Chapter 1

Towards a Unified Description of
Multiphase Flows

1.1. Continuous approach and kinetic approach

In classic fluid mechanics theories, fluid is usually considered as a “continuous
medium”, described locally and at each instant using a certain number of
characteristic variables, and its evolution is represented by “balance equations”.
These balance equations are partial differential equations in three-dimensional space
and time, whose original writing uses the Eulerian point of view: a geometric point
in space is designated, and at this point, the characteristics of the fluid at each instant
are observed, in particular its velocity. This leads to the so-called continuity
equation and then to Euler and Navier—Stokes equations and necessitates the
definition of the Cauchy stress tensor, containing the pressure and tensor of viscous
stresses. The description is, therefore, not complete until these new variables can be
given by specific “constitutive laws”, which represent the nature and small-scale
properties of the fluid in question. These constitutive laws are not necessarily based
solely on a theory; they can, with more generality, be of empirical origin, but in any
case they must follow the principles of thermodynamics.

There is another way to find these same equations and laws by considering the
fluid medium from the beginning as a set of atoms or molecules in steady motion
and colliding frequently in the void space, under the action of the laws of classic
mechanics for material points. This approach, often called the kinetic approach, was
introduced by Boltzmann and Maxwell and has been used to recover classical
Eulerian continuity equations and Navier—Stokes equations since the work of
Chapman and Enskog in the early 20th Century. In this context, the characteristic
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variables that we might call “macroscopic” variables are defined in a small volume
around each point in space, and in a small interval of time around a given instant.
When the volume and the interval of time considered are very small in relation to
the spatial and temporal scales of variation expected for macroscopic variables, in
the macroscopic experiments and situations with which we are concerned, these
macroscopic variables no longer depend on the real size of the volume nor the time
interval, and have continuity properties with respect to space and time. It is in these
conditions that we can consider the medium as continuous, on the macroscopic scale
and with our limited view.

The base equation of the kinetic approach is the Boltzmann equation, which
concerns the distribution function of the velocities of molecules at a given point
M (x) and a given instant z. To be exact, and for a gas medium containing only one
kind of molecule, this function, f'(u,x,?), is defined as the number of molecules that

can be found, in the medium, in a small volume around point x approximately dx, at
an instant ¢ approximately d#, and which have velocity u approximately du (here, of
course, the variables x and u are three-component vectors, as are dx and du). The
number of molecules per unit of volume of the medium is, thus, defined as the
integral in space of the values of velocities (from minus infinity to plus infinity) of
this distribution function, and what we might call the macroscopic velocity of the
medium is the integral, in this same space of velocities, of the product uf, divided by
the integral of f itself. All the molecules of the gas being identical and of known
mass, the volumetric mass of the medium is the product of the number of molecules
per unit of volume and the mass of a molecule, and the velocity of the medium thus
appears as the ratio between the momentum of the medium and its mass, both per
unit of volume. The historical development of this approach is discussed in [CHA
60] and a very complete recitation of the developments in [HIR 54]. In the
framework of the approximation of continuous media, this approach allows us to
find the same forms of the balance equations of mass and momentum by using the
first continuous approach discussed above. However, in addition, the fact that we
can describe in more detail the microscopic structure of the material enables us to
obtain the constitutive laws in a theoretical manner, that is expressions of all the
variables that appear in the balance equations, namely the Cauchy stress tensor,
pressure, viscous stress tensor, etc. These expressions are calculable only because of
certain hypotheses on the microscopic characteristics of the gas being considered
(for example the approximation of molecules as hard spheres of a certain mass). The
energy balance equation of the continuous medium can also be found by defining
the heat conduction flow in particular. When the approximation of the continuous
medium is no longer valid, as is the case for rarefied gases, the Boltzmann equation
remains valid and the balance equations of mass, momentum and energy still exist
with the same overall form, but they contain additional terms, and the usual terms
can no longer be calculated using the same approximations. In certain conditions, it
is no longer useful to define a macroscopic velocity for the medium, and the
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calculation of the wvelocity distribution function itself, by wusing adequate
approximations to represent collisions between molecules in the Boltzmann
equation, is recommended.

When undertaking a theoretical study of multiphase fluid media, we might ask
ourselves which of the two approaches is of more interest, especially when we wish
to focus on a case in which one of the phases is dispersed into numerous parcels of
different sizes.

In fact, it seems that the first studies involving clouds of drops in a gaseous
medium used the kinetic approach to study the liquid phase composed of the set of
drops by examining a distribution function where the variables were both the
velocities and sizes of the drops, or f(u,v,x,t) , where v is the volume of the drops.

At a given point and at a given instant, the number per unit of volume (of the
medium) of drops of volume v, approximately dv, is still the integral of f on the
space of velocities, and the total number of drops of all sizes is the integral of f both
on the space of velocities and that of volumes. The function f follows a type of
Boltzmann equation here again, in which the most difficult term to approximate is
the term due to the collisions of particles. We may refer, for example to, [WIL 58].
However, it has never been suggested to represent the gaseous phase in which these
drops are dispersed using a Boltzmann equation that, when the quantity of drops is
relatively large, might include the influence of these drops on the motion of the
fluid. The description of this gaseous phase has been kept in the form of a
continuous medium, where the influence of the drops is represented by additional
interaction terms.

For less well-defined multiphase media such as those containing bubbles and gas
pockets that can be of various shapes, a “macroscopic continuous medium” approach
has been applied from the beginning, by focusing on the characteristic variables for a
small volume around each point in space. The basic hypothesis has been made that this
volume is very large in relation to the size of the inclusions of the dispersed phases,
and these variables therefore represent an “equivalent continuous medium”
corresponding to our multiphase medium. The fictive volume within which the
macroscopic variables are defined is often called the “representative elementary
volume”. We may refer, for example to, [SOO 89] and [DEL 81]. In these conditions,
the balance equations for these variables have the classic form but the necessary
constitutive laws are more complicated; they cannot be calculated and must be
obtained through experimentation. This approach is valid, but the definition of the
characteristic variables of the medium, which must have a certain continuity, as well
as those of the various constitutive laws, must be precisely made. Obtaining these laws
is (too) highly dependent on experimentation, and the domain of validity of these laws
is difficult to know with precision. Moreover, the condition that each inclusion must
be much smaller than the representative elementary volume has very often been
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invalidated, or noted visually as soon as modern viewing methods were able to be
used. Does this flaw seriously affect the approach, or is it responsible for only “small”
errors? This remains an ongoing debate and, most likely, must depend on each of the
various cases considered.

More recently, in the 1980s, it appeared possible to develop an approach that
might be called intermediary, which defined the equivalent continuous medium
more accurately and thus made it possible to obtain more information about the form
of the constitutive laws, which in turn made it possible, importantly, to better
examine situations with large inclusions, and could therefore be adapted to widely
diverse practical situations. In fact, if the size of each inclusion in a phase is large
enough to include a large number of molecules that interact on the interface with
extremely numerous molecules of the other phase in contact, then it is possible to
treat all of the phases, fluid or solid, like classic continuous media. The multiphase
medium is, thus, a “piecewise continuous medium” in which each piece of
continuous medium is separated from the other by an interface where the properties
can show a discontinuity. Using this perspective, we enable the shape and size of the
inclusions in each phase to vary in the medium in a totally arbitrary manner.
However, the balance equations for phases in continuous media are unusable as such
for representing the full multiphase medium, for the same reason that equations of
material points mechanics cannot be used to represent a gas, which is a group of
molecules. We do not precisely know the initial conditions of each molecule in the
gas, nor the initial position or shape of each inclusion in each phase, even if these
inclusions are not too small. To establish some macroscopic characteristics at the
scale of a multiphase medium, and to deduce the macroscopic equations that they
must satisfy, it is necessary to define, through an averaging operation that will be
specified later, a “mean continuous” medium that will be the equivalent continuous
medium. This approach has grown slowly since its introduction. It was presented for
the first time in [DRE 83]. However, it is very similar to the approach used for flows
in porous media by Marle in the beginning of 1967 [MAR 67]. At roughly the same
time, Nigmatulin began using the same approach in the foundation chapters of his
book [NIG 91], which also presents highly useful and detailed developments for
several different applications. General equations for piecewise continuous media
have been studied in detail by Kataoka [KAT 86], taking into account mass
exchanges as well as exchanges of momentum or energy between these phases. This
generality is one of the strong points of the approach.

This averaged piecewise continuous medium approach is the approach that we
will follow in this book. In this way, we will avoid defining a distribution function
for the sizes and velocities of parcels, but it will be important to know other
macroscopic variables of the medium besides its volumetric mass and velocity. We
will be interested at least by the “volume fraction” occupied in the medium by each
of the phases, and also by the mean temperature or internal energy of each phase,
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which are to be defined precisely. It will also be necessary to have a thorough
understanding of at least one macroscopic variable related to the size of the
inclusions of a phase that is dispersed in another carrier phase. First, and in the most
general of situations, it is through the “mean area of interface per unit of volume” of
the medium that this knowledge will be introduced and studied. For the case of
dispersed phases with “particles” of various sizes, if necessary, we can also
understand the distribution of sizes and velocities by defining and studying the
number of particles of volume v (approximately dv). This will come down to
considering a multiphase medium with an infinite number of phases, with each
category of particle in the given volume able to be considered as a different phase.

In Chapter 2, we will describe the basic equations that represent a piecewise
continuous medium instantaneously and locally. The definition of averages and the
obtaining of equations related to equivalent continuous media will be discussed in
the following chapters.

1.2. Eulerian-Lagrangian and Eulerian formulations

If we wish to study only situations in which, in a fluid, small quasi-spherical
particles of another fluid or a solid are dispersed, one practical method that comes
immediately to mind is simply to study the motion of the center of gravity of these
particles, taking into account the friction between them and the fluid that surrounds
them, which depends on their volume and shape, using specific formulas that
experiments can validate. If it is not only their motion that interests us, but also their
temperature, for example, we can also study this quantity by supposing that it is
homogeneous in the particle in question. This brings us back to consider the total
internal energy of the particle, and its dependence on exchanges of heat and possibly
of mass with the outside environment, without necessarily having to specify whether
these changes occur more on one side or the other side of the particle, and using
more or less empirical formulas.

This point of view, which separates the carrier fluid, still considered as a
continuous medium, from a certain number of isolated objects, has been highly
developed. It is not too complicated to implement when the particles have a well-
defined geometric shape and retain this shape permanently. It has been used to
construct an Eulerian representation of a mean particulate medium (for example
[JAC 00]) and also, especially, for the so-called Eulerian-Lagrangian approach, in
which the continuous fluid medium is still described by Eulerian equations but the
particles of the other phase are observed in a Lagrangian manner (see [OES 06]).
Suspensions containing liquid drops or solid particles can be studied using this
perspective, as long as the droplets or particles do not break apart or cluster together
too much. Exchanges between particles and the continuous medium have been
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studied in great detail, and these studies constitute a body of knowledge that is quite
generally useful; we recommend, for example, [SIR 92] and [SIR 99]. The book by
Crowe also provides a broad recapitulation of the knowledge and practices using this
approach [CRO 01].

This particular point of view is not easy to generalize for types of multiphase
media other than highly dispersed environments, and it is not inclined to allow a
general theoretical approach, not least because it immediately introduces asymmetry
into the description. Moreover, Lagrangian—Eulerian representation introduces
significantly greater difficulties of application in situations where, as the number of
particles is higher, these particles interact more with each other than with the fluid,
and in situations where these particles do not have a constant and simple shape.
There are, of course, methods for calculating the Lagrangian motion of solid parcels
for granular media, taking into account the multiple contacts between these “grains”,
but these contacts are firmly localized; the fluid between the grains is not taken into
account, and increasing the number and complicating the shape of the grains greatly
increases the calculation time. The Lagrangian point of view has certain advantages,
not the same as the Eulerian point of view does; it is beneficial to make use of these
advantages, but the theoretical separation of a Lagrangian part and an Eulerian part
has no general justification.

The unified approach we are looking for will be completely Eulerian: the
macroscopic continuous medium equivalent to the multiphase medium, which is
non-continuous by nature, will be described by Eulerian balance equations. The
necessary models will, therefore, be studied first of all in a Eulerian context.
Nevertheless, it is of interest, as we will see in Chapter 18, to use a Lagrangian
translation of certain equations and models, which is closer to the Lagrangian—
Eulerian representation, often used in practice. We will then show how to link the
balance equations of the two approaches. In addition, the possibility of coupled
calculations, in the various geometric zones of the space, between a model expressed
in Eulerian form and a model expressed in Lagrangian—Eulerian form is also a
promising practical solution.



