It is easy to see that a quantized
discrete-time LTI system is a particular subclass of switched systems
(for which the function fu(t)(x(t)) is of the form Ax(t) + Bu(t)).
However, the class of switched systems is much more general.

Figure 1.5. Scheme of a switching controller

In recent years, control techniques based on switching between
different controllers, as shown in Figure 1.5, have been used in order to
achieve stability and improve transient response. The importance of
such control methods also arises from the existence of systems that
cannot be stabilized by a single continuous feedback law (see
[BRO 83]). In contrast, even if the different components of a switched
system working in their proper mode have no (common) equilibrium, it
is still possible to control the global system in order to make its
behavior similar to those of conventional stable systems near
equilibrium (see, e.g., [BUI 05]). Switched systems have thus found
numerous applications switching power converters and many other
fields (see [LIB 99]).
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Caveat

Note, however, it is possible for a switched system to be unstable
even when all the subsystems are stable around a common equilibrium
point. This is true even when the subsystems are linear, as illustrated in
the following example (see [ANT 02]). Consider the switched system

ẋ(t) = Aux(t), where x ∈ R2, u ∈ {1, 2}, and A1 =

�−1 100
10 −1

�
,

A2 =

�−1 −10
100 −1

�
, with a (state-triggered) switching signal that

applies A1 (respectively A2) when x is in the second and fourth
(respectively first and third) quadrants. Both A1 and A2 are stable since
their eigenvalues λ1,2 = −1 ± j

√
1,000 have negative real parts.

However, their trajectories are unstable (see Figure 1.6). Such a
phenomenon takes place because the intervals between the switchings
of the dynamics decrease to 0 as time goes to infinity. This can be
avoided by imposing a minimum duration (called dwell time) between
two switching instants. This can be easily enforced for the class of
sampled switched systems that we will study in this book for which
switchings occur with a fixed period τ .

Figure 1.6. Unstable trajectory of switched system consisting of stable
subsystems (from [ANT 02])

1.3. Control of switched systems using invariant sets

We now consider the problem of synthesizing controllers for
switched systems. This results in finding a switching signal that
controls the system in order to satisfy some given properties. We focus
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on the safety and stability properties. We explain that the controller
synthesis problem is related to the construction of controlled invariant
sets.

1.3.1. Controlled invariants

Given a dynamic system, a subset I of the state space is said to be
invariant if it has the following property: if it contains the system state
at some time, then it will contain it also in the future [BLA 99]1. We
have:

x(t) ∈ I ⇒ x(t�) ∈ I, for all t� ≥ t.

The concept of invariance can be easily extended to the case in
which a control input is present. In this case, we say that a set R is
controlled invariant if, for all initial conditions chosen in R, we can
keep the trajectory inside I by means of a proper switching signal. Let
us now explain why controlled invariants are useful for proving safety
and stability properties of a switched system.

1.3.2. Safety control problem

The safety property is typically encoded as a subset S of the
continuous state space, called safe set. In a simple formulation, S is a
box set given by the minimum and maximum values tolerated for each
state variable. The associated safety properties suffice to describe
typical requirements of direct-current to direct-current (DC-DC) power
converters such as voltage regulation, current limitation, maximal
current and voltage ripple.

Safety control problem: given a safe set S, determine whether a
switching signal u exists such that if x(0) ∈ S, then x(t) ∈ S for
t ≥ 0.

1 This property is often called “positively invariant” instead of just “invariant” in the
literature.
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Several approaches [ASA 00, TOM 00] have been proposed to
solve the safety control problem. The idea of these approaches is to
obtain a controlled invariant W that is included into S for an
appropriate switching signal u. If such a set W exists and if the initial
state is in W , then the system is ensured to stay in W , hence in the safe
set S. In [ASA 00], an abstract algorithm is proposed to synthesize
controlled invariants using a backward iterative computation of
reachable states. Furthermore, the set W computed is the maximal
controlled invariant subset of S (it contains all other controlled
invariant included into S). In [TOM 00], the controller synthesis
problem is formulated as a game between controller and disturbance.
We can then find Hamilton–Jacobi equations whose solutions describe
the boundaries of the maximal safe set, and derive an associated
maximally permissive controller. In Chapter 3, we will discuss
methods to synthesize safety controllers that are adapted to the simpler
context of sampled switched systems that we consider here.

1.3.3. Stability control problem

Given a certain region R, many controlled invariants subsets of R
exist. If, instead of looking for maximal invariant subsets, we look for
finding invariants as small a size as possible around a given operating
point, we get a characterization of a controller with the smallest
deviation from the point, and obtain a steady-state behavior with
“minimum ripple” (see [SEN 03]). When periodic solutions of the
system exist, we should be able to synthesize a stability controller that
makes the trajectories converge to such periodic solutions of the
system, also called limit cycles.

Stability control problem: given a region R, determine a switching
signal u that makes the trajectories starting in R converge to a subregion
as small as possible, ideally a limit cycle.

In Chapter 4, we will discuss a method based on a procedure of
state-space decomposition, and iterated computation of forward
reachable states for synthesizing stability controllers.
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1.3.4. Other controllers

We will also give some hints to solve the problem of synthesizing
robust safety controllers that maintain the plant in a safety region in the
presence of disturbance or uncertainty, as well as reachability
controllers, which drive the plant in finite time from an initial
operating region to a desired operating region (see Chapter 6).

1.4. Notes

The common approach for stability analysis of dynamic systems is
based on Lyapunov’s method, which relies on the concept of a
Lyapunov function or generalized energy function. Essentially, a
Lyapunov function for an equilibrium point xe of the system ẋ = f(x)
is a differentiable function V (x) that has a strict minimum as xe, and
so that its derivative V̇ (x) = ∂V (x)

∂x · f(x) along the system trajectories
is negative in some neighborhoods of the equilibrium. Various
converse theorems establish the existence of a Lyapunov function
whenever the equilibrium point is stable (in the appropriate sense).
There are fundamental connections between the notion of Lyapunov
function and that of invariance. Precisely, given a Lyapunov function,
its level sets are the boundaries of invariant sets. In this book, we will
not use Lyapunov functions, but focus on invariant sets.

The context of section 1.2 is mainly taken from [ANT 02].






