
1

A First Encounter with Graphs

1.1. A few definitions

There is not much fun in listing basic definitions about graphs (this is
quite a bad introduction to start with!) but if we seek a rigorous presentation
of results and proofs, then we cannot avoid giving accurate definitions of the
objects that we will manipulate, but hopefully nice examples will also come
quickly. In this book, we assume that the reader has a basic (or, at least a
naive) knowledge of sets and operations on them.

As usual in mathematics, a pair (u, v) made up of two elements is
implicitly assumed to be ordered: it has a first component u and a second
component v. It has to be compared with a set with two elements u and v
denoted by {u, v}. A set does not carry any ordering information about its
elements. In particular, if u �= v, then we can build two pairs but a single set:
(u, v) �= (v, u) and {u, v} = {v, u}. If S is a finite set, we will write #S to
denote the number of elements in S, i.e. the cardinality of S. We can also find
the notation |S| but we will use it to denote lengths of paths.

1.1.1. Directed graphs

DEFINITION 1.1.– Let V be an arbitrary set. A directed graph, or digraph, is
a pair G = (V,E) where E is a subset of the Cartesian product V × V , i.e.
E is a set of pairs of elements in V . The elements of V are the vertices of G –
some authors also use the term nodes – and the elements of E are the edges,

CO
PYRIG

HTED
 M

ATERIA
L

2 Advanced Graph Theory and Combinatorics

also called oriented edges or arcs1, of G. An edge of the form (v, v) is a loop
on v. Another way to express that E is a subset of V × V is to say that E is
a binary relation over V . If either (u, v) or (v, u) belongs to E, the vertices u
and v are adjacent. If neither (u, v) nor (v, u) belong to E, then u and v are
independent. Given a digraph G, the set of vertices (respectively of edges) of
G is denoted by V (G) (respectively E(G)).

The vast majority of the graphs that we will encounter are finite meaning
that the set V of vertices is finite, and thus E contains at most (#V)2 edges.

REMARK 1.2.– It is common to speak of the order of G for #(V (G)) and the
size of G for #(E(G)).

There are a few examples of infinite graphs in this book; see
examples 1.47 and 4.11 (in formal language theory) and section 7.2 about
colorings. Infinite graphs usually require more sophisticated arguments such
as the axiom of choice. Implementation of infinite graphs in a computer could
be tricky or impossible. From a practical point of view, particular instances of
infinite graphs with a countable number of vertices and edges can be
implemented. Think about a periodic graph that permits one to store only a
finite amount of information to be repeated or a relation among vertices that
can be computed and implemented as a function (see exercise 6 and
example 1.5).

A digraph G = (V,E) is said to be simple if E is a subset of (V × V) \
{(v, v) | v ∈ V }. In that case, the relation E is irreflexive. Otherwise stated,
loops are not allowed.

The elements belonging to a set are pairwise distinct: there is no repeated
element. What we need to define a directed multigraph, i.e. a digraph where
multiple edges between two vertices are allowed, is to permit repetitions of an
element belonging to a set. In set theory, we can introduce the notion of a
multiset. First, we restrict ourselves to multisets with finite integer
multiplicities. A multiset M is a pair (S,m) where S is a set, in the
“classical” sense, and m : S → N≥1 is a multiplicity function that specifies
the number m(s) of occurrences of s ∈ S in the multiset. As an example, the
multiset denoted by {u, u, v, v, v, w} is built from S = {u, v, w} and

1 If we really have to distinguish the directed graphs from the undirected graphs that we
will soon introduce, then we could restrict the use of the word “edge” to the undirected
case and use the word “arc” solely in the directed case. But usually the context permits
one to avoid any misunderstanding.

A First Encounter with Graphs 3

m(u) = 2, m(v) = 3, m(w) = 1. If the occurrences of an element have to be
distinguished2, we can index elements s ∈ S by s1, . . . , sm(s). To continue
the example, {u1, u2, v1, v2, v3, w1} denotes the same multiset as above. If S
is a finite set, then the cardinality of the multiset M = (S,m) with finite
multiplicities is

#M :=
∑
s∈S

m(s).

Observe that a multiset (S,m) where m(s) = 1, for all s ∈ S, is simply a
set. Equivalently, we could have defined the multiplicity function to map every
element s of S to a finite subset of N: the set of indices used for s.

Second, we could consider countable multiplicities3. In that case, an
element of a multiset can be repeated infinitely many times and the
multiplicity function maps every element to a subset of N (which is the set of
indices used for that element). As an example, a vertex u could be repeated
infinitely many times with prime indices: {u2, u3, u5, u7, u11, . . .}. Thus, the
multiplicity function maps u to the set of prime numbers.

We now introduce a directed multigraph as a pair G = (V,E) where V
is a set of vertices and E is a multiset of edges built from a subset of V × V .
For a directed multigraph G = (V,E), the fact that V is finite does not imply
that E is also finite. Indeed, we could have infinitely many edges between two
vertices. Thus, a directed multigraph is finite if both the set V and the multiset
E are finite.

REMARK 1.3.– It is common (and quite visual) to represent the vertices of a
digraph by points in the plane (but we can also draw graphs on other surfaces
like on a torus). Edges of the form (u, v) are represented by arrows going from
u to v. We say that u (resp. v) is the origin (respectively, destination) of the
edge. Actually any oriented arc of a curve can be used to join two vertices, not
only straight vectors. Since positions of the vertices and arcs of curves joining
the vertices can be freely chosen, there are usually infinitely many ways to
represent a given graph. There is no reason that two edges that are intersecting
in one representation are also intersecting in another representation of the
same graph. We will rediscuss these notions with great care in section 6.1.

2 For instance, to define a walk using different edges between two vertices.
3 Recall that a set is countable if it is in one-to-one correspondence with a subset of N.
Of course, from a mathematical point of view, further generalizations of multiplicity
function and multisets can be considered; see section 1.7 for comments and pointers.

4 Advanced Graph Theory and Combinatorics

In Figure 1.1, we have depicted representations of a simple digraph,
digraph and directed multigraph.

1 2

3

4 5

Figure 1.1. From left to right: a simple digraph,

a digraph and a directed multigraph

A digraph G can be stored as an adjacency list: with each vertex u is
associated the list of vertices v such that (u, v) ∈ E(G). For the central digraph
in Figure 1.1, the corresponding adjacency list is given in Table 1.1. A similar
data structure can be used for directed multigraphs.

1 2
2 2 3 5
3 5
4 1 4 5
5 3 4

Table 1.1. An adjacency list

EXAMPLE 1.4 (Tournament).– A simple digraph G = (V,E) where, for all
pairs of distinct vertices u and v, either (u, v) or (v, u) belongs to E (but
exactly one of these two edges belongs to E) is said to be a tournament. Indeed,
it corresponds to an all-play-all tournament: each player plays against every
other player and there are no ties. If u wins the confrontation against v, then
we take the edge (v, u). See Figure 1.2.

EXAMPLE 1.5.– For an example of infinite simple digraph, take N>1 as set of
vertices and a pair (m,n) of integers greater than 1 is an edge if and only if
m divides n. The first few vertices and some edges of this digraph are depicted
in Figure 1.3. Note that the relation E is transitive. If (m,n) and (n, p) belong
to E, then (m, p) belongs to E.

A First Encounter with Graphs 5

Figure 1.2. A tournament among four players or teams

2 3 4 5 6 7 8 9

Figure 1.3. A divisibility relation (first few vertices only)

EXAMPLE 1.6.– We consider the digraph made up of Webpages and there is
an edge from a page p to a page q if there is a link on p referencing q. This
digraph is finite but contains several billions of vertices. Independently of the
content of the pages, here we are interested in the links that one user can follow
by browsing through pages. Based on Perron’s theorem (theorem 9.2), we will
discuss the basis of the Google’s PageRank algorithm in Chapter 10.

p1

p2

p3

p4

p5

Figure 1.4. Some links and Webpages

6 Advanced Graph Theory and Combinatorics

Similarly to pages referencing other pages, we can also think about
scientific papers that are citing other papers. In that case, we get a digraph
where it is meaningful to try to identify relevant or influential papers. Which
are the papers that are cited by many other papers, which are the “best”
journals? The website http://www.eigenfactor.org/ uses a similar strategy to
rank journals instead of Webpages [BER 07, WES 10].

EXAMPLE 1.7.– The digraph that we may associate with Twitter is another
example about social networks. There is an edge from a user account u to a
user account v, if u is following the tweets of v. Therefore, all the tweets posted
by v are displayed in the follower’s timeline. Such a digraph captures who is
following who. For instance, see [YAM 10] for an example of a User–Tweet
digraph.

REMARK 1.8.– The reader may wonder about this triple definition of
digraphs: simple digraphs, digraphs and directed multigraphs. Why should
we take into account the case of simple or multiple digraphs? The answer is a
pragmatic one. We choose the model that best fits the situation that we are
considering. If we are interested in finding a shortest path between two
vertices, it is meaningless to consider loops or multiple edges; going through
a loop just makes the path longer. We just want to know if the two vertices are
connected or not. In such a case, we will deal with simple digraphs. On the
other hand, assume that we have to model the fact that between two cities,
there is a road, a river but also a railway. Here multigraphs are useful to take
this fact into account. Note that simple digraphs are special cases of digraphs
that are themselves special cases of directed multigraphs. We reach same
conclusions when we have to choose between digraphs and the unoriented
graphs that we will soon introduce to model a particular situation.

DEFINITION 1.9.– In a directed graph G = (V,E), we may associate two
sets with every vertex v, respectively, the sets of outgoing edges and incoming
edges:

ω+(v) := {(v, w) ∈ E | w ∈ V }, ω−(v) := {(u, v) ∈ E | u ∈ V }.

These definitions are extended to directed multigraphs and in that case, the
corresponding sets are multisets. If, for all vertices v, the multisets ω+(v) and
ω−(v) are finite, then we say that G is of finite degree. The successors
(respectively, predecessors) of a vertex v are the vertices w (respectively, u)
such that (v, w) (respectively, (u, v)) belongs to ω+(v) (respectively, ω−(v)).
The set of successors (respectively, predecessors) of v is denoted by succ(v)
(respectively, pred(v)). Note that there is a loop on v if and only if

A First Encounter with Graphs 7

v ∈ succ(v) ∩ pred(v). The neighbors of v are the vertices in
succ(v) ∪ pred(v), they are the vertices adjacent to v. If there is no loop on v,
then v is not a neighbor of itself. The set of neighbors of v,
N(v) := succ(v) ∪ pred(v), is sometimes called the (open) neighborhood of
v. If v has to be included in the neighborhood, we speak of the closed
neighborhood of v and is denoted by N[v].

In a directed multigraph of finite degree, the indegree of the vertex v is the
number of incoming edges of v. It is denoted by deg−(v) := #ω−(v). The
outdegree of the vertex v, denoted by deg+(v) := #ω+(v), is the number of
outgoing edges of v. If deg−(v) = 0, v is a source. If deg+(v) = 0, v is a sink.
If there exists k such that deg+(v) = k for all vertices v, then the directed
multigraph is said to be k-regular.

EXAMPLE 1.10.– In theoretical computer science, a (complete)
deterministic finite automaton is a k-regular directed multigraph where k is
the size of the alphabet. Automata are, for instance, useful when working with
regular expression and searching a word in a text. An example is given in
Figure 1.5 where the alphabet is {R,B} and the directed multigraph is
2-regular. See, for instance, [SUD 06] for a general reference.

With infinite digraphs having infinitely many edges, indegrees or
outdegrees may be infinite. For instance, the outdegree (respectively,
indegree) of every vertex in the digraph of example 1.5 is infinite
(respectively, finite). Indeed, every positive integer n is a divisor of all
numbers of the form kn but every integer m has a finite number of divisors.
Sources in this simple digraph are exactly the prime numbers.

The following observation is a direct consequence of the fact that every
edge (in particular, loop) has exactly one origin and one destination.

LEMMA 1.11 (Handshaking Formula).– Let G = (V,E) be a finite directed
multigraph. We have∑

v∈V

deg+(v) =
∑
v∈V

deg−(v) = #E.

DEFINITION 1.12 (Labeled Graphs).– We can add some relevant information
on the edges or vertices of a digraph. Formally, edges can receive a label or a
weight (the latter term usually refers to numerical assignments). If G = (V,E)
is a directed multigraph, then we consider a map � : E → S where S is a set.
For instance, S can be a finite set if we need to distinguish several types of
edges (e.g. colors) or S could be equal to N or R if we need to add numerical

8 Advanced Graph Theory and Combinatorics

information (e.g. cost, capacity and distance). Similarly, we can define a map
of domain V to add information about the vertices.

EXAMPLE 1.13.– Consider the 197 countries in the world and the flow of
migrants moving from one country to another. So an edge from a country c to a
country d will receive extra information to count the number of migrants from
c to d during a given period. For instance, between 2005 and 2010, 1.8 million
migrants moved from Mexico to the United States. Summing up the weights
of the edges in-going to the United States give the total number of migrants
entering the United States [ABE 14].

EXAMPLE 1.14.– On the Internet, Internet service providers represent their
local network by a digraph where each edge is weighted by the capacity of the
link.

EXAMPLE 1.15.– Consider the digraph depicted in Figure 1.5. Here, we
have added labels B or R to edges corresponding to the two colors “Blue” or
“Red”. This is an example of a synchronized digraph: starting from any
vertex, following a sequence of three consecutive edges of color blue, red and
blue leads to vertex 1. This is a solution to the road coloring problem (See
section 1.7).

1 2

3 4

B

R

R

B

R

B
R

B

Figure 1.5. Adding labels to edges

DEFINITION 1.16.– Let G = (V,E) be a directed multigraph. Let W be a
subset of V and F be a subset of 4 E ∩ (W × W). The directed multigraph

4 Here, the intersection of a multiset E and a set W × W has to be understood as
follows: we keep the multiplicities carried by E but we restrict ourselves to edges with
both endpoints in W . Now if we take a subset of E ∩ (W ×W), the multiplicity of an
edge in this multiset is less than or equal to the corresponding multiplicity in E.

A First Encounter with Graphs 9

G′ = (W,F) is a subgraph of G. We can also say that G is a supergraph of
G′. A proper subgraph of G is a subgraph G′ of G such that G′ �= G. The
directed multigraph

(W,E ∩ (W × W))

is the subgraph of G induced by W . If e is an edge, G−e denotes the subgraph
where e has been deleted. If v is a vertex, G − v denotes the subgraph of G
induced by V \{v}. These two operations can be extended to G−F and G−W
where F is a multiset of edges and W is a set of vertices.

Now, we keep all the vertices of the original directed multigraph. A directed
multigraph H = (W,F) is a spanning subgraph of G = (V,E) if W = V
and F ⊆ E. We also say that H is a factor of G. Otherwise stated, we only
remove some of the edges of G. We will reconsider this notion in definition 4.5
with spanning subtrees. If a directed multigraph has m edges, then it has 2m

spanning subgraphs.

1.1.2. Unoriented graphs

We now consider particular digraphs: the unoriented graphs.

DEFINITION 1.17.– A multigraph G = (V,E) is unoriented if, for every edge
(u, v) belonging to E, the edge (v, u) belongs to E. Moreover, the edges (u, v)
and (v, u) have the same multiplicities. Otherwise, stated E is symmetric. In
that case, we allow ourselves to denote an edge between two distinct vertices
by a set {u, v}, instead of taking the two pairs (u, v) and (v, u) into account. So
the two oriented edges are identified5 with a single (unoriented) edge {u, v}.
This is just an abuse of notation. We say that u and v are adjacent. Similarly a
loop on u can be designated by the multiset {u, u}. By abuse of notation, we
may write {u, v} ∈ E or {u, u} ∈ E. In a representation of an unoriented
graph, we use segments or arcs of curves without any orientation. We can
define accordingly unoriented graphs where multiple edges are not allowed
and simple unoriented graphs where also loops are not allowed.

REMARK 1.18.– Even though it may sound awkward, note that an
unoriented multigraph is a special case of a directed multigraph where

5 When discussing walks it is important to note when there is an edge {u, v}, an agent
can move from u to v and also from v to u. Thus in the unoriented case, we will not
distinguish any orientation from u to v or from v to u.

10 Advanced Graph Theory and Combinatorics

orientation is neglected. Thus, definitions given for digraphs usually hold for
unoriented graphs.

! If not specified, the term graph (respectively, multigraph) is used
only for unoriented graphs (respectively, multigraphs). From now on,
we will use, respectively, the words graph and digraph to distinguish
between the unoriented case and the general case.

EXAMPLE 1.19.– Again from the world of social networks, we can view
Facebook as a graph where the vertices are the Facebook users and there is
an edge between two users whenever they are friends. “Being friends” is a
symmetric relation, so there is no need to consider an orientation.

EXAMPLE 1.20.– A map of Belgium with the main cities connected by
highways is an example of a simple graph where the edges have weights
(distances in kilometers). If there is a highway from a to b, there is always a
highway from b to a. One representation of the graph is depicted in
Figure 1.6.

107

131

131

98 121

70

97

76
65

207

143

Figure 1.6. Brugge, Antwerp, Brussels, Mons, Namur, Liège, Arlon

(from north to south and from west to east)

As a result of remark 1.18, the notions of degree, neighborhood or
subgraph can be adapted to unoriented graphs. Let v be a vertex. We let

A First Encounter with Graphs 11

ω(v) := {{v, w} ∈ E | w ∈ V } be the set of edges adjacent to v. For a
multigraph, ω(v) is usually a multiset. If ω(v) is finite, the degree of v,
denoted by deg(v), is equal to the number of edges of the form {v, w} ∈ E
with v �= w plus twice the number of loops on v. Therefore, for a finite
multigraph the handshaking formula becomes∑

v∈V

deg(v) = 2#E. [1.1]

We transpose the notion of k-regularity to undirected graphs. Let k be an
integer. The multigraph G is k-regular, if every vertex has degree k. As an
example, the complete graph Kn introduced below is an (n − 1)-regular
graph. Regularity provides structural information about the graph.

The notion of k-regular graphs will be encountered several times in this
book: about their spectrum with Hoffman theorem and algebra of matrices in
section 8.5 and proposition 9.8, with PageRank in section 10.2. Similarly,
complete graphs will be encountered in section 6.5, about coloring of planar
graphs and Kuratowski’s theorem (see proposition 6.13) or about Ramsey
numbers in section 7.5.

EXAMPLE 1.21.– The complete graph with n vertices is a simple graph where
every edge between any two distinct vertices is present, i.e. every vertex is
adjacent to all the other vertices. It is denoted by Kn. A clique in a graph G
is a complete subgraph of G. The knowledge of the maximal cliques occurring
in G provides structural information (for instance, think about a subgroup of
people where everyone knows everyone else or a network where a region is
densely connected) about G. Two examples are depicted in Figure 1.7.

Figure 1.7. The complete graphs K8 and K5

12 Advanced Graph Theory and Combinatorics

REMARK 1.22.– Every simple graph with n vertices is a (spanning) subgraph
of Kn.6

There are several extra notions that we usually encounter in an unoriented
context (of course, it would not be hard to adapt them in the general case of
digraphs). Roughly speaking, a vertex cover is about a subset of vertices that
meets every edge of the graph and a dominating set is a subset of vertices
“close” to every vertex.

DEFINITION 1.23 (Covering and domination).– Let G be a graph. Let W be a
subset of V (G). If, for every edge e ∈ E(G), there exists a vertex v ∈ W such
that v is an endpoint of e, then W is a vertex cover of G. A minimum vertex
cover is a vertex cover of G of minimal size. A vertex cover of the Petersen
graph7 is represented in Figure 1.8 (left). It is a minimum vertex cover (see
section 1.8).

Figure 1.8. A vertex cover (left) and dominating set (right) of the

Petersen graph represented by large vertices

With the same philosophy, a subset W of V (G) is a dominating set of G, if
every vertex of V (G) is either in W or adjacent to a vertex in W , i.e. V (G) =

6 In a second reading, make also the connection with lemma 7.29.
7 The Petersen graph is recurrent in graph theory. It is common to find it as example or
counterexample for many problems. Petersen built this graph as the smallest bridgeless
3-regular graph with no 3-edge-coloring [PET 98]. (These notions will be defined later
on in this book).

A First Encounter with Graphs 13

(∪w∈WN(w)) ∪ W = ∪w∈WN[w] where we recall that N(w) (respectively,
N[w]) is the neighborhood of w (respectively, closed neighborhood of w). A
dominating set of the Petersen graph is represented in Figure 1.8 (right). Note
that this set of three vertices is not a vertex cover: at least five edges have no
endpoints in this set.

DEFINITION 1.24.– A simple graph G = (V,E) is bipartite if there exists a
partition of V into two subsets V1 and V2 in such a way that every edge in E
is of the form {v1, v2} with v1 ∈ V1 and v2 ∈ V2. The pair (V1, V2) is said to
be a bipartition of G. The complete bipartite graph K�,m is a bipartite graph
with �+m vertices such that there is a bipartition (V1, V2) with #V1 = � and
#V2 = m and for every u ∈ V1 and every v ∈ V2, the edge {u, v} is present.
A complete bipartite graph of the form K1,m is said to be a star.

This notion of partition can easily be generalized. Let n ≥ 2. A simple
graph G = (V,E) is n-partite if there exists a partition of V into n subsets
V1, . . . , Vn in such a way that every edge in E is of the form {u, v} with u ∈
Vi and v ∈ Vj for some i, j such that i �= j. The complete n-partite graph
Km1,...,mn

has a set of vertices partitioned into n subsets V1, . . . , Vn in such
a way that #Vi = mi; for all i, there is no edge between two vertices of the
same subset Vi and for all vertices u in Vi and v in Vj , i �= j, the edge {u, v}
is present.

Compared with Figure 1.9, the complete tripartite graph K3,3,2 has 21
edges.

Figure 1.9. The complete bipartite graph K2,3 and a 3-partite graph

EXAMPLE 1.25.– Consider a graph where the vertices represent either
workers, or tasks to be completed. So there is a natural partition of this set.
There is an edge between a worker Wi and a task Tj if Wi has the skills to
perform Tj . Usually the question is to assign tasks to workers in such a way
that every task will be realized. In Figure 1.10, a spanning subgraph of the
bipartite graph is represented with black edges.

14 Advanced Graph Theory and Combinatorics

For a modeling of the Internet topology by bipartite graphs, see [TAR 13].

EXAMPLE 1.26.– Another example of modeling is to consider patients
needing kidney transplants and donors. With blood or tissue incompatibility,
some matchings are impossible. A bipartite graph can model the possible
compatible patient–donor pairs. We can consider a two-way kidney exchange
that involves two patients, each of whom is incompatible with his/her own
donor but compatible with the other donor (see, for instance8, [ROT 07]).

W1 W2 W3 W4

T1 T2 T3 T4

Figure 1.10. Workers and tasks, in black a spanning subgraph

1.2. Paths and connected components

Let us place an agent on a vertex of a graph. This agent is allowed to move
from vertex to vertex along the edges of the graph. This leads to the notion
of a walk. If the agent moves forever, even though the graph is finite, this will
gives infinite paths (the same vertex can be visited several times). For a general
presentation, we consider the directed case. We refer again to remark 1.18.

DEFINITION 1.27.– Let G = (V,E) be a directed multigraph. A walk in G
is a finite or infinite sequence of edges ((vi,1, vi,2))i such that vi,2 = vi+1,1

for all i. The length of a finite walk is the number of edges in the sequence. To
a walk ((vi,1, vi,2))i=1,...,n of length n corresponds the sequence of the n+ 1
visited vertices (v1,1, v2,1, . . . , vn,1, vn,2) = (v1,1, v1,2, v2,2, . . . , vn,2). This is
a walk from (or joining) v1,1 to vn,2.

The walk is closed if v1,1 = vn,2. A closed walk is defined up to a cyclic
permutation of the edges in the sequence. In a digraph (where there are no
multiple edges), a walk is completely determined by the sequence of visited
vertices.

8 Alvin Elliot Roth won the Nobel prize in economic sciences in 2012.

A First Encounter with Graphs 15

v1,1
v1,2 v2,2 v3,2

v2,1 v3,1 v4,1 vn,1
vn,2

Figure 1.11. A walk

A trail is a walk where all the edges occurring in the sequence are pairwise
distinct. Finally, a path (some authors use the term simple path to emphasize
the special case) is a walk where all the visited vertices (except maybe the first
one and the last one when defining a closed path) are pairwise distinct. This
implies that every path is a trail. A closed path is usually called a cycle. A
graph without cycle is said to be acyclic.

For the digraph in Figure 1.12, (e1, e4, e5, e4, e6) is a walk joining 1 to 5;
(e1, e4, e5, e2, e3) is a closed trail (no repeated edges but the vertex 2 is
visited twice); (e1, e4, e6, e7) is a path joining 1 to 6. There are exactly three
cycles: (e1, e2, e3), (e4, e5) and (e6, e7, e8) and three closed trails which are
not cycles: (e1, e4, e5, e2, e3), (e4, e6, e7, e8, e5) and (e1, e4, e6, e7, e8,
e5, e2, e3). For the simple graph on the right, (f1, f4, f5, f6, f7, f4, f2) is a
walk joining a and c.

1

2

3

4

5

6

a

b

c

d

e

g

e1

e2

e3

e6

e7

e8

e4

e5

f1

f2

f3

f5

f6

f7

f4

Figure 1.12. A simple digraph and a simple graph

! Here is a major difference with the oriented case: There is no trail
joining a to c and passing through d because, for any such walk, the
(unoriented) edge f4 must be repeated. In particular, in an unoriented
graph, there is no cycle of length exactly 2. To have a such a cycle, we
need two edges between two given vertices, i.e. a multigraph. Thus,
there are exactly two cycles: (f1, f2, f3) and (f5, f6, f7).

16 Advanced Graph Theory and Combinatorics

EXAMPLE 1.28 (Collaboration Graphs).– In science, a majority of published
research papers are coauthored by several researchers. We may build a graph
where the vertices are the scientists and two scientists are connected if they
share a publication. For instance, the so-called Erdős number of a
mathematician M is the distance in this graph, i.e. the length of the shortest
path (assuming that it exists), between M and the famous Hungarian
mathematician Paul Erdős9. See the paper [ODD 79] written by R. Graham
(using a pseudonym) or [EAS 10, p. 34]. It seems that every living
mathematician has a quite small Erdős number (less than seven). This is not a
theorem, it just reflects the fact that the community of researchers is quite
dense. This “fact” is known as the small world phenomenon. See the
comments in section 1.7.

If you are a tennis player, you can try to compute your own Federer number:
players who played once (winning or losing) an official game against Roger
Federer have a Federer number equal to 1, players who played against a player
with a Federer number 1 but who never played against Federer himself, have
a number equal to 2 and so on.

EXAMPLE 1.29.– On various operating systems, you can find the tool
traceroute that reveals the presence of intermediate-level equipment
(routers) on the route (or path) of packets of data taken from an IP network on
their way to a given host on the Internet.

1.2.1. Connected components

Let G = (V,E) be a directed multigraph. Let u, v be two vertices. We say
that u is connected to v and we write u → v, if there exists a walk from u to
v. In particular, we assume that every vertex u is connected to itself (with a
length-0 walk). If u is connected to v, we let d(u, v) denote the minimal length
of a walk from u to v. Note that there is always a path achieving d(u, v). A
strongly connected component (SCC) is a maximal subset C of V such that for
all u, v ∈ C, u → v (in particular, we also have v → u). The term “strongly”
reflects the fact that orientation is taken into account. If V (G) is an SCC, then
G is said to be (strongly) connected.

9 Paul Erdős (1913–1996) has had more than 500 collaborators, he worked in several
fields ranging from combinatorics and graph theory to number theory, analysis
and probability. For instance, see [HOF 99] for an account about this colorful
mathematician.

A First Encounter with Graphs 17

An SCC is trivial if it is restricted to a single vertex with no loop. In every
non-trivial SCC, there exists a closed walk visiting all the vertices of the
component. We write u ↔ v if and only if u → v and v → u. Since every
vertex is connected to itself, we have u ↔ u for all vertices u. Note that ↔
defines an equivalence relation over V (G) and the corresponding equivalence
classes are exactly the SCCs of G.

Since (unoriented) multigraphs are special cases of directed multigraphs
(see remark 1.18), we have thus defined connected vertices and connected
components in a multigraph.

A directed multigraph G = (V,E) is weakly connected if the unoriented
graph obtained by taking the symmetric closure of E is connected. That is to
say, if one disregards the orientation of the oriented edges, then the graph is
connected.

EXAMPLE 1.30.– The digraph depicted in Figure 1.13 is not strongly
connected but weakly connected. We have 1 → 9 but 9 �→ 1 or simply, 2 → 5
but 5 �→ 2. It has four SCCs: {1, 2, 3, 4}, {5}, {6, 7} and {8, 9}.

1 2

3 4

5

6 7

8 9

Figure 1.13. A digraph and its four SCCs

REMARK 1.31 (Distance).– The fact that u is connected to v does not imply,
in a digraph, that v is also connected to u. The relation “being connected”
over V is not necessarily symmetric. But for an unoriented multigraph G,
since E(G) is symmetric, so is the relation “being connected”. In that case,
the relations → and ↔ coincide and the map d restricted to a connected

18 Advanced Graph Theory and Combinatorics

component is a distance10. Note that we usually still refer to the term distance
in a strongly connected digraph even if the map d is not symmetric. In
Figure 1.13, we have d(1, 3) = 1 but d(3, 1) = 3.

The procedure given in Table 1.2 allows us to compute the reflexive and
transitive closure of succ(v), i.e. the set succ∗(v) := {u ∈ V | v → u}. Note
that since v → v, v belongs to succ∗(v). In the following algorithm, the data
are a finite digraph G = (V,E) and a vertex v ∈ V , the output is the set
succ∗(v). The idea is to let the set Component grow by adding elements in
succ(u) for the vertices u that have been recently added to Component and
stored in New. When no new vertices are added, the procedure stops.

TRANSITIVECLOSURESUCC(G, v)
1 Component ← {v};
2 New ← {v};
3 while New �= ∅,
4 do Neighbors ← ∅;
5 for all u ∈ New,
6 do Neighbors ← Neighbors ∪ succ(u);
7 New ← Neighbors \ Component;
8 Component ← Component ∪ New;
9 return Component;

Table 1.2. Algorithm to compute succ∗(v)

Similarly, we compute pred∗(v) := {u ∈ V | u → v}. The SCC11 of u is
simply succ∗(u)∩pred∗(u). The procedure can be adapted to detect connected
components of an unoriented graph. In particular, a graph is connected if and
only if V = Component. Also see the Roy–Warshall algorithm in section 1.8.

1.2.2. Stronger notions of connectivity

To conclude this section, we mention stronger notions related to
connectedness. All notions and results are stated in an unoriented setting.

10 In the mathematical sense, ∀u, v, d(u, v) ≥ 0 and d(u, v) = 0 if and only if u =
v, d(u, v) = d(v, u) and d satisfies the triangular inequality: ∀u, v, w, d(u, v) ≤
d(u,w) + d(w, v).
11 For more insight, consider Tarjan’s SCCs algorithm [TAR 72].

A First Encounter with Graphs 19

DEFINITION 1.32.– In a multigraph, a bridge (also called isthmus or
cut-edge) is an edge whose removal increases the number of connected
components in the graph. In particular, if G is a connected multigraph, a
bridge is an edge e such that G − e is not connected. Observe that in that
case, G − e has exactly two connected components. Since E is connected,
every vertex in G− e is connected to an endpoint of e.

Figure 1.14. A graph with a single bridge

Clearly, an edge is a bridge if and only if it does not belong to any cycle.
Equivalently, e is a bridge if and only if there exist two connected vertices u
and v such that all paths joining u and v go through e. As an example, the
edge f4 in Figure 1.12 is a bridge. In a directed multigraph, a strong bridge
is an edge such that removing that edge increases the number of SCC in the
digraph.

THEOREM 1.33 (Robbin’s theorem — strong orientation).– Let G be a simple
graph. There exists an orientation for every edge, turning it into a strongly
connected digraph, if and only if G is connected and has no bridge.

The proof is left as an exercise: it is clear that if G has a bridge, then
no orientation may exist. Notice that this result is still valid for a multigraph.
Indeed, if there are at least two edges between two vertices u and v, locally
the task is easy: one simply takes the two orientations (u, v) and (v, u) (see
[ROB 39]).

The notion of a bridge extends to a cut-set.

DEFINITION 1.34 (Cut-set).– Let G be a multigraph. A subset F of E(G) is a
cut-set if G − F has more connected components than G. In particular, when
G is a connected multigraph, a set F such that G − F is disconnected is a
cut-set.

DEFINITION 1.35.– Let us introduce a quantity λ(G) (some authors use
κ′(G)). If G is a disconnected multigraph, we set λ(G) = 0. If G is a

20 Advanced Graph Theory and Combinatorics

connected multigraph, λ(G) is defined as the cardinality of a cut-set of
minimal size. Let k ≥ 1. We say that a multigraph G is k-edge connected
when

λ(G) ≥ k.

This means that G is connected and removing any subset of at most k − 1
edges leaves the graph connected. Note that if λ(G) = k, then removing k
well-chosen edges leads to a disconnected graph (with exactly two connected
components).

For instance, λ(Kn) = n − 1 and a connected graph with no bridge is 2-
edge connected: we have to delete at least two edges to disconnect the graph.
See, for instance, the graph depicted in Figure 5.1.

Dual notions (edges versus vertices) can be defined when removing some
vertices of the graph (and, of course, the edges adjacent to them).

DEFINITION 1.36.– A cut-vertex is a vertex such that its removal increases
the number of connected components in the multigraph. A subset W of V (G)
is a separating set if G − W has more connected components than G. In
particular, if G is connected, a vertex v (respectively, a set W) such that
G − v (respectively, G − W) is disconnected, is a cut-vertex (respectively, a
separating set).

REMARK 1.37.– When removing a bridge, the number of connected
components increases by 1. The situation is quite different when removing a
cut-vertex. Removing the central vertex in Figure 1.15 leads to three
connected components.

Figure 1.15. A cut-vertex

A First Encounter with Graphs 21

Every connected non-complete multigraph has a separating set. It is thus
legitimate to introduce the next notion.

DEFINITION 1.38 (Vertex Connectivity).– Let G be a multigraph. We define a
quantity κ(G) as follows. We set κ(G) = 0 whenever G is disconnected. For a
complete graph Kn, we set κ(Kn) = n− 1 because it cannot be disconnected
when removing vertices. In all other cases, G is a connected and non-complete
graph, κ(G) is the cardinality of a separating set of minimal size.

Let k ≥ 1. We say that a multigraph G is k-connected (more precisely,
k-vertex connected) if

κ(G) ≥ k.

This means that G is connected and removing any subset of at most k − 1
vertices leaves the graph connected12. The least integer k such that G is k-
connected is the vertex connectivity of G. If κ(G) = k, then removing k well-
chosen vertices leads to a disconnected graph or to a trivial graph reduced to
a single vertex.

For instance, every cycle of length at least 3 is 2-connected. The next result
gives an interpretation of the vertex-connectivity.

THEOREM 1.39 (Menger’s theorem).– Let G = (V,E) be a finite graph. Let
u, v be two non-adjacent vertices. Let k ≥ 0 be the smallest integer such that
there exists W ⊂ V with #W = k and u �↔ v in the subgraph G − W . The
maximal number of vertex-independent paths joining u and v, i.e. any two such
paths have no common vertex except for u and v, is equal to k.

vu

Figure 1.16. Three vertex-independent paths

A proof can be found in [DIR 66]. For extension to infinite graphs, see
[HAL 74]. There is also an analogous version of this result in terms of edge
connectivity and edge-independent paths.

12 It could be left with a single vertex but recall that a trivial graph reduced to a vertex
is connected.

22 Advanced Graph Theory and Combinatorics

COROLLARY 1.40.– Let k ≥ 2. A graph is k-connected if and only if every
pair of distinct vertices is connected by at least k vertex-independent paths.

To conclude this section, we mention the following result.

THEOREM 1.41 (Whitney [WHI 32]).– For every graph, we have

κ(G) ≤ λ(G) ≤ min
v∈V (G)

deg(v).

PROOF.– The right inequality is clear: if we remove all the edges adjacent to a
vertex of minimal degree, then this vertex will be disconnected from the other
vertices.

If λ(G) ≤ 1, then κ(G) = λ(G). Now assume that λ(G) = k ≥ 2. There
exist k edges {u1, v1}, . . . , {uk, vk} whose removal leads to a disconnect
graph with a partition of the vertices into two sets V1 and V2 corresponding to
the two connected components of the resulting graph13. Note that the ui’s and
vi’s are not necessarily different. We may assume that the ui’s belong to V1

and the vi’s to V2. If there exists w ∈ V1 \ {u1, . . . , uk}, then removing
u1, . . . , uk will disconnect w from the vertices in V2. So we remove at most
(some of the ui’s could be identical) k vertices to disconnect G. The other
case is when V1 = {u1, . . . , uk}. The argument is that u1 has at most k
neighbors, i.e. deg(u1) ≤ k. Indeed, u1 has at most (#V1) − 1 neighbors in
V1 and at most k − ((#V1)− 1) in V2 because we know that there are exactly
k edges between V1 and V2 and every vertex in V1 is the endpoint of at least
one such edge. Since λ(G) = k and from the right inequality of the statement,
we deduce that deg(u1) ≥ k. Hence, deg(u1) = k. Thus, we may remove the
k neighbors of u1 to disconnect the graph, meaning that κ(G) ≤ k. �

u1 = u2 u3 u4

v1 v2 v3 = v4

V1

V2

Figure 1.17. Illustration of Whitney’s theorem

13 Removing {u1, v1}, . . . , {uk−1, vk−1} leaves the graph connected and {uk, vk}
becomes a bridge whose removal gives two connected components.

A First Encounter with Graphs 23

1.3. Eulerian graphs

In a directed multigraph, an Eulerian trail is a trail visiting all the edges,
i.e. a walk going exactly once through all edges.

A directed multigraph is Eulerian if it has a closed Eulerian trail, i.e. a
walk starting and ending in the same vertex and going exactly once through all
edges. Such a closed Eulerian trail is usually said to be an Eulerian circuit. The
fact that a digraph is or is not Eulerian is easy to check and the constructive
proof below gives an algorithm for finding an Eulerian circuit.

LEMMA 1.42.– A weakly connected (finite) directed multigraph G = (V,E)
is Eulerian if and only if, for all vertices v ∈ V , deg−(v) = deg+(v).

PROOF.– The proof is elementary, but it provides an algorithm to get a Eulerian
circuit. Start from any vertex v0. Choose an edge starting in this vertex. Repeat
the procedure from the reached vertex: choose an edge among the edges that
are still available (i.e. not yet chosen during a previous step). Since the graph
is finite and since, for all vertices v ∈ V , deg−(v) = deg+(v), after a finite
number of choices, we are back to v0. If the set of edges that have been already
chosen is equal to E, we have obtained an Eulerian circuit. Otherwise, we
extend the closed trail as follows. Pick in that trail a vertex v1 such that there
exists an edge with origin v1 among the set of unchosen edges (such an edge
exists because the graph is connected). Repeat the procedure from v1 and get a
new closed trail going through v1 and merge in an appropriate way this closed
trail with the first one to get a longer closed trail: start the trail from v0, when
reaching v1 complete the second closed trail coming back to v1, then finish the
initial trail leading back to v0. Repeat the procedure if there are edges left. The
algorithm terminates because of the finiteness of the graph. �

COROLLARY 1.43.– A weakly connected (finite) directed multigraph G =
(V,E) has a Eulerian trail from u to v if and only if, deg−(u)+1 = deg+(u),
deg−(v) = deg+(v) + 1 and, for all vertices w ∈ V \ {u, v}, deg−(w) =
deg+(w).

PROOF.– If we add an edge (v, u) to the directed multigraph, then we are back
to the previous lemma. �

We can directly reformulate the result in the unoriented case.

COROLLARY 1.44.– A connected (finite) multigraph G = (V,E) is Eulerian
if and only if all vertices have even degree. A connected (finite) multigraph

24 Advanced Graph Theory and Combinatorics

G = (V,E) has an Eulerian trail from u to v if and only if u and v are of odd
degree and all other vertices have even degree.

This result gives the solution to the historical problem solved by Euler
about the seven bridges of Königsberg: seven bridges were situated across the
Pregolya River and the people living in Königsberg (now Kaliningrad)
wanted to go for a walk on these bridges; however, their stroll should not use
the same bridge twice. In other words, they were looking for what we call a
Eulerian circuit. They were unsuccessful but Euler showed that, indeed, there
is no such circuit (see Figure 1.18).

Figure 1.18. The seven bridges, the borders of the river and two isles

are represented by the four vertices

Fleury’s algorithm given in Table 1.3 connects two notions encountered so
far: Eulerian graphs and bridges. But it has a drawback. To implement this
method, we have to detect bridges efficiently14. Graph traversal and the
detection of bridges leads to an algorithm whose running time is quadratic in
#E. The idea is to postpone the crossing of a bridge as much as possible.
Indeed, when we cross a bridge, there is no way to go back to the component
we were in without taking it a second time, which is not permitted. Thus that
component must have been completely visited first (see the comments in
section 1.7). Recall that ω(v) is the set of edges adjacent to v. Note in line 6
that the graph is updated. So we are looking for bridges in the subgraph
restricted unvisited edges.

The output of Fleury’s algorithm is a sequence of edges. Either the length
of this sequence is equal to #E and we have found a Eulerian circuit or a
Eulerian trail, or if we have less than #E edges in the sequence, then the graph
is not Eulerian. To find an algorithm with a better performance, search for
Hierholzer’s algorithm on the web. Applying Fleury’s algorithm to the graph

14 For instance, see Tarjan’s Bridge-finding algorithm [TAR 74].

A First Encounter with Graphs 25

depicted in Figure 1.19, one possible output is represented (the edges have
been ordered with respect to the output sequence of the algorithm). Note that
after selecting the first three edges, the edge numbered 8 is a bridge of the
remaining graph. Thus, we cannot choose that one at this step of the algorithm.
Nevertheless, we could have chosen either edge 4 or edge 7 to pursue. The
proof of the exactness of Fleury’s algorithm is left as an exercise.

FLEURY(G, v0) where G = (V,E) is a multigraph and v0 ∈ V

1 i ← 1;
2 repeat
3 if ω(vi−1) contains an edge that is not a bridge
4 then pick such an edge ei = {vi−1, vi} ∈ E;
5 else pick a bridge ei = {vi−1, vi} ∈ E;
6 G ← G− ei; i ← i+ 1;
7 until i > #E
8 return (e1, e2, . . .);

Table 1.3. Fleury’s algorithm [FLE 83]

1

13

2 5

10 9 12 3 4 6

11 8 7

Figure 1.19. An application of Fleury’s algorithm

(starting with lower-left vertex)

1.4. Defining Hamiltonian graphs

A notion dual to Eulerian graphs (vertices versus edges) is the following
one. In a digraph, a path is Hamiltonian if it visits all the vertices. In

26 Advanced Graph Theory and Combinatorics

Figure 1.13, the path visiting the vertices 2, 1, 3, 4, 5, 6, 7, 9, 8 is the unique
Hamiltonian path for this graph.

As in the Eulerian case where we have first defined an Eulerian trail, then
a Eulerian graph, a digraph is Hamiltonian if there exists a cycle starting and
ending in the same vertex and going exactly once through all the vertices. This
cycle is a Hamiltonian circuit. If we can answer the question of whether or
not a digraph is Hamiltonian, then we can also trivially answer the question
if we allow multiple edges. So we can consider simple digraphs. Analogous
definitions can be given in the unoriented case.

EXAMPLE 1.45.– A trivial example is given by Kn, n ≥ 3, where every
permutation of the n vertices gives a Hamiltonian circuit. Hence, Kn has n!
distinct Hamiltonian circuits. Another example is depicted in Figure 1.20
where we have to find a circuit for a Knight on a chessboard in such a way
that every square is visited once. So here, we have an underlying graph with
64 vertices and there is an edge between two vertices if there is a legal
Knight’s move between these two squares.

Figure 1.20. A Knight’s tour on a chessboard

It turns out that finding a Hamiltonian circuit seems to be much more
difficult than the Eulerian counterpart (lemma 1.42 and corollary 1.44).
Indeed, deciding (using a generic algorithm) whether or not a graph is
Hamiltonian is well known to be an NP-complete problem [GAR 79]. In
Chapter 2, we make precise the latter notion. Chapter 3 will present necessary
or sufficient conditions for a graph to be Hamiltonian.

A First Encounter with Graphs 27

1.5. Distance and shortest path

In this section, in great detail we present Dijkstra’s algorithm computing
one shortest path15 from a vertex v1 (single source) to every other vertex in the
graph. We will consider simple weighted digraphs. Indeed, if several edges are
connecting two vertices, we can simply consider the one of smallest weight.
We can also disregard loops that will increase the total weight. Note that the
ideas developed for Dijkstra’s algorithm are similar to those found in Prim’s
algorithm for minimum spanning trees (see remark 4.8).

Let G = (V,E) be a simple (finite) digraph and w : E → R≥0 be a weight
function. If there is no weight function attached to G, we may assume that
every edge has a weight equal to one (thus we will count the length of the
corresponding walk and this notion is compatible with the distance discussed
in remark 1.31). If (e1, . . . , ek) is a walk joining u and v, then the weight of
this walk is

k∑
j=1

w(ej) .

If we are interested in walks of minimal weight, we can restrict ourselves to
paths from u to v. We also extend w to V × V with values in R≥0 ∪ {+∞} by
setting w(u, v) = +∞ when (u, v) �∈ E. As usual, r + ∞ = +∞ for all real
numbers r. If � is a list and x is an element, concat(�, x) is the list obtained
by appending x to �.

A set X is initialized with {v1} and the idea is roughly to let this set grow
until it is equal to V . At each step, one vertex is added to X . We choose the
“best” candidate (see line 8). Then, we decide if we gain something for the
remaining vertices using this new vertex (lines 10–13). It is remarkable that
local decisions lead to a global solution.

EXAMPLE 1.46.– To grasp the idea behind Dijkstra’s algorithm given in
Table 1.4, we first run it on a small example. Consider the weighted graph
depicted in Figure 1.21. The first row in Table 1.5 corresponds to the
initialization of the variables in lines 1–6 of the algorithm. For every vertex u,
the variable T (u) stores the value of the smallest path found so far and C(u)
is a sequence of vertices starting with v1 realizing such a path from v1 to u. In

15 We write “one” shortest path and not “the” shortest path because several paths with
minimal weight may exist.

28 Advanced Graph Theory and Combinatorics

line 8, we choose a vertex v having a minimal T value among the unchosen
vertices. Then in lines 10–13, we update the variable T and C for the
remaining unchosen vertices by determining if there is a benefit (line 11)
using the vertex v.

DIJKSTRA(G,w, v1) where G = (V,E) is a simple digraph,
w a weight function and v1 ∈ V

1 for all v ∈ V \ {v1},
2 do T (v) ← w(v1, v);
3 if T (v) �= +∞
4 then C(v) ← (v1, v)
5 else C(v) ← ();
6 X ← {v1};
7 while X �= V
8 do pick v ∈ V \X s.t. ∀y ∈ V \X , T (v) ≤ T (y);
9 X ← X ∪ {v};

10 for all y ∈ V \X ,
11 do if T (y) > T (v) + w(v, y)
12 then T (y) ← T (v) + w(v, y);
13 C(y) ← concat(C(v), y);

Table 1.4. Dijkstra’s algorithm

1 v1

2 3

4 5

3

2

1

2

2

3

1

5

1

Figure 1.21. A weighted (simple) digraph

We now give a proof of the exactness of the algorithm. It is clear that the
algorithm terminates when starting with a finite graph: on line 5, we consider
each time a new vertex and the algorithm stops when all the vertices have been
considered. We essentially follow the lines of [GIB 85] for the proof.

A First Encounter with Graphs 29

nth T (1) T (2) T (3) T (4) T (5)
iteration X C(1) C(2) C(3) C(4) C(5)

1 {v1} +∞ 1 +∞ 5 +∞
() (v1, 2) () (v1, 4) ()

2 {v1, 2} +∞ 1 3 3 +∞
() (v1, 2) (v1, 2, 3) (v1, 2, 4) ()

3 {v1, 2, 4} +∞ 1 3 3 5
() (v1, 2) (v1, 2, 3) (v1, 2, 4) (v1, 2, 4, 5)

4 {v1, 2, 4, 3} +∞ 1 3 3 4
() (v1, 2) (v1, 2, 3) (v1, 2, 4) (v1, 2, 3, 5)

5 {v1, 2, 4, 3, 5} +∞ 1 3 3 4
() (v1, 2) (v1, 2, 3) (v1, 2, 4) (v1, 2, 3, 5)

6 {v1, 2, 4, 3, 5, 1} +∞ 1 3 3 4
() (v1, 2) (v1, 2, 3) (v1, 2, 4) (v1, 2, 3, 5)

Table 1.5. In bold face is indicated the choice made at line 8

PROOF.– Since the variables X and T (y) are evolving during the execution of
the algorithm, we let Xn (respectively, Tn(y)) denote the set X (respectively,
the value T (y)) during the nth iteration. In particular, X1 = {v1} and #Xn =
n for all n ≤ #V . We let vn+1 denote the unique vertex in Xn+1\Xn selected
at line 8. From lines 11–12, observe that either there is no update or there is
an update of T (y) and it is replaced by a smaller value. Thus, for all n and all
vertices y,

Tn+1(y) ≤ Tn(y). [1.2]

We will show by induction on n that

i) for all v ∈ Xn \ {v1}, Tn(v) is the smallest weight of all the paths
joining v1 to v;

ii) for all v ∈ V \ Xn, Tn(v) is the smallest weight of the paths joining v1
to v and visiting only vertices in Xn before reaching v.

Hence, we will get the expected result when n = #V . We do not take into
account the variables C(y) that are simply used to store a path achieving the
smallest weight given by T (y).

30 Advanced Graph Theory and Combinatorics

When n = 1, then (i) and (ii) hold from lines 1–5. Assume that (i) and
(ii) hold for 1 ≤ n < #V . We will show that (i) and (ii) hold for Xn+1 =
Xn ∪ {vn+1}.

Proceed by contradiction and assume that (i) does not hold for Xn+1. Since
(i) holds for Xn this means that (i) does not hold exactly for vn+1: there exists
a path p joining v1 to vn+1 of weight w less that Tn+1(vn+1).

But we also know from (ii) that Tn(vn+1) is the smallest weight among
the paths joining v1 to vn+1 and visiting only vertices in Xn before reaching
vn+1.

From [1.2], we have w < Tn+1(vn+1) ≤ Tn(vn+1), thus we deduce that p
is visiting a vertex u �∈ Xn∪{vn+1}. Let u be the first vertex of p encountered
outside of Xn. Note that the first section p′ of p from v1 to u has weight at
most w (the weight of the full path p).

Using (ii), we get Tn(u) ≤ w because Tn(u) is the minimal weight of all
paths joining v1 to u and visiting only vertices in Xn except for the last one
and p′ is a path of this form.

We obtain that Tn(u) ≤ w < Tn+1(vn+1) ≤ Tn(vn+1) and thus

Tn(u) < Tn(vn+1)

contradicting the choice of vn+1 in line 8 of the algorithm.

We still have to prove (ii) for the (n+1)st iteration. How is Tn(y) updated
for y �∈ Xn+1 when moving from Xn to Xn+1? Consider all paths joining v1
to y and visiting only vertices in Xn+1 before reaching y. There are those not
going through vn+1 and those going through vn+1. For the latter ones, we need
only to consider those ending in vn+1 because of (i). The conclusion follows
from lines 10–12 of the algorithm. �

1.6. A few applications

In the previous sections, we already have mentioned several applications,
e.g. Google’s PageRank, graphs associated with social networks like Facebook
or Twitter, collaboration graphs and computing shortest path for a GPS device.
Of course, graphs occur in many other practical situations: transportation or

A First Encounter with Graphs 31

flow networks16, e.g. electrical distribution systems, water running in a series
of pipes of different diameters with various capacities and computer networks
and distributed resources. We can also think about quivers17 occurring in the
study of friezes in algebraic combinatorics [BER 16, Chapter 10].

Let us present six more examples.

EXAMPLE 1.47 (Group Theory).– Let G be a finitely generated group and
g1, . . . , gk be generators of G, i.e. every element of G is a finite product of the
gi’s and their inverses. The corresponding Cayley graph of G is defined as
follows: the set of vertices is G and, for each gi, there is a directed edge from
x to y if and only if x.gi = y. Hence, the outdegree of every vertex is k. In
particular, we have an example of an infinite graph whenever G is infinite. In
Figure 1.22, we have represented the Cayley graph18 of the group of
permutations over four elements. This group has 24 elements. We have
considered the two cycles (1 2 4) and (3 4) as generators.

For instance, the label of any closed walk is a word over the generators
and their inverses, which is equal to the identity element of the group; taking
an edge backward corresponds to multiplication by the inverse of a generator.
More generally, the labels of two walks between any two vertices are two
representations of the same element of the group. The multiplication by the
cycle (1 2 4) (respectively,(3 4)) is represented by a gray (respectively, black)
edge. The identity permutation is the vertex 1.

EXAMPLE 1.48 (Combinatorics on words).– In combinatorics on words, we
are interested in properties of infinite words, i.e. maps w from N to a finite set
A called alphabet. In particular, we can search for the set of factors made up
of n consecutive symbols

Factw(n) := {w(i) · · ·w(i+ n − 1) | i ≥ 0}

that may occur in w. The celebrated Thue–Morse word [ALL 99] starts with

01101001100101101001011001101001 · · ·

16 In this book, we will not discuss this important topic; for a few pointers make a
search about Ford–Fulkerson algorithm or max-flow min-cut theorem.
17 This terminology simply refers to a directed multigraph and can be encountered in
category theory and representation theory.
18 Such a graph can be easily obtained using Mathematica with a built-in function
CayleyGraph or other softwares like SAGE.

32 Advanced Graph Theory and Combinatorics

and does not contain any cube, i.e. a factor of the form uuu. Thus, the factors
of length 3 occurring in this word are 001, 010, 011, 100, 101, 110. A Rauzy
graph is a handy tool to study the structure of these factors. The set of vertices
of the Rauzy graph of order n > 1 is Factw(n) and there is an edge labeled by
b from u to v if u = ax and v = xb where a, b are symbols and x is a word of
length n− 1 such that axb is a factor occurring in w. Thus, we learn from the
Rauzy graph some information about the sequencing of the factors of length n
within w. More about these graphs are presented in section 3.6. We will see
that a Rauzy graph is a subgraph of a de Bruijn graph. In Figure 1.23, we have
depicted the Rauzy graph of order 3 of the Thue–Morse word.

Figure 1.22. A Cayley graph for S4

EXAMPLE 1.49 (Chemistry).– Several molecules may have the same formula
but distinct molecular structures. They are called isomers: they have the same
number of atoms but with different arrangements so they can have different
properties. We can ask which configurations are possible from a combinatorial
point of view (see [PÓL 87, TEM 96]).

A First Encounter with Graphs 33

001 011

110101

010

100 1

1

0

0

1

0

1 1

0

0

Figure 1.23. The Rauzy graph of order 3 for the Thue–Morse word

EXAMPLE 1.50 (Assigning IP Addresses).– The assignment of IP addresses
to nodes in a network takes into account the natural hierarchy of the network
and its division into subnetworks. Assignment of addresses then follows a
simple rule inside these subnetworks. The goal is to minimize the sizes of
routing tables on the nodes and packets are forwarded using a longest prefix
matching.

For a related (but quite unrealistic) example, we may assign addresses to
the vertices of a simple graph G in such a way that the Hamming distance19

between two addresses is equal to the distance between the two vertices if and
only if [DJO 73]:

– G is a connected bipartite graph;

– for every edge {a, b} of G, if for all vertices x, y, z such that d(a, x) <
d(b, x), d(a, y) < d(b, y), d(x, z) + d(z, y) = d(x, y), then d(a, z) < d(b, z).

EXAMPLE 1.51 (Coloring).– Here is an application of the notion of proper
coloring introduced in example 2.10. Consider a train transporting several
chemical products. In case of a train accident, it is important that some of
these products do not mix because it would lead to producing toxic or
explosive reactions. The chemist tells us which products may or may not mix.
It is the task of the organizer to put products that may not mix in different
wagons. But from an economical point of view, we also want to minimize the

19 The Hamming distance between two finite sequences u, v ∈ {0, 1}k is the total
number of the indices i such that ui �= vi.

34 Advanced Graph Theory and Combinatorics

number of wagons. Assume that we are transporting products P1, P2, . . . , P9.
The products are the vertices of the graph depicted in Figure 1.24. There is an
edge between two products if they may not be mixed. Chapter 7 presents some
results on colorings. Here, three wagons are needed because of the cycle of
length 3. These wagons are enough: a first wagon for P5, P7, P8, a second
wagon for P1, P2, P3, P6 and a third wagon for P4 and P9. Every wagon is
made up of a set of pairwise independent vertices. This is not the only
solution. Of course, you can also think of extra constraints depending on the
quantities to be carried.

P1
P2

P3 P4

P5

P6

P7

P8
P9

Figure 1.24. Chemical products that may not be mixed

EXAMPLE 1.52 (Detecting communities in large graphs).– The question of
community detection is to find a partition of a network into “communities” of
densely connected nodes, with the nodes belonging to different communities
being only sparsely connected. I agree that this is a non-rigorous definition.
There are several algorithms that give partitions of this form. The quality of
the resulting communities can, for instance, be measured by its modularity, a
real number in [−1, 1] defined by

1

2M

∑
i,j

[
Aij − kikj

2M

]
δ(ci, cj)

where Aij is the weight between the vertices i and j (weights can express
stronger links between some vertices, for instance the number of coauthored
publications in a collaboration graph), ki =

∑
j Aij , ci is the community to

which vertex i is assigned by the algorithm and M = 1
2

∑
ij Aij . As usual

δ(x, y) = 1 if x = y and 0 otherwise. To give a few pointers, see [BLO 08]
and also [NEW 06, NEW 04, PON 11, PON 06].

A First Encounter with Graphs 35

Figure 1.25. Three communities in a graph

1.7. Comments

We give some comments or remarks in chronological order of appearance
within the text.

Generalizations of multisets have been proposed, for instance, fuzzy
multisets [YAG 87] or real-valued multisets [BLI 89].

A generalization of a graph is given by a hypergraph H = (V,E) where
V is, as usual, the set of vertices and E is the set of hyperedges, i.e. a subset
of the set of non-empty subsets of V . We can therefore model other types of
relations occurring between more than two vertices. Several variants exist (see
[BER 89]).

For some general references on graph theory, see [DIE 10] or [BON 08].
In particular, the first reference gives more details on infinite graphs.

36 Advanced Graph Theory and Combinatorics

About ranking and rating techniques discussed in example 1.6, we will
study the basics of the PageRank algorithm in Chapter 10. For a pleasant and
comprehensive introduction to the subject, see [LAN 12].

The road coloring problem mentioned in example 1.15 can be stated as
follows: given a k-regular irreducible aperiodic20 digraph, is it possible to
color the edges in such a way that there exists a synchronizing sequence s, i.e.
there exists a vertex v such that, for all vertices u, following a path of label s
from u leads to v. This problem was first considered by Adler, Goodwyn and
Weiss [ADL 77] and solved by Trahtman [TRA 09]. This problem has
applications in data storage [LIN 95], automated design [EPP 90] or
communication protocols [AHO 95] (see the chapter by Béal and Perrin in
[BER 16]).

In a small world, everyone on earth is supposedly connected to everyone
else by a chain of at most six “friends”. The famous psychologist Milgram
and his collaborators started to examine this phenomenon with people asked
to send letters across the United States, see [EAS 10, p. 31]. Graph theoretic
models may also explain other social phenomena such as homophily and the
glass ceiling effect that keeps women from reaching highest positions in
companies [AVI 15]. Homophily is the tendency for people to stay “close” to
other people sharing the same characteristics (e.g. gender, ethnicity and
cultural tastes), see again [EAS 10] and Schelling’s mathematical model of
segregation in sociology [SCH 71, ZHA 04].

Concerning Eulerian graphs, when a multigraph is not Eulerian we can try
to find a closed walk of minimal length that visits every edge at least once. This
problem is known as the Chinese postman problem. The number of Eulerian
circuits in a connected Eulerian digraph (the situation is more difficult in the
unoriented case) is given by the so-called BEST theorem named after Ehrenfest
and de Bruijn [VAN 51], Tutte and Smith [TUT 41]

tw(G)
∏

v∈V (G)

(
deg+(v) − 1

)
!

where we recall that for an Eulerian digraph deg+(v) = deg−(v) for all v (see
corollary 1.43) and tw(G) denotes the number of arborescences rooted at the
vertex w. An arborescence rooted at w is a digraph where, for every vertex v,
there is exactly one path from w to v. We will see in section 8.6 (and more

20 Aperiodicity will be discussed in Chapter 9.

A First Encounter with Graphs 37

precisely, with the concluding corollary 8.44) that tw(G) does not depend on
the choice of w. As an example, consider the graph depicted in Figure 1.26,
we can check that it contains three Eulerian circuits. We have also depicted
the three arborescences rooted at the bottom left vertex. Applying the above
formula yields

tw(G).1!.1!.1!.0! = 3.

Figure 1.26. Number of Eulerian circuits and arborescences

Domination (definition 1.23) in graph is an important topic of its own.
See, for instance, [HEN 13] for more on the subject. For general graphs, the
determination of the total domination number is an NP-complete problem
[PFA 83] (see also example 2.12).

For important practical issues and implementation of Dijkstra’s algorithm,
several refinements have been considered. For details and discussions about
the average-case analysis of this algorithm, see, for instance, [MEH 08].

Connected to Cayley graphs, the word problem for groups is a well-known
question arising in abstract algebra: given any two words written over an
alphabet of generators and their inverses, can we algorithmically decide
whether these two words represent the same element of the group? In full
generality, Novikov showed that this problem is undecidable [NOV 55]. For
special families of groups, e.g. automatic groups, the problem is decidable.

1.8. Exercises

1) Can we find a group of 11 people such that each member of the group
exactly knows three other people belonging to the group? Same question
but with a group of eight people. In case of a positive answer, draw a graph
illustrating the situation. Is such a graph always connected?

2) In a meeting with at least two persons, people who know each other
shake hands (and no one else). Prove that there are two persons who shaked
exactly the same number of hands.

38 Advanced Graph Theory and Combinatorics

3) n couples are invited to a party. Some guests shake hands, but nobody
shake hands with his/her partner. One of the guests, Mr. G., asks all guests how
many hands they have shaken. He gets 2n − 1 different answers. How many
hands has the wife of Mr. G. shaken?

4) Prove that there is no simple graph that is 3-regular and has seven
vertices. Prove that there is no graph with an odd number of vertices and all
vertices of odd degree.

5) Let G be a simple graph whose vertices have degree at least 2. Prove
that G has a cycle.

6) Let G = (V,E) be a connected graph. We make use of the notion of
distance (remark 1.31). The eccentricity of a vertex u is defined by

ε(u) := max
v∈V

d(u, v).

As usual in a metric space, the diameter of G (also see definition 8.32) is

diam(G) := max
u∈V

ε(u).

The radius of G is defined as

rad(G) = min
u∈V

ε(u) = min
u∈V

max
v∈V

d(u, v).

Prove that

rad(G) ≤ diam(G) ≤ 2 rad(G).

For which graphs do we have rad(G) = diam(G)? Same question with
diam(G) = 2 rad(G).

7) Let G = (V,E) be a connected graph. Let k = maxv∈V deg(v). If
k ≥ 3, prove that

#V ≤ k(k − 1)rad(G)

k − 2
.

8) Prove that a minimum vertex cover of the Petersen has size 6, see
Figure 1.8.

9) Give an example of a Hamiltonian graph that is not Eulerian.

A First Encounter with Graphs 39

10) Prove that the Petersen graph (depicted in Figure 1.8) is not
Hamiltonian, but find a Hamiltonian path.

11) Prove that the complete bipartite graph Km,n is Hamiltonian if and only
if m = n.

12) Let n ≥ 1. The n-cube Qn is the graph defined below. First the graphs
Q1, Q2 and Q3 have been represented in Figure 1.27.

Figure 1.27. The graphs Q1, Q2 and Q3

For all n ≥ 1, we get Qn+1 by considering two disjoint copies of Qn and
adding an edge for every pair of vertices that correspond to each other in the
two copies of Qn. A representation of Q4 is given in Figure 1.28.

a) In terms of n, how many vertices and edges do Qn have?

What is the degree of every vertex in Qn?

b) For which values of n, is the n-cube Hamiltonian?

c) For which values of n, is the n-cube Eulerian?

Figure 1.28. A representation of Q4

13) Let n ≥ 1. Define the graph where the vertices are 2n strings of length
n over {0, 1} and two vertices are connected if and only if their Hamming
distance (see example 1.50) is one. Compare this graph with the n-cube
introduced above.

40 Advanced Graph Theory and Combinatorics

14) For the n-cube, determine its edge-connectivity λ(Qn).

15) Prove that a (multi)graph G is bipartite if and only if every circuit in G
has an even length.

16) Find all values a, b, c with 1 ≤ a ≤ b ≤ c such that the complete
tripartite graph Ka,b,c has a Eulerian trail but no Eulerian circuit.

17) Give examples of simple graphs such that λ(G) = i for i = 1, 2, 3, 4.
Same question with vertex-connectivity κ(G).

18) Use Menger’s theorem to derive a polynomial time algorithm computing
the vertex-connectivity of a graph.

19) Prove that if F ⊂ E(G) is a minimal cut-set of a connected graph G,
i.e. for all f ∈ F , F \ {f} is not a cut-set, then the number of connected
components of G− F is exactly 2.

20) Prove that a 3-regular graph has a cut-vertex if and only if it has a bridge.

21) Let G be a simple graph with m edges e1, . . . , em. We define the line
graph L(G) as the graph with m vertices v1, . . . , vm and the edge {vi, vj}
belongs to L(G) if and only if the edges ei and ej of G are adjacent (i.e. they
share an endpoint).

a) represent the line graph of the complete graph K4, the bipartite
complete graph K2,3 and a cycle with six vertices,

b) show that K1,3 and K3 have the same line graph,

c) express the number of edges in L(G) in terms of the degrees of the
vertices of G,

d) show that if G is a simple k-regular graph (i.e. each vertex has degree
k), then L(G) is (2k − 2)-regular.

22) Build a simple 3-regular graph that has a cut-edge. Determine the
minimal number of vertices that such a graph has.

23) Work out a proof of the exactness of Fleury’s algorithm.

24) Prove the following [BON 69]. Let G be a graph with n vertices ordered
by increasing degree deg(u1) ≤ deg(u2) ≤ · · · ≤ deg(un). This sequence is
called the degree sequence. If there exists k ∈ {0, . . . , n} such that deg(uj) ≥
j + k − 1 for j = 1, . . . , n − 1 − deg(un−k+1), then G is k-connected (i.e.
k-vertex connected).

25) With the notation of definition 1.38, prove the following [CHA 68]. Let
G �= Kn be a graph with n vertices. Then, κ(G) ≥ 2minv∈V (G) deg(v)+2−
n.

A First Encounter with Graphs 41

26) Consider the Roy–Warshall algorithm described in Table 1.6. The input
is a simple digraph with n vertices {1, . . . , n} given by its adjacency matrix
A(G). In the last line of the algorithm, the evaluation Mi,j or (Mi,k and
Mk,j) returns 1 if Mi,j = 1 or if both Mi,k = 1 and Mk,j = 1. Recall that
we write u → v if u is connected to v. Prove that this cubic-time algorithm
(with respect to n) returns a matrix M where Mu,v = 1 if and only if u → v.
Hence, this matrix provides the connectivity relation within G. An application
of the algorithm is depicted in Figures 1.29 and 1.30.

ROY–WARSHALL(A(G))
1 M ← A(G);
2 for i = 1 to n
3 do Mi,i ← 1
4 for k = 1 to n
5 do for i = 1 to n
6 do for j = 1 to n
7 do Mi,j ← Mi,j or (Mi,k and Mk,j)

Table 1.6. Roy-Warshall algorithm for connectivity

1

2

3 4 5 6

1

2

3 4 5 6

1

2

3 4 5 6
1

2

3 4 5 6

Figure 1.29. Application of Roy–Warshall algorithm for k = 3, 4, 5

27) What can be said about an infinite word w whose Rauzy graph (see
example 1.48) of order n is reduced to a cycle? What can be said about
Rauzy graphs of order n for ultimately periodic infinite words, i.e. words of
the form uvvv · · · where u, v are finite non-empty words. Sturmian words are

42 Advanced Graph Theory and Combinatorics

infinite words w characterized by #Factw(n) = n+ 1 for all n ≥ 0. Can you
characterize Sturmian words using Rauzy graphs?

1

2

3 4 5 6

Figure 1.30. Final application of Roy–Warshall algorithm for k = 6

