
1

From the System to the Software

1.1. Introduction

The automation of numerous command systems (in railways, the
aeronautics, automotive, nuclear industries, etc.) and/or process control
systems (production, etc.), and the replacement of logical or analog systems
involving little interaction by highly-integrated systems, have led to a
considerable expansion of the domain of functional safety, taking account of
the features and peculiarities of computer systems.

Dependability relates to applications for which it is crucial to ensure a
continuous good level of service (reliability), because human lives are at
stake (transport, nuclear energy, etc.), because of the high level of
investment which would be lost were the calculation to go wrong (space,
chemical production process, etc.), or indeed because of the cost of the
problems that could be caused by failure (e.g. in the banking process,
reliability of the transport network, etc.). It should be noted that for several
years, account has been taken of the environmental impacts (e.g. with
accidental spills of chemical products into the environment, impact on
ecosystems, recycling, etc.).

Since the very beginning of research into such systems, the problems
linked to validation of those systems have been at the heart of designers’
concerns: it is useful to prove the mechanisms to react to the occurrence of
failures are well designed, to check that design (by means of simulations, tests,
evidence, etc.) and convincingly estimate projected, meaningful values
measuring the performances of the functional safety devices.

CO
PYRIG

HTED
 M

ATERIA
L

2 CENELEC 50128 and IEC 62279 Standards

The difficulty then lies in accurately identifying the various actors
involved in the process (users, operators, managers, maintenance personnel,
service providers, assessors, authorities, etc.), the different elements in the
system, the interactions between those elements, the interactions with the
users and the factors which have an impact on the operational safety,
ultimately with identification of the electronic and/or programmable
elements.

The aim of this first chapter is to offer an examination of the software in
the context in which it is used, which is a system, and recap on the links and
the constraints which need to be taken into account in creating software.

1.2. Command/control system

Figure 1.11 shows an example of a railway system. The Operation
Control Center (OCC – photo a) controls the whole of the line and passes
operational commands to the trains and to the signaling management system
(photo c shows a manual operation control center).

Figure 1.1. The system in its environment2

1 The picture shows an old-generation operating control center (OCC); new OCCs are stored
in PCs and have developed from a physical technology (TCO – optical control view) to
display by a video projector.
2 Photos taken by Jean-Louis Boulanger.

From the System to the Software 3

The operation control center3 sends commands to the ground via a set of
relays (photo d shows an example of a room containing the relays linked to
the signaling system). In response to the commands, the ground equipment
adopts the desired behavior (in photo e, we can see maneuver signals).

Figure 1.1 demonstrates the complexity associated with the concrete
system, and highlights the point that a complex system is based not on one
piece of software, but on many. Each of these software programs is associated
with safety objectives which likely differ from one program to another.

The software involved in supervision does not have as much impact on
people’s safety as does the software relating to automated control of the trains.
For this reason, in the context of systems requiring certification (aeronautics,
railways, the nuclear sector, systems based on programmable electronics, etc.),
we assign a given level of safety to each software application.4

This level of safety is associated with a scale, ranging from “non-critical”
to “highly critical”. The concept of safety assurance levels and the scales
associated therein will be presented in Chapters 2 and 3.

Figure 1.2. The system in its environment

Figure 1.2 highlights the fact that the system being constructed is closely
linked with an environment which responds to the commands issued by the

3 Figure 1.1 shows a manual operating control center. However, these have now become
computerized, and are referred to as PMIs ([BOU 10a – Chapter 5]); PIPCs and PAINGs
([BOU 10a – Chapter 4]).
4 For instance, in the field of aeronautics, the level of safety is called the Design Assurance
Level; in railways, we speak of the Safety Integrity Level (SIL); and in the automobile sector
we have the Automotive Safety Integrity Level (ASIL).

Système

Environnement

Entrées

Sorties

System

Input

Output

Environment

4 CENELEC 50128 and IEC 62279 Standards

system. It is therefore necessary to acquire a view of the state of the process
to be controlled and to have a means of command which is capable of
relaying the commands to the environment. The environment may be
composed of physical elements, but as a general rule, there are interactions
with human parties (operators, users, maintenance personnel, etc.).

During the requirements analysis phase, it is essential to clearly identify
all the actors (operators, maintenance personnel, customers, etc.) and
identify all the devices which interact with the system. The requirements
analysis phase is essential, but can still give rise to numerous omissions and
misunderstandings.

Figure 1.3. Example of modeling of the system in its environment

Figure 1.3 presents an example of the modeling of a system to control a
level crossing. This system can control the intersection of at least one road
with a railway track. This system interacts with various actors (both human

From the System to the Software 5

and machine): an OCC (as shown in the Figure 1.1), the road users (trucks,
cars, etc.), railway users and operators in charge of operation and/or
maintenance.

We have chosen to construct a class diagram which models the fact that
the decentralized level-crossing management system using a communication
system (DRBCS) comprises a level crossing which is itself made up of a
railway and a roadway.

The important point in Figure 1.3 lies in identifying the actors which
interact with the management system, including the road users, the trains, the
OCC and especially the maintenance operators or other personnel (whom the
model identifies as “special people”).

It is crucial to identify all the actors involved at system level; otherwise
there is a risk of forgetting actions – e.g. maintenance activities – but it is
also possible to overlook disturbances or malfunctions. We can point to the
classic example5 of the efficiency of a Wi-Fi network, which may correlate
to the density of auxiliary networks connected to the system.

Hereinafter, we shall not discuss how to deal with the human factor,
because whilst the human factor is an essential one, it does not directly relate
to the critical software-based equipment, except for:

– the activities of creation of the software application – hence the need to
formalize the skills and responsibilities of the people in charge of the
software, as indicated in Chapter 5 of the standard;

– the activities of maintenance and rollout, which are dealt with by
Chapter 9 of CENELEC 50128:2011 [CEN 11a].

As regards the identification of the actors involved, it is more usual to
speak of identification of the stakeholders; for further information, see
Chapter 11 of [BOU 14c].

5 The use of so-called “open” networks (see the standards [CEN 01a] and [CEN 11a]) such as
Wi-Fi is attended by a certain number of difficulties, such as network densification (the
number of private networks is constantly increasing) and/or interference caused by nearby
equipment. It should be noted that, for a very long time, the issue of open networks has not been
approached from the standpoint of functional safety, because it relates to aspects such as
confidentiality, intrusion, etc., which are covered by the term “security”.

6 CENELEC 50128 and IEC 62279 Standards

1.3. System

Our aim in this section is to lay down the vocabulary relating to the
creation of a software-based device. To begin with, we must remember that a
software application is directly linked to a device, and that without hardware
architecture, there can be no software. Indeed, the validation of a program
(see Chapter 5) requires the hardware architecture, and the results are
applicable only to that particular hardware. For this reason, the first
definitions we shall give relate to the concept of a system and of a software-
based system.

DEFINITION 1.1 (System).– A system is a set of elements interacting with one
another, which is organized in such a way as to achieve one or more
predetermined results.

The “organized” part of Definition 1.1 can be seen in the system’s
organization into different levels, as illustrated by Figure 1.4.

Figure 1.4. From the system to the software

Figure 1.4 offers a hierarchical view of the system. This is the view
which is used in the railway domain. Hence, a railway line is viewed
as a system, which is divided into a number of subsystems: the
signaling control subsystem, the passenger transfer subsystem, etc. The
signaling control subsystem, for its part, is divided into a number of devices,
or classes of equipment: onboard equipment, ground equipment and line
equipment.

Système

Sous-système 1 Sous-système 2

Equipement 1 Equipement 3Equipement 2

Logiciel Matériel

System

Subsystem 1 Subsystem 2

Equipment 1 Equipment 2 Equipment 3

Software Hardware

From the System to the Software 7

A system performs several functions. A system function can be
subdivided into a variety of subsystems, with each subsystem performing
functions which are subfunctions of the whole system’s functions. At system
level, this representation needs to be accompanied by models which illustrate
the interactions between the functions, as shown by the example given in
Figure 1.5.

Figure 1.5. Example of the subdivision of a system

Figure 1.6. Example of distribution6

6 The example of a subsystem presented is the control system “SAET” used on the
“METEOR” line (the rapid-transit East/West Line 14 (“METEOR” is a backronym for this)
on the Paris Metro). For further information, see Chapter 2 of [BOU 12].

1

F1

1

F2

1

F3

I1I1

I2I2

O2O2

O1O1

I3I3I3

I1

I2
F1

F2

F3

1
1

1

O1

O2

PA�Section PA�Section PA�Section

Tapis de transmission

PA�Embarque

message

message

PCCPA�LigneLine AP

Transmission matrix

message

message

OCC

Section AP Section AP Section AP

Onboard AP

8 CENELEC 50128 and IEC 62279 Standards

Thus, a subsystem hosts a variety of functions, which can then be divided
between several different pieces of equipment. A piece of equipment is not a
functional element in itself; it must be joined by other equipment in order to
perform a subsystem-level function.

In terms of a railway system, the difficulty lies in the fact that a train is
home to many system functions, and therefore that it contains equipment
which contributes to these different functions. For example, the installation
of an auto-pilot subsystem involves installing devices on the ground, which
communicate with an onboard component on the train, as shown by
Figure 1.6.

DEFINITION 1.2 (Software-based system).– Elements of the system may be
totally or partially software-based.

Figure 1.7 shows that a system is a structured entity (comprising
computer systems, processes and use contexts) which must form an
organized, coherent whole. Hereinafter, we shall examine the software
applications which are found in the computer/automated system component.

In this chapter, we have shown that a system based on programmable
electronic equipment is a complex object, which needs to be carefully
analyzed in each of its component parts.

1.4. Software application

1.4.1. What is software?

In the context of this chapter, the so-called “software” element is a set of
computation/processing elements which are executed on a physical hardware
architecture so that the system, as a whole, can render the services associated
with a device (see Figure 1.4).

Later on in this book, we shall look at the software aspects, so it is
necessary, at this point, to define exactly what software is – see
Definition 1.3. This definition is slightly different from the one given by ISO
90003:2004 [ISO 04a].

From the System to the Software 9

DEFINITION 1.3 (Software).– Set of programs, processes and rules, and
possibly documentation as well, relating to the performance of a set of
operations on the data.

Definition 1.3 does not differentiate between the means (the methods,
processes, tools, etc.) used to create the software application, the products
created by its execution (documents, analytical results, models, sources, test
scenarios, test results, specific tools, etc.) and the software application itself.

This definition is generally associated with the concept of a software
application. The concept of software itself is associated with that of
executable files.

Figure 1.7. System and interaction

1.4.2. Different types of software

Definition 1.3 shows what the concept of software involves, but it should
be noted that there are a variety of different types of software:

– operational software: this term refers to any software delivered to an
external customer as part of a program or a product. Test arrays for external
usage fall into that category;

Contexte

Logiciels

Matériels

Logiciels

Matériels

équipement 1 équipement 2

équipement 3

Logiciels

Matériels

Système
Informatique/automatique

Actuateurs

Capteurs

Processus Environnement

Procédure/instruction d’utilisation

Maintenance

Lien avec d’autre système

.......

Computerized/automated
system

Processes

Software

Hardware

equipment 1 equipment 2

Software

Hardware

equipment 3

Software

Hardware

Sensors

Actuators

Context

Environment

Procedure/usage instruction

Maintenance

Links with other systems

...

10 CENELEC 50128 and IEC 62279 Standards

– demo: a demonstrator (demo) is a piece of software used by an external
customer to help refine their expression of their needs and measure the level
of service which could potentially be delivered. These programs are not
intended for operational use;

– development tool: a development tool is an internal software
application, which is not delivered to an external customer, designed to help
development in the broadest sense (editor, compilation chain, etc.), including
at the test stage and integration stage;

– model: a model is an internal program for study, not delivered to any
external parties, which serves to check a theory, an algorithm or the
feasibility of a technique (e.g. by simulation), without the objective of a result
or of completeness.

1.4.3. The software application in its proper context

In spite of the long-standing monolithic view, we feel it is important to
look at a software application as a set of components (see Definition 1.4),
which interact to process a set of data. Thus, a component may be a part of
the software application, a reused part, a library, a commercial off-the-shelf
(COTS7 – see Definition 1.5) component, etc.

DEFINITION 1.4 (Component).– A component is an element of software
which performs a set of predefined services; these services (or tasks)
conform to a clear set of requirements; a component has clear interfaces
and is managed in configuration as a separate element in its own right.

DEFINITION 1.5 (Commercial off-the-shelf – COTS).– A software product
which is available to buy and use without carrying out development
activities.

As Figure 1.8 shows, a software application generally uses an abstraction
of the hardware architecture and of its operating system by way of a
base layer known as the “base software”. In principle, the base software
should be written in low-level programming languages such as an assembly
language and/or C [KER 88]. It is used to encapsulate the services of the

7 COTS are products that are commercially available and can be bought “as is” (without
specification, V&V elements, etc.).

From the System to the Software 11

operating system and its utilities, but it also provides relatively direct access
to hardware resources.

Figure 1.8. A software application in its environment

If the software application is associated with a high level of safety, then
the base layers (baseware, utilities and operating system) are also associated
with safety objectives. The safety objective of the lower layers will depend
on the hardware architecture in place (monoprocessor, 2oo2, nOOm, etc.)
and on the safety measures employed. In [BOU 10a], we presented real-
world examples of safe functional architectures. For the rest of this book, we
shall assume that the safety analyses have been performed and that for all the
software applications (including the base layer), a level of safety has been
allocated.

1.5. Conclusion

In this chapter, we have shown the underlying complexity of
programmable electronics-based systems. We have demonstrated the
existence of a hierarchy which ranges from the system to the software,
through the subsystems, devices and the electronic hardware.

In Chapter 3, we shall show how to control the dependability of a
system by controlling the electronic part (see [BOU 10a]) and the software
part.

Matériel

Logiciel de base

Application

Utilitaire

Système d’exploitation

Application

Baseware
Utility

Operating system

Hardware

