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The Need for Time–Frequency Analysis

Most real signals are non-stationary where the frequency can vary with time. The classic Fourier
transform analyzes the frequency content of the signal without any time information. It
emphasizes the importance of time–frequency transforms designed to detect the frequency
changes of the signal over time. Moreover, it allows extracting relevant features to classify
signal signatures. This chapter presents the stationary and non-stationary concepts and the
representations of the signal in time or frequency domains. The limitations of these
representations and the need of the time–frequency domain are also introduced and discussed.

1.1. Introduction

From a theoretical point of view, signals can be divided into two main groups:
deterministic and random. Deterministic signals are well known mathematically
(analytically describable), so the future values of the signal can be calculated from
the past values with complete certainty. However, random signals cannot be
described as a mathematical expression and cannot be predicted with a total
certainty, which leads to the study of their statistical properties (average, variance,
covariance, etc.) in order to have an idea about their structure.

In a deterministic or random framework, a signal as an abstraction of physical
quantities of a process can be classified intuitively into two main classes: stationary
and non-stationary signals. This qualitative classification is based mainly on
information variation of a signal over time. In the case of random signals, for
example, the stationary signals have constant statistical properties over time while
non-stationary signals are characterized by the variation of their statistical properties
during the interval of observation. In a deterministic framework, stationary signals
can be defined as a sum of discrete sinusoids that have an invariant frequency over
time, otherwise they are considered as non-stationary.
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2 Time–Frequency Domain for Segmentation and Classification

Most real-life signals are non-stationary and contain random components that can
be caused by the measurement instruments (random noise, spike, etc.) and/or by the
nature of the physical process under study. For example, in the acquisition of the heart
sound signal, which is a non-stationary signal by nature, several factors affect the
quality of the acquired signal: the type of electronic stethoscope, the patient’s position
during auscultation and the surrounding noises. Moreover, the heart sound as an
abstraction of the mechanical activity of the heart contains by nature random
components such as murmurs. Another example is the power quality signals and their
disturbances that have negative impacts on power systems and make the electric signal
random and non-stationary. These two examples of non-stationary signals will be the
main applications in this book (Chapters 3 and 4).

The aim of this chapter is to present the stationary and non-stationary concepts
briefly. The different signal representations will be introduced and the limitations of
time or frequency representations in the case of non-stationary signals will be shown.
This will lead us to introduce some essential concepts such as the uncertainty principle
and the instantaneous frequency (IF) measure.

1.2. Stationary and non-stationary concepts

1.2.1. Stationarity

1.2.1.1. Deterministic signal

A deterministic signal is said to be stationary if it can be written as a sum of
sinusoidal components [AUG 05]. In other words, the signal is stationary if it has a
constant instantaneous amplitude and frequency over time. Let us consider a
deterministic signal ( )x t that can be written as:

( ) ( )cos 2k k k
k

x t A f tπ ϕ= +∑
[1.1]

where kA , kf and kϕ are real constant1 coefficients that correspond to the amplitude,

frequency and phase of ( )x t , respectively.

EXAMPLE 1.1.– Consider an example of a multicomponent sinusoidal signal:

( ) ( ) ( )1 2sin 2 0.7sin 2x t f t f tπ π= +

where 1 10f = Hz and 2 20f = Hz.

1 If one of these coefficients is random, then the signal becomes random.
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Figure 1.1. Example of deterministic signal: sum of
two sinusoidal signals

It is clear that it is possible to know the future values of the signal
from the past values with complete certainty since its mathematical equation is well
known.

1.2.1.2. Random (stochastic) signal

A stochastic signal ( )x t is said to be stationary if its expectation is independent

of time and its autocorrelation function ( ) ( )*
1 2E x t x t⎡ ⎤⎣ ⎦ depends only on the time

difference 2 1t t− :

( ) ( ), : xt T E x t E x t T m⎡ ⎤ ⎡ ⎤∀ = + =⎣ ⎦ ⎣ ⎦ [1.2]

where mx is a constant,

and

( ) ( ) ( ) ( )* *
1 2 1 2 1 2, , :t t T E x t x t E x t T x t T⎡ ⎤ ⎡ ⎤∀ = + +⎣ ⎦ ⎣ ⎦ [1.3]

EXAMPLE 1.2.– An example of a stationary random signal is white Gaussian noise
(Figure 1.2).

In this case, we cannot describe the signal using an analytical equation.
However, the signal can be characterized by a probability density function (pdf),
which is a normal (Gaussian) distribution in this example (see Figure 1.3).

On the other hand, the signal is said to be stationary because its statistical
properties are unchanged during the time of observation.
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Figure 1.2. Example of stationary random signal:
white Gaussian noise

Figure 1.3. The pdf estimated from the signal in Figure 1.2

1.2.2. Non-stationarity

Non-stationarity as a “non-property” is validated if the assumptions of
stationarity are no longer valid [AUG 05]. In other words, a signal is considered to
be non-stationary if its frequency and statistical properties vary during the time of
observation. A linear chirp and a multitone sine wave (Example 1.3) are familiar
synthetic examples of non-stationary signals. Otherwise, most real signals such as
human speech and biomedical signals are non-stationary.

EXAMPLE 1.3.– Let us consider a multicomponent sinusoidal signal composed of
four components. Let the signal be composed of one component with frequency
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f1 = 10 Hz in the first interval, two components with frequency f1 and f2 = 50 Hz in
the second interval, three components with frequency f1, f2 and f3 = 100 Hz in the
third interval and finally one component with frequency f4 = 20 Hz in the last
interval. The signal x(t) described above can mathematically be given as:

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )

1

1 2

1 2 3

4

cos 2 0 200 ms

cos 2 cos 2 200 400 ms

cos 2 cos 2 cos 2 400 600 ms

cos(2 ) 600 800 ms

x t f t t

x t f t f t t

x t f t f t f t t

x t f t t

π

π π

π π π

π

⎧ = ≤ ≤
⎪

= + ≤ ≤⎪
⎨

= + + ≤ ≤⎪
⎪ = ≤ ≤⎩

Figure 1.4. Non-stationary sinusoidal signal composed of
frequencies 10, 20, 50 and 100 Hz

Unlike Example 1.1, such a signal (Figure 1.4) can be considered as non-
stationary since its frequency varies over time.

1.3. Temporal representations

Signals can be represented in many different ways. The temporal representations
of signals are the most natural representation that gives information about the
instance durations and the energy of the different components. The duration of
the first and the second heart sounds, for example, (see Example 1.4) can be an
accurate feature to distinguish between some pathological cases and normal cases.
Also the energy of murmurs can be an indicator of the severity of the pathology.
Another example is the duration and energy of disturbances in electrical signals,
which gives an idea of the nature of disturbance and the quality of the electrical
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network. Many real signals are produced by a time-varying process: heart sounds,
electrical signals, speech signals, electromagnetic fields, etc.

The total energy of a signal defined by how much energy the signal has or how
much energy it takes to be produced [COH 95] is obtained by integrating the
instantaneous power 2( )x t as follows:

( ) 2

xE x t dt
+∞

−∞

= ∫ [1.4]

The two other features that can be calculated based on time domain are the first-
and second-order moments. Respectively, they reveal the average time instant where
the energy of the signal is localized and the dispersion of the signal around which
this time is constituted [AUG 08]. If we consider that ( ) 2

x t is a density in time, the

first moment or the average time of the signal ( )x t can be given as:

( ) 21
x

x

t t x t dt
E

+∞

−∞

= ∫ [1.5]

and the second-order moment (time spreading) can be given as:

( ) ( )

( )

22 2

22 2

1 ( )

1

x x
x

x
x

t t t x t dt
E

t x t dt t
E

+∞

−∞

+∞

−∞

Δ = −

= −

∫

∫
[1.6]

where the standard deviation is:

( ) ( ) 221
x x

x

t t t x t dt
E

+∞

−∞

Δ = −∫ [1.7]

1.4. Frequency representations of signals

Another domain for the representation of signals is the frequency domain. It
gives an idea of the repetition of an event in the signal that is not accessible in the
time domain. The concept of frequency is based on the sinusoidal waves. The
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essential mathematical analysis tool of the frequency domain is the Fourier
transform.

1.4.1. Fourier transform

The objective of this transform is to change the basis of the signal into sinusoidal
basis vectors. The Fourier transform ( )X f of signal ( )x t is given as:

( ) ( ) 2j ftX f x t e dtπ
+∞

−

−∞

= ∫ [1.8]

The inverse Fourier transform is given as:

( ) 21( )
2

j ftx t X f e dfπ

π

+∞

−∞

= ∫ [1.9]

Figure 1.5. Multicomponent signal with a) temporal representation
and b) frequency representation

The Fourier transform is a complex transform where its amplitude is called
the magnitude spectrum, its phase is known as the phase spectrum and the square of
the magnitude is the energy spectral density, which describes how the energy of the
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signal is distributed over frequencies. Thus, the total signal energy is obtained by
integrating the energy spectral density ( ) 2

X f over frequency:

( ) 2

xE X f df
+∞

−∞

= ∫ [1.10]

Figure 1.6. Chirp signal in a) temporal domain and
b) frequency domain

Some of the mathematical properties of the Fourier transform are described as
follows:

– Linearity

The Fourier transform of a linear combination of signals is equal to the linear
combination of their Fourier transforms:

{ } { } { }( ) ( ) ( ) ( )TF x t y t TF x t TF y tα β α β+ = + [1.11]

( ) 2 2 2( ) ( ) ( ) ( )j ft j ft j ftx t y t e dt x t e dt y t e dtπ π πα β α β
+∞ +∞ +∞

− − −

−∞ −∞ −∞

+ = +∫ ∫ ∫
( ) ( )X f Y fα β= +
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– Time shift

Shifting the signal ( )x t by 0t in the time domain results in multiplying the
Fourier transform with a phase factor:

( ) 022
0 ( ) j ftj ftx t t e dt X f e ππ

+∞
−−

−∞

− =∫ [1.12]

– Frequency shift

Modulating the signal with a complex exponential function shifts the Fourier
transform ( )X f along the frequency axis:

( ) ( )00 22 2
0( ) ( ) ( )j f f tj f t j ftx t e e dt x t e dt X f fππ π

+∞ +∞
−−

−∞ −∞

= = −∫ ∫ [1.13]

– Convolution

The Fourier transform of convolution of two functions ( )x t and ( )y t is equal
to the product of the Fourier transforms of the individual signals:

( ) ( ){ } ( ) ( )TF x t y t X f Y f∗ = [1.14]

On the other hand, the Fourier transform of the product of two signals equals the
convolution of their Fourier transforms:

( ) ( ){ }. ( ) ( )TF x t y t X f Y f= ∗ [1.15]

– Derivation

The Fourier transform of the derivative of function ( )x t is equal to the product

of the Fourier transform ( )X f by 2 j fπ :

( ){ } ( )' 2TF x t j fX fπ= [1.16]
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– Parseval’s theorem

The total energy calculated from the energy spectral density should be equal to
the total energy calculated directly from the time domain signal (instantaneous
power energy):

( ) ( )2 2

xE x t dt X f df
+∞ +∞

−∞ −∞

= =∫ ∫ [1.17]

PROOF.–

( ) ( ) ( )2 *X f df X f X f df
+∞ +∞

−∞ −∞

=∫ ∫

( ) ( )2 * 2.j ft j fux t e dt x u e du dfπ π
+∞ +∞ +∞

−

−∞ −∞ −∞

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∫ ∫ ∫ ( ) ( ) ( )2* j f u tx t x u e dudfdtπ −

∞

= ∫∫∫

( ) ( ) ( )*x t x u t u dudtδ
∞

= −∫∫

( ) ( )*x t x t dt
+∞

−∞

= ∫

where:

( ) ( )2 f u te df t uπ δ
+∞

−

−∞

= −∫

1.4.2.Mean frequency, bandwidth and frequency average

As for the time domain, a signal can be characterized by its average frequency
and the frequency band that it occupies. The average frequency can be given as:

( ) 21
x

x

f f X f df
E

+∞

−∞

= ∫ [1.18]

and the frequency band or the frequency spreading as:
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( ) ( ) ( )

( )

22 2

22 2

1

1

x x
x

x
x

f f f X f df
E

f X f df f
E

+∞

−∞

+∞

−∞

Δ = −

= −

∫

∫

Then: [1.19]

( ) ( ) 221
x x

x

f f f X f df
E

+∞

−∞

Δ = −∫

To calculate the average of frequency of signal ( )x t without calculating the

Fourier transform ( )X f , we can use the equality [COH 95]:

( )

( ) ( )

2

* '

1

1 1

x
x

x

f f X f df
E

x t x t dt
E j

+∞

−∞

+∞

−∞

=

=

∫

∫
[1.20]

PROOF.–

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2*

2*

*

1

1
2

1

j t u f
x

x

j t u f

x

x

f f x t x u e dfdudt
E

x t x u e dfdudt
E j t

x t t u x u dudt
E j t

π

π

π

δ

−

∞

−

∞

∞

=

∂=
∂

∂= −
∂

∫∫∫

∫∫∫

∫∫

( ) ( )

( ) ( )

*

* '

1 1

1 1
x

x

x t x t dt
E j t

x t x t dt
E j

+∞

−∞
+∞

−∞

∂=
∂

=

∫

∫

EXAMPLE 1.4.– For the Gaussian signal ( )x t :

( ) 2 2tx t e α−=
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The average localization in time and frequency is given as:

1
xt α

Δ =

and

2xf
α
π

Δ =

In addition the inequality related to the uncertainty principle can be calculated as
(section 1.5, also see Figure 1.7):

1.
4x xt f
π

Δ Δ =

The inequality becomes equality in the case of Gaussian signals. It can be shown
that the Gaussian signal is the only signal for which the equality holds [GAB 46].

1.5. Uncertainty principle

The uncertainty principle in signal processing shows that a narrow waveform
yields a wide spectrum and a wide waveform yields a narrow spectrum and both the
time waveform and frequency spectrum cannot be made arbitrarily small
simultaneously [GRÖ 01]. In other words, the more a signal is localized in time, the
less it is in frequency and vice versa (see Figure 1.7). When talking about the
uncertainty principle in signal processing, several elements have to be taken into
consideration: the signal concerned ( )x t and its spectrum ( )X f , the density in time

( ) 2
x t , the density in frequency ( ) 2

X f and the standard deviations of time and

frequency, xtΔ and xfΔ , respectively. The uncertainty principle is given by the
inequality [1.21]:

1.
4x xt f
π

Δ Δ ≥ [1.21]

PROOF.– If we take a signal with a zero mean time and a zero mean frequency
(so 0xt = and 0xf = ), this does not affect the generality because the standard
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deviation of the dispersion around these means is independent of their values. So in
this case, by using equation [1.5]:

( )1
x

x

t t x t dt
E

+∞

−∞

Δ = ∫

Then:

( ) ( ) 22 1
x

x

t t x t dt
E

+∞

−∞

Δ = ∫

and (by using equation [1.19]):

( )1
x

x

f f X f df
E

+∞

−∞

Δ = ∫

Then:

( ) ( ) 22 1
x

x

f f X f df
E

+∞

−∞

Δ = ∫

Moreover, by using integration by parts, we obtain:

( ) ( ) ( )2 '2 .x t t x t x t dt
+∞ +∞

−∞ −∞

= −∫ ∫

( ) ( ) ( )2 '2x t dt tx t x t dt
+∞ +∞

−∞ −∞

=∫ ∫

The Cauchy–Schwarz inequality (which is a special case of Hölder’s inequality)
for two functions ( )f x and ( )g x is given as follows:

( ) ( ) ( ) ( )
1 1
2 22 2* .f x g x dx f x dx g x dx

+∞ +∞ +∞

−∞ −∞ −∞

⎛ ⎞ ⎛ ⎞
≤ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

Let ( ) ( )f t tx t= and ( ) ( )'g t x t= , we obtain:
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( ) ( ) ( )
1 1
2 222 2 '2 .x t dt tx t dt x t dt

+∞ +∞ +∞

−∞ −∞ −∞

⎛ ⎞ ⎛ ⎞
≤ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ ∫

( )
1
22'2 .x x xE E t x t dt

+∞

−∞

⎛ ⎞
≤ Δ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫

To evaluate the term ( )
1
22'x t dt

+∞

−∞

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∫ :

( ) ( ) ( )( )*2' ' 'x t dt x t x t dt
+∞

−∞ ∞

=∫ ∫∫

By using equation [1.16]:

( ) ( ) ( ) ( ) ( )2 2 2' *2 j f tx t dt j fX f X e d dfdtπ ωπ ω ω ω
+∞

−

−∞ ∞

=∫ ∫∫∫

( ) ( ) ( ) ( )2 *2 j fX f X f d dfπ ω ω δ ω ω
∞

= −∫∫

( ) 222 j fX f dfπ
+∞

−∞

= ∫

( )2 22 x xj E fπ= Δ

and

( )
1
22' 2 x xx t dt E fπ

+∞

−∞

⎛ ⎞
= Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∫

The inequality becomes:

So finally: 1.
4x xt f
π

Δ Δ ≥

4x x x xE t E fπ≤ Δ Δ
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Figure 1.7. Two different Gaussian signals in the time domain (left) and the frequency
domain (right): wide waveforms yield a narrow spectrum and narrow waveforms yield a wide

spectrum

1.6. Limitation of time analysis and frequency analysis: the need for
time–frequency representation

Figure 1.8 shows an example of two different chirp signals with the same
frequency density content. The Fourier transform integrates the frequency
component over time, so the final result will not contain any information about the
time localization of the signal. This is a serious limitation in the case of
non-stationary signals where following the frequency changes over time become
crucial.

A first intuitive solution is to track the frequency instantaneously. This will be
presented by the IF concept in the following section.

1.6.1. Instantaneous frequency

IF is one of the basic signal descriptors, which provides information about the
time-varying spectral changes in non-stationary signals. It can be viewed as the first
and most simple solution to deal with the limitations of time or frequency
representations. To calculate the IF, we have to define the analytic signal, which is a
more advanced illustration of the real signal. The analytic signal gives an idea about
amplitude and phase. It can be given as:

( ) ( )j t
a xx t A e ϕ= [1.22]
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Figure 1.8. Showing two different signals with the
same spectral content

The complex value associated with the real value can be calculated using the
Hilbert transform:

( ) ( ) ( ){ }ax t x t jH x t= + [1.23]

where ( ){ }H x t is the Hilbert transform of signal ( )x t , which can be calculated as

follows:

[ ] 1 1 ( )( ) ( ) xH x t x t d
t t

τ τ
π π τ

+∞

∞

= ∗ =
−∫ [1.24]

The Hilbert transform of ( )x t can be viewed as a convolution of ( )x t with the

signal 1
tπ
. It is the response to ( )x t of a linear time-invariant filter having impulse

response 1
tπ
.

Ville [VIL 48] defined the IF ( )f t of real signal ( )x t as the derivation of

phase of its analytic signal ( )ax t :

( ) ( )1
2

f t t
t

ϕ
π

∂=
∂

[1.25]
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and the instantaneous amplitude as:

[ ]22( ) ( ) ( )xA t x t H x t= + [1.26]

From a spectral point of view, the relationship between the analytic signal and
the real signal is given as follows:

( )
( ) ( )
( ) ( )

0 0

0

2 0

a

a

a

X f if f

X f X f if f

X f X f if f

⎧ = <
⎪⎪ = =⎨
⎪ = >⎪⎩

where ( )aX f is the spectrum of the analytic signal and ( )X f is the spectrum of
real signal.

The negative frequencies are suppressed in the analytic signal. This does not
alter the information content of the signal since we have:

( ) *( )X f X f− = [1.27]

Figure 1.9. a) Linear chirp in time domain and
b) the estimation of its instantaneous frequency

An example of the IF estimation is shown in Figure 1.9. The major problem with
the IF estimation occurs with a multicomponent non-stationary signal where the
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local spectrum is averaged. This is considered as a serious limitation of IF especially
if we want to extract relevant features from each component signature (see Figure
1.10). Hence, a higher dimension is needed to represent the signal more accurately.
This can be done by a joint time–frequency representation, which will be the main
subject of Chapter 2

Figure 1.10. Sum of two linear chirps a), the
IF b) and the joint time–frequency (the Stockwell

transform) representation c)

1.7. Conclusion

In this chapter, some concepts of signal theory, such as the stationary and
non-stationary processes, have been presented: first, the representation of signals in
time or frequency domains, and second, the related mathematical concepts and
proofs.

The main objective of this chapter was to show the limitation of time or
frequency representation, most notably in the case of multicomponent and
non-stationary signals. The need of time–frequency representation is proved by
showing the limitations of instantaneous frequency measure. This can be considered
as a primary introduction to Chapter 2, which concerns the time–frequency analysis
by using the Stockwell transform [STO 96].
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