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3D Reconstruction in X-ray
Tomography: Approach Example

for Clinical Data Processing

1.1. Introduction

Works presented in this chapter stem from three-dimensional (3D) reconstruction
problems, in X-ray computed tomography (XRCT), within a clinical framework.
More specifically, the practical objective was to use XRCT to detect and quantify
possible restenosis occurring in some patients after the insertion of a stent. The
quality of reconstructions achieved by clinical tomographs being insufficient for this
purpose, the concern was thus to develop a method capable of rebuilding small
structures in the presence of metal objects, in a 3D context, with a precision higher
than that of tomographs available in hospitals; in addition, this method was supposed
to work with computers commonly available in most research laboratories (such as
personal computers (PCs), without any particular architecture or processor
hardware).

The development of a solution clearly falls within the framework of conventional
inverse problem solving. However, it is essential to take into account the
characteristics of 3D XRCT, and notably the very large volume of data to be
processed, the geometric complexity of the collection process of raw data, and
practical barriers to access these data. In order to achieve the objective stated above,
difficulties are twofold: (1) at the methodological level, the development of an
inversion method adapted to the intrinsic characteristics of the problem to be
addressed and, (2) at the implementation level, accounting for the practical obstacles
mentioned above as well as for constraints on the processing time inherent in any
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2 Regularization and Bayesian Methods for Inverse Problems

clinical application. In the following, we present the retained approach based on the
analysis of the main factors likely to improve the quality of reconstructions while
satisfying the practical constraints which we must face; this brings us to putting the
methodological aspects into perspective, with regard to practical questions, in light of
the applied objective of these works.

1.2. Problem statement

Although image reconstruction methods used in the first tomographs were of the
analytical type [AMB 73, HOU 73], the advantages of approaches based on
estimation [HER 71, HER 73, HER 76b], then the ill-posed nature of tomographic
reconstruction problems [HER 76a, HER 79] were recognized very early on. Over
the past 35 years, many academic studies focusing on tomographic reconstruction
have been carried out in the context of solving inverse problems. Generally, the
emphasis is on the main three elements of this type of approach, that is to say,
modeling of the data formation process, choice of the estimator, and development of
techniques that enable the practical computation of the estimate [DEM 89]. These
works have been partly customized according to various imaging modalities (for
example, transmission [HER 76a], emission [LEV 87], diffraction [BER 97]
tomography, and more recently optical and/or multiphysics tomography (see
[BOA 04] for a partial synthesis)) which present largely variable degrees of
difficulty: if estimation conditions are often very unfavorable in diffraction
tomography (eddy current tomography [TRI 10], seismic imaging [VAU 11]) due to
the strong non-linearity of underlying physical phenomena, to the importance of
attenuation phenomena and to the small number of observations with respect to the
number of unknowns, the inversion conditions are generally better in emission
tomography (SPECT for example) and can be qualified as relatively favorable in
XRCT. This explains why, in this area, reconstruction methods known as “naive”
provide results that have been used in clinical practice for several decades.
Thereafter, we present the elements likely to have a significant impact on the
performance of an XRCT inversion method.

1.2.1. Data formation models

In XRCT, all data formation models are based on the Beer–Lambert law, which
describes the attenuation of an X-ray beam through a medium whose spatial
distribution of the attenuation coefficients is referred to by μ. It takes the form:

N : P
{
n0 exp

{
−
∫
D

μ(s) ds

}}
[1.1]
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where N is the random variable 1 that represents the number of photons arriving at the
detector, n0 the number of photons emitted by the source and D the path (straight line)
of photons between the source and the detector.P {�} refers to the Poisson distribution
with parameter �. By discretizing the distribution of the attenuation coefficients of the
medium, the integral involved in [1.1] becomes:∫

D

μ(s) ds = at
Dμ [1.2]

where μ is the vector in which all samples of the attenuation coefficients of the
medium are concatenated, and where aD is a vector representing the contribution of
each sample of μ to the integral. By concatenating the variables N corresponding to
each source-detector position into vector N , and by concatenating in an analogous
manner row vectors at

D in matrix A, one obtains:

N : P
{
n0e

−Aμ
}

[1.3]

where the Poisson distribution should be understood component-wise, all
components being independent from each other. A represents the projection matrix
of the tomographic system which is sparse, usually very large and structured in a way
that reflects the geometry of the data collection process.

In most methods, reconstruction is carried out not from the photon counts, but
from the auxiliary quantity Y � − lnN/n0. By performing a Taylor-series
expansion of the neg-log-likelihood which derives from [1.3], Sauer and Bouman
[SAU 93, Appendix A] have shown that it assumes the following approximate form:

JV ∝
n0

2
‖y −Aμ‖2Σ , Σ � Diag

{
e−y
}

[1.4]

In practice, this amounts to assuming that:

Y ≈ N {Aμ , 1/n0 Diag {ey}} [1.5]

whereN {m,Q} denotes the normal distribution with mean m and covariance matrix
Q. This approximation allows the estimation of μ to be carried out in a linear Gaussian
framework, the problem remaining generally very large.

The models presented above are valid when X-ray sources and detectors are
punctual and when the radiation emitted by the source is monoenergetic. However,

1. In this chapter, any random quantity is designated by an uppercase character and its realization by
the corresponding lowercase character.
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these two assumptions are relatively rough approximations of reality, and their
impact on the quality of reconstructed images can be significant in practice.

On the one hand, considering sources and detectors are punchual, while they have
a non-zero surface, oscillations, which are all the larger as the discretization of the
medium is fine, are produced in the reconstructed images . In addition, these artifacts
are highly structured as they reflect the paths of radiation in the medium. In an attempt
to limit the magnitude of these phenomena, several techniques aimed at changing the
structure of matrix A in order to account for the thickness or the volume of the ray
beams have been proposed [DEM 04, ZHU 94]. However, it can be observed that these
techniques have a strong empirical character, insofar that they all overlook the fact that
the calculation of the parameter of the Poisson distribution of photon counts requires
the summation of exponential functions (see equation [1.1] or [1.3]), and cannot be
carried out directly on the linear Gaussian model [1.5]. Nevertheless, in practice, these
approaches limit the appearance of artifacts related to the thin ray model.

On the other hand, the hypothesis of monoenergetic X-ray source is never
fulfilled in practice, since most of the sources used in XRCT have a spectrum that
ranges from 0 to approximately 120 keV. However, the effect of this hypothesis only
appears when variations of μ with respect to energy are significant. In moderately
attenuating media such as water and soft tissue, these variations are small, and the
hypothesis of a monoenergetic radiation source only causes minimal degradations.
On the other hand, in more strongly attenuating media (cortical bone, metal, vascular
calcifications), variations are more significant, and the monoenergetic assumption
results in various artifacts (star-shaped motifs, artificial thickening of strongly
attenuating structures) that can make it difficult, if not impossible, to interpret the
results. Unfortunately, there is a rather scarce number of works aimed at accounting
for the polyenergetic nature of radiation in reconstruction methods in an explicit and
general manner. However, we should emphasize the contribution of [DEM 01], based
on the Alvarez–Macovski decomposition of attenuation coefficients [ALV 76] and on
an empirical parameterization of the variations of these coefficients with respect to
energy. We will refer in more detail to this model in the next section. It should be
noted that, as for accounting for the non-zero surface of detectors, determining the
parameter of the Poisson distribution of polyenergetic radiation requires the
summation of exponential functions and involves strong nonlinearities.

Regardless of the type of data formation model used, the product by A (projection
operation) dominates the computation of the prediction of the observations for a given
medium. Most inversion techniques (direct or iterative) also require the product by At.
Due to the large size of the problem, the choice of the representation of A (implicit or
explicit, accessible by rows or by columns), and the effectiveness of the computation
of the left- and right-products by A have a critical impact on the effectiveness of
reconstruction methods. It should be noted that these issues are rarely addressed in the
open literature.
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1.2.2. Estimators

As in most of the other modalities, the vast majority of XRCT reconstruction
methods based on an inversion approach rely on penalized maximum likelihood
estimators. The likelihood portion derives from the distribution of photon
counts [1.3] or from the Gaussian approximation [1.5] with respect to variable Y . In
either case, the resulting neg-log-likelihood is convex under the monoenergetic
hypothesis and is well-suited for minimization by descent methods. Under the
polyenergetic hypothesis, the neg-log-likelihood takes a more complex form, and
loses the convexity property due to the strong nonlinearity of the parameterizations
used. These elements are a likely cause of the scarcity of works based on
polyenergetic models.

With regard to the penalty portion, or a priori modeling of the medium to
reconstruct, a broad consensus can be observed in employing Markovian
representations with convex potential on first-differences [BOU 93, DEL 98,
FES 94]. This is reflected in the neg-log-likelihood by the addition of a convex
additive penalty term, quadratic or not. Surprisingly, there is to our knowledge no
real study comparing, in XRCT and under realistic conditions, the effect of quadratic
(Gaussian Markov random fields) and non-quadratic (edge-preserving) penalty terms.
In practice, the latter are usually used because they better reflect the global properties
of media to be reconstructed at a very low marginal cost.

1.2.3. Algorithms

Reconstruction algorithms refer here to numerical optimization procedures that
allow us to minimize the objective functions (usually penalized likelihood) referred
to in the preceding paragraph. As previously mentioned, these objective functions
have been developed under monoenergetic assumptions, and the same assumptions
are in force for algorithms used in XRCT. However, it should be noted that a number
of optimization procedures developed for other modalities (for example, emission
computed tomography) can easily be transposed to XRCT provided that the data
formation model is linear.

Since the introduction of the first “algebraic” reconstruction methods [HER 71],
development of optimization techniques aimed specifically at tomographic
reconstruction has been the subject of numerous works. The strength of this activity,
and the fact that generic nonlinear optimization methods have been widely ignored by
the community, can be attributed to the practical difficulties in solving reconstruction
problems (large size, need to account for bound constraints) and the general perception
that generic optimization methods were unable to cope with these problems in
a satisfactory manner. Most algorithms specific to emission or to transmission
tomography fall into the framework of iterative descent direction methods, and require
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the computation of the gradient of the objective function (or of one of its partial
derivatives) at each iteration. It is not possible to detail here the various approaches
that lead to algebraic structures suited for such and such specific representation of
matrix A. Among the most significant works, ICD algorithms [SAU 93], as well
as approaches based on ordered subsets (OS) that help to significantly reduce the
computation time, can be mentioned. However, these works appear to present two
major flaws:

– studies that compare the different approaches are rare and extremely narrow
in scope. If carrying out such studies in a rigorous manner presents significant
difficulties related to the possible differences of implementation, to the possibility of
parallelization, etc., the adoption of a common framework would nevertheless make it
easier to identify major trends. Today, generic optimization methods no longer present
the same limitations as in the past and lend themselves relatively well to solving
reconstruction problems, which makes the lack of such comparative studies even more
unfortunate;

– the issues of convergence control of reconstruction methods are scarcely or
not addressed, which gives the results a pronounced empirical character and makes
comparison attempts between methods even more difficult. In particular, OS-based
methods are not convergent, which leaves unanswered questions about the choice of a
stopping criterion and its link with the quality of the reconstructed images.

For these reasons, the choice of an XRCT optimization algorithm still seems to be
lacking of rigor and to present a significant empirical character.

Despite the abundance and quality of academic works, their penetration in XRCT
clinical applications appears to be minimal. As an example, the recent works
dedicated to applications focus mostly on 3D computerized axial tomography
(systems such as C-Arm and O-Arm) [KAC 11], as opposed to helical tomographs
available in most hospitals. This situation is partly explained by the fact that, for
nearly 30 years, the four major manufacturers of clinical tomographs have focused
almost all of their efforts on hardware improvement and on the timeliness of
obtaining results rather than on the reconstruction methodology. The result is that,
today, measurements are of satisfactory quality and the conditioning of the
reconstruction problem is acceptable, which limits the need to resort to
reconstruction techniques taking full advantage of the measurements. Moreover, the
large volume of data to process, the geometric complexity of data collection and
processing time constraints make academic works difficult to apply, and their real
contribution sometimes questionable. This is the reason why iterative reconstruction
methods are just beginning to appear in clinical tomographs, in a very elementary
form.

The achievement of the objectives formulated in the introduction requires a range
of choices related to the methodology as well as to the practical aspects of
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reconstruction in XRCT; the coherence of these choices is essential for obtaining a
satisfactory performance. The situation that we have briefly outlined reveals that the
tools to guide these choices are relatively scarce, and limited in scope. In what
follows, we present how we have made these choices as well as the resulting method.

1.3. Method

Recall that the objective is to develop a 3D reconstruction XRCT method, capable
of processing data generated by clinical tomographs and of creating reconstructed
images of better quality than these latter. In addition, the method should work with
current equipment such as PCs, and consistency in the choice of its various
components appears as essential to achieve these goals. In this section, we detail and
discuss these choices.

1.3.1. Data formation models

One of the critical elements in the choice of a data formation model is accounting,
or not, for the polyenergetic nature of the X-ray source and the dependence of μ with
regard to energy. However, as mentioned earlier, studies dedicated to polyenergetic
models are rare, and even more those that allow the assessment of the respective
contribution of monoenergetic and polyenergetic models within an inversion
framework. Since the studied medium involved strongly attenuating objects (the stent
metal parts), it appeared necessary to develop methods based on both models, and to
compare their effectiveness for the targeted application. Another important element is
accounting for the non-zero surface of the source and of the detectors: artifacts linked
to a thin ray assumption appear during the reconstruction of high resolution images,
and that is precisely the situation in which we find ourselves when trying to
accurately image small-sized vascular structures.

Even before developing the models in question, it is necessary to select a
representation of the projection matrix A, the important points being the explicit
(prior computation) or implicit (on-the-fly computation) character of the operator, the
possibility of easily accessing rows or columns and, finally, the development of an
internal representation adapted to the retained formulation. We have opted for an
explicit representation of the projection operator on a single rotation, since such a
formulation leads to a lower amount of computation than implicit representations, at
the price however of significant increase in memory space. Limiting the operator to a
single rotation introduces an additional constraint (integer number of slices of the
object per rotation) that is scarcely penalizing in practice. In order to limit the
memory space required for the storage of the operator, we have developed a coding
system for A that takes advantage of its sparse and structured character, that allows
quick access to the rows of the matrix and that lends itself to the efficient
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computation of projection and backprojection operations [GEN 08, GEN 11].
However, for the usual configurations of clinical tomographs, the storage of A
requires several GB. An approach to circumventing this difficulty is detailed in
section 1.3.3.

We now develop a formulation that allows both the thickness of rays and the
polyenergetic character of the source to be considered. To this end, it can be observed
that accounting for any of these phenomena amounts to performing a summation on
the parameter of the Poisson distribution of photon counts given in [1.3]. More
specifically, by using the independence of attenuation phenomena of different
photons, and the basic properties of the Poisson distribution, [1.3] becomes after
discretization:

N : P
{
n0

K∑
k=1

αke
−(Aμ)k

}
[1.6]

In order to account for the thickness of rays, and under the hypothesis that only
detectors have a nonzero surface (the geometry of the source is rarely available), it is
considered that infinitely thin rays reach each detector in K distinct positions, which
may be determined by regular sampling or random selection. In the above equation, it
then gives:

αk = 1/K and (Aμ)k = Akμ [1.7]

and Ak represents the projection matrix under the hypothesis of thin rays obtained for
the k-th configuration of the position of rays on the detectors.

Developing a polyenergetic model requires taking into account the dependence of
attenuation coefficients with respect to energy. Discretizing the spectrum of the source
on K levels, and denoting by μk, the attenuation coefficients of the object at the k-th
energy level yields:

αk : discretized spectrum of the source

(Aμ)k = Aμk

The fact that the object to reconstruct is no longer represented by μ, but by the K
attenuation coefficients maps {μk 1 ≤ k ≤ K} leads both to a very large
underdetermination of the reconstruction problem, and to difficulties in the
interpretation of the results due to redundancy of the information present in the
different maps. The Alvarez–Macovski decomposition enables μk to be expressed as
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a function of the attenuation due to the photoelectric effect on the one hand, and of
that due to the Compton effect on the other hand. More specifically, it gives:

μk = Φ(k)φ+Θ(k)θ

where Φ(k) and Θ(k) are known deterministic functions, and where φ and θ
respectively denote the photoelectric and Compton coefficients [DEM 01]. This
decomposition makes it possible to represent the object by the two maps φ and θ
rather than by the K maps μk. In order to end up with a single map, an empirical
parameterization of θ and φ is introduced on the basis of a single quantity, in general
μ70 (attenuation at 70 keV), this parameterization being determined from the
properties of a set of materials likely to be present in the object to be reconstructed
[DEM 01]. Finally, we obtain:

αk : discretized spectrum of the source [1.8a]

(Aμ)k = A (Φ(k)φ(μ70) + Θ(k)θ(μ70)) [1.8b]

and it can be observed that this formulation is equivalent to performing a partial
decoupling of the dependence of the attenuation coefficients with respect to space, on
the one hand (variable μ70), and with respect to energy, on the other hand (functions
Φ and Θ).

The previous developments helped to establish a common formulation to take
into account the thickness of rays and the polyenergetic character of the X-ray
source. The next step consists of using this formulation to develop an estimator of the
attenuation coefficients. The most immediate approach is to use the Poisson
neg-log-likelihood of the vector of observed photons counts n, which is directly
derived from [1.6], [1.7] and [1.8]. Unfortunately, the expressions of this
neg-log-likelihood and of its gradient with respect to the quantity of interest are
complex, and involve transcendental functions whose practical computation is
incompatible with a fast and effective implementation. To overcome this difficulty,
the Poisson neg-log-likelihood is approximated by its second Taylor expansion
around y � − lnn/n0, in the same spirit as [SAU 93, Appendix A]. The JV criterion
that derives therefrom takes the form:

JV =
n0

2

∥∥∥∥y − K∑
k=1

αk(Aμ)k

∥∥∥∥2
Σ

[1.9]

where Σ has been defined in [1.4].



10 Regularization and Bayesian Methods for Inverse Problems

The above expression deserves interpretation. When the objective is to account for
the thickness of rays, [1.9] and [1.7] lead to:

JV =
n0

2

∥∥∥∥y − ( 1

K

K∑
k=1

Ak

)
μ

∥∥∥∥2
Σ

[1.10]

Comparing [1.10] to [1.5], it can be observed that accounting for the thickness of
rays amounts to using as a projection matrix the mean of matrices Ak. This type of
procedure is similar to some of the empirical approaches mentioned in section 1.2.1
(methods known as ray-driven) and therefore constitute a form of justification. The
link with other empirical approaches (including the methods known as pixel-driven
and distance-driven) seems more far-fetched. Our works will be directly based
on [1.10].

In order to account for the polyenergetic character of the X-ray source, [1.9]
and [1.8] give:

JV =
n0

2

∥∥∥∥y − ( K∑
k=1

αkΦk

)
Aφ(μ70)−

( K∑
k=1

αkΘk

)
Aθ(μ70)

∥∥∥∥2
Σ

[1.11]

It can be observed that JV has a much simpler structure than the corresponding
Poisson neg-log-likelihood, and that the practical evaluation of its value and its
gradient is relatively easy to implement: these operations require two projections and
two backprojections, instead of one projection and one backprojection in the
monoenergetic case. In general, φ(μ70) and θ(μ70) have a nonlinear behavior, which
may complicate the computation of the gradient and degrade the numerical
conditioning of the problem. However, we have observed that, in practice, these
difficulties are not such as to call in question the advantages of the approach.

It should finally be mentioned that the approximation [1.9] makes it possible to
easily and simultaneously account for the polyenergetic character of the X-ray source
and the thickness of rays. As mentioned above, we will develop and compare methods
based on monoenergetic and polyenergetic models ; in either case, ray thickness will
be accounted for in accordance with [1.10].

1.3.2. Estimator

Irrespective of the type of data formation model retained, a maximum a posteriori
(MAP) estimator is used due to its interesting trade-off between simplicity and
adaptability to problems of variable difficulty. For the likelihood portion (or data fit),
the quadratic approximation of the Poisson neg-log-likelihood is used, whose general
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form is given in [1.9]. For the penalty portion, we use an additive, convex
“edge-preserving” term of the form:

JP =
M∑

m=1

ϕ [Dmμ] [1.12]

where ϕ is a scalar L2L1 potential, where Dm refers to a – possibly weighted – matrix
of first differences in a given direction m (horizontal, vertical, diagonal transverse,
etc.) and where, for any vector u = {un 1 ≤ n ≤ N}, the notation ϕ [u] denotes
the sum

∑N
n=1 ϕ(un). Such a penalty term may be interpreted as an a priori Markov

distribution of the attenuation coefficients field. With regard to the precise choice of
the function ϕ, the following hyperbolic form is adopted for reasons of computational
simplicity:

ϕ(u) =
√

δ2 + u2 [1.13]

where δ denotes a scaling hyperparameter. Under these hypotheses, performing the
reconstruction amounts to minimizing the criterion J � JV + λJP with respect to
the variable of interest, where λ denotes the regularization parameter. In the case of
a monoenergetic model, the variable of interest is μ and J is convex, which lends
itself to iterative minimization with a descent directions method. In the case of a
polyenergetic model, the variable of interest is μ70, and the convexity of J cannot be
guaranteed. However, we will make the assumption that nonlinearities in the model
are sufficiently moderate to allow the use of the same minimization techniques as in
the monoenergetic case.

1.3.3. Minimization method

1.3.3.1. Algorithm selection

The minimization of J is an optimization problem of very large size, possibly
nonlinear, convex or nearly convex, and subject to boundary constraints to ensure the
positivity of the quantity of interest to reconstruct. Among the techniques capable of
addressing such a problem, we restrict our choice to gradient-based, descent
directions methods, due to their interesting trade-off between complexity and
numerical effectiveness for the size of the problem under consideration. Within this
type of techniques, the possibilities are multiple, both among generic methods
(derived from numerical analysis and from optimization) and among algorithms
specifically developed for tomography. The representation that we have adopted for
the projection operator compels us to eliminate the methods requiring an easy access
to the columns of A, such as the ICD method [SAU 93]. Even with these restrictions,
candidate algorithms are still numerous, and the literature offers few objective
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elements capable of providing guidance in the choice of a particular method. That is
why we have conducted a comparative study of limited scope about the effectiveness
of several algorithms suited to our problem.

Developing a rigorous comparison methodology of iterative optimization
algorithms for a given application is a non-trivial task. As a first step, it is necessary
to specify an implementation framework adapted to the targeted application. Here,
the focus is on sequentially programmed methods (or at least without any particular
concern for parallelization) running on standard hardware such as PCs. This allows
for the definition of performance metrics such as the total run-time, the number of
projections and backprojections, etc. In this context, the objective is to achieve a
given “image quality”, relatively to the subsequent use of the results. This requires us
to define image quality metrics such as resolution, ability to distinguish low
contrasts, etc., and then to find a stopping rule, usable with all algorithms involved in
the comparison, which ensures that the desired image quality is reached. It is
essential that this stopping rule does not reflect the behavior of the algorithm, but the
intrinsic properties of the solution. In other words, the stopping rule should depend
on criterion J regardless of the algorithm used, which excludes some criteria
commonly used such as thresholds on the norm of the solution updates or on the
variation of the criterion between successive iterations. Clearly, a stopping rule
related to optimality conditions satisfies the requirements of independence with
respect to the algorithm, and a threshold based on the norm of the projected gradient
is a candidate of choice because of its availability and computational simplicity. It
should be noted that the use of this type of stopping rule eliminates non-convergent
algorithms, and in particular ordered subsets type methods yet very widely used in
tomographic reconstruction. Furthermore, comparison results should be independent
of specific instances of the observations, which requires us to repeat the same
experiment several times in order to perform a statistical comparison of the
performance of the different methods.

In order to satisfy these requirements, we proposed a comparison methodology
[HAM 11] based on simulated data derived from phantoms containing random
elements that can be used to compute quality metrics of reconstructed images. The
simulated data set allows for a statistical comparison of performance measures for
each algorithm with a common stopping rule. In addition, a statistical comparison of
quality metrics of images reconstructed by each algorithm enables verifying that they
are of statistically indistinguishable quality. We therefore make sure that the chosen
stopping rule guarantees that the achieved image quality is independent of the
minimization algorithm. Such tests can obviously be carried out for several values of
the stopping rule (for example, low, medium and high reconstruction qualities) to
evaluate the performance of different algorithms in various situations.

The methodology presented above was used to compare four minimization
algorithms. Here, we only report the key elements of this study, and the reader is
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referred to [HAM 11] for further details on the methodology and the results. The four
algorithms were selected because of their good anticipated performance with a
large-size nonlinear problem such as reconstruction in XRCT. Two of them were
“generic”: the first, L-BFGS-B [ZHU 97], is a limited-memory quasi-Newton
method modified so as to integrate bound constraints; the second, IPOPT [WAC 06],
is an interior point method based on sequential quadratic programming that can use a
quasi-Newton type of approximation of the Hessian or of the Lagrangian. The other
two methods were specifically developed for tomography: the first, SPS [ERD 99],
operates on quadratic functions surrogate to convex criterion J ; the second, TRIOT
[AHN 06], is based on the same principle of quadratic surrogate functions, but uses
an ordered subsets-based approach modified to preserve the convergence of the
procedure. Comparisons were performed in a 2D framework with the monoenergetic
model, for simplicity reasons and to limit the computation time. We advance the
hypothesis that results obtained in this framework remain valid in more complex
situations (3D geometry, polyenergetic model). Our results have shown that, when
the quality of the desired reconstruction is low to moderate, specific algorithms, and
notably TRIOT, have a slight advantage. When high quality reconstructions are
desired, generic algorithms, and particularly L-BFGS-B, have a significant
advantage. This behavior is illustrated in section 1.4.1. The practical objective of the
works being to visualize small structures with accuracy, and therefore with high
image quality, we selected the L-BFGS-B algorithm.

1.3.3.2. Minimization procedure

With 3D clinical data, directly using the L-BFGS-B algorithm to minimize
criterion J is not an option, both due to the huge size of array A and to the
corresponding computation time. However, for our vascular imaging application, the
objective is to accurately visualize very small structures of interest. This leads
naturally to decompose the object into a region of interest, that contains the structures
to reconstruct with accuracy, and a background containing the rest of the object that
does not need to be accurately imaged. From an algebraic point of view, such a
decomposition is readily obtained by partitioning μ into μRI (region of interest) and
μAP (background), and by partitioning A correspondingly. The extension of this
decomposition to the cases of thick rays and polyenergetic model does not present
any difficulty.

At the methodological level, it is possible, under certain technical conditions, to
estimate μRI when μAP is unknown [COU 08]. However, practical experience shows
that the reconstruction of μRI is both faster and of better quality when a reasonable
estimation μAP is available. Therefore, we consider that quantities μRI and μAP must
be both reconstructed. The central issue is the impact on the estimation of μRI of
errors in μAP such as a coarse resolution and/or a high estimation error. To accurately
estimate μRI while dedicating minimum effort in the determination of μAP, several
procedures can be envisioned; among these, we may single out (1) the prior
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determination of μAP either from images provided by the tomograph or by iterative
reconstruction at a coarse resolution or with low quality; (2) the joint or sequential
estimation of μRI and μAP.

These issues are discussed in detail in [HAM 10], and it appears that the quality
of μAP has little impact on the quality of the reconstruction of μRI. This point is
illustrated in section 1.4.2. Therefore, the preferred option is to determine μAP once
and for all, prior to the reconstruction of μRI. The easiest way to obtain this prior
estimation is to use reconstructions produced by the tomograph, if these are available.
By default, reconstruction by analytical methods, or by iterative methods with a coarse
resolution (typically one quarter of that used for μRI) and a low quality, can be used.
In all cases, a significant reduction in the volume of computation and in memory
requirements is obtained : the prior estimate of μAP is either available, or computed
analytically, or rebuilt iteratively in a small number of iterations, the projection matrix
being of small size. The projection matrix used to reconstruct μRI is also of small
size, and this set of features makes it possible to implement the procedure on non-
specialized, if not modest, computer equipment.

1.3.4. Implementation of the reconstruction procedure

Finally, the method we have developed consists of minimizing the criterion
J = JV + λJP where JV and JP are respectively defined by [1.9]–[1.11] and
[1.12]–[1.13]. The complexity of the data collection geometry (multiple detectors
arrays, helical acquisition mode, flying focal spot, etc.) makes the construction of
matrix A difficult and tedious, without being all the more overwhelming. For
questions of computation speed, we have opted for prior construction over one
rotation and storage of the projection operator. The formulation we have developed
brings forward the possibility of systematically accounting for the thickness of rays
in order to avoid artifacts produced in high-resolution reconstructions by the
hypothesis of point detectors, and if necessary to use polyenergetic modeling of
attenuation phenomena. With regard to the precise shape of penalty term JP, we have
selected a second-order neighborhood within each slice, and a first-order
neighborhood across slices (ten-neighbor model). This choice is justified by the
anisotropy of the representation of μ, the thickness of the slices being generally
much larger than the pixel size in each slice. Finally, the decomposition of the object
into background and region of interest is systematically used, because it corresponds
to the characteristics of the reconstruction problem while being necessary to
implement the method with the available computational resources. In most cases,
μAP is determined from the images provided by the tomograph, and the expression of
criterion J must be modified to involve μRI only. To perform the minimization, the
L-BFGS-B algorithm is used, in accordance with the results of the comparison of the
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optimization algorithms and the targeted reconstruction quality. In addition, the use
of this algorithm ensures in a simple and rigorous manner the positivity of the
estimate of μRI.

As for most inversion methods, the proposed reconstruction procedure requires
the value of several parameters to be set, notably the number of rays per detector, the
discretization stepsize of the spectrum of the X-ray source for the polyenergetic
model, the value of the stopping rule, the value of hyperparameters λ and δ. The
unsupervised determination of such parameters is an important and difficult problem
in inversion; conceptually, such an approach could be envisaged here for a number of
quantities (notably λ). However, from a practical point of view, this approach is to be
ruled out due to the size of the reconstruction problem and to the amount of
computation it would require. In addition, empirical determination of these
parameters, according to the targeted quality objectives, does not raise major
problems because of the availability of numerical and physical phantoms, and of the
possibility of assessing the quality of reconstructions by experts. Thus, we have
determined that five to ten rays per detector are largely sufficient to avoid artifacts
during the reconstructions of μRI, and that a decomposition of the spectrum of the
X-ray source into pulse components and smooth-variation curve make it possible to
limit to ten the number of elements in the sums appearing in [1.11]. The other
quantities may be set up by a calibration-based procedure to be carried out for each
acquisition protocol.

1.4. Results

The objective of this section is not to provide experimental justification of the
choices on which the method we have developed is based, but, more modestly, to
support and illustrate by typical results some of the assertions made in the preceding
paragraphs.

1.4.1. Comparison of minimization algorithms

In order to compare the four selected minimization algorithms, we have
implemented the procedure described in section 1.3.3.1. It requires, as a first step, the
definition of quality metrics of the reconstructed images and the design of random
phantoms enabling the calculation of these metrics. Among the desired
characteristics in the reconstructed images, we have retained the resolution, and the
ability to distinguish low contrasts. It should be mentioned that a third commonly
used characteristic, the residual noise affecting the reconstructed image, is strongly
linked to the previous characteristics and therefore has not been retained. To evaluate
these characteristics, we have used a 2D numerical phantom (220 mm sidelength,
discretization on a 512 × 512 grid) composed of a homogeneous medium with the
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the attenuation of soft tissues, in which eight contrast gauges (disks of 10 mm in
diameter whose attenuation value is close to that of the background) and eight
resolution gauges (strongly attenuating disks of diameters ranging between 0.5 and
3 mm) are inserted. The random character of the phantom is achieved by partitioning
it into 24 fixed cells, and by randomly placing 16 gauges in these 24 cells. An
instance of such a phantom is represented in Figure 1.1. The quality metrics of the
reconstructed images are defined as follows: for the ability to distinguish low
contrasts, detection of contrast gauges is performed by matched filtering in the eight
cells containing a contrast gauge and in the eight empty cells; the metric is equal to
the proportion of accurate results. For resolution, the “modulation transfer function”
(MTF) is used [DRO 82, HAM 10], which can be interpreted as a 1D frequency
representation of the 2D impulse response of the reconstruction procedure, under the
assumptions of spatial invariance and rotational symmetry. The impulse response is
obtained by simple least-squares estimation from the original phantom and the
reconstructed image, and the resolution metric is defined as twice the value of the
normalized frequency for which the amplitude of the MTF has decreased by 40%
relative to its maximum value.
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Figure 1.1. Instance of the 2D random numerical phantom used for the comparison of
optimization algorithms (based on [HAM 11]). Axis scales in mm

The data were obtained by simulating a current generation tomograph, in 2D axial
mode. The geometrical parameters of a Siemens SOMATOM 16 scanner were used,
the projection process being simulated by the SNARK09 software [DAV 09] taking
into account the polyenergetic character of the source. To avoid the inverse crime
[KAI 07] as much as possible, an analytical parameterization of the phantoms was
used, and, in order to better model the propagation of X-rays in the medium, the
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detectors were separated into several cells whose photon counts were then combined.
To carry out the comparison, 50 independent instances of the random phantom were
drawn, and the random phenomena involved in the data formation process were also
independent of each other.

The criterion used for the reconstructions was based on a monoenergetic data
formation model. The difference between the model used to generate data and that
used to perform the reconstructions corresponds to the most frequent practical
situation. In a preliminary step, the hyperparameter values were calibrated from a
data set different from those used for the comparisons, and three values of the
stopping rule, corresponding visually to a moderate, good and very good quality of
the reconstructed image, were determined. The criterion J was then minimized with
the four methods mentioned in section 1.3.3.1, for each of the 50 datasets. In order to
make the comparison as fair as possible, all methods were initialized in an identical
fashion (image obtained after 20 iterations of the non-convergent OS-SPS method,
itself initialized by an analytical reconstruction), and the elements having a
significant impact on the numerical performance of algorithms were implemented in
the same way. The used performance measure was the number of projections and
backprojections required to satisfy the stopping rule, this measure being directly
related to the total volume of computation required to perform the reconstruction. For
each of the three values of the stopping rule, a comparison of the quality measures of
the reconstructed image was made, to ensure lack of any statistically significant
difference from one algorithm to another.

The results are synthesized in the diagram of Figure 1.2, which presents the
performance measure and its standard deviation (in positive values for better
readability) for each algorithm as a function of the value of the stopping rule. These
results show that, for a high value of the stopping rule (low reconstruction quality),
the TRIOT method is the most effective, closely followed by L-BFGS-B and SPS,
the IPOPT algorithm being much slower. However, for lower values of the stopping
rule (better image quality), algorithms specifically developed for tomography are
outperformed by generic methods IPOPT and L-BFGS-B, the latter presenting the
best overall performance. This behavior can be explained by the fact that SPS and
TRIOT are essentially gradient algorithms, and that their asymptotic convergence is
therefore slower than that of quasi-Newton methods such as IPOPT and L-BFGS-B.
A low variance of performance measurements can be observed, except for IPOPT.
This behavior could be attributed to the particular nature of this algorithm (interior
point method). In addition, it should be mentioned that for each of the three selected
stopping rule values, the quality of the reconstructions provided by the four
algorithms showed no statistically significant difference. These results are in
agreement with the behavior defined in section 1.3.3.2 and justify our choice of the
L-BFGS-B method to carry out the minimization of criterion J in our reconstruction
methods.
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1.4.2. Using a region of interest in reconstruction

Our purpose is to illustrate the performance of the region of interest-based
minimization procedure described in section 1.3.3.2. Specifically, we are interested
in the total reconstruction time as well as in the quality of the reconstructed region of
interest for various acquisition modes of the background. In the previous paragraph,
we presented a way to evaluate and to compare the quality of images reconstructed
by several methods. Here, this technique cannot be directly applied, because the
images to compare do not result from the same estimator, since the background
varies from one reconstruction to another. This is why the quality of regions of
interest is evaluated in a more limited way, on the one hand by visual inspection for
the same setting of hyperparameters, and, on the other hand, by calculating the
resolution of regions of interest reconstructed for a same estimation variance, these
being obtained by an adequate adjustment of the hyperparameters.
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Figure 1.2. Comparison of the average performance of the four retained algorithms, depending
on the value of the stopping rule (from [HAM 11]). Algorithms specifically developed for
tomography are more effective for high stopping criteria (low quality of reconstruction), but
are outperformed by generic methods L-BFGS-B and TRIOT for stricter stopping rules

The tests were carried out on data simulated in a 2D framework. The phantom
(sidelength of 200 mm, discretization on a 1240 × 1240 grid) being composed of a
homogeneous medium with the attenuation of soft tissues, in which several objects
were placed: first, in the peripheral zone (background), 10 strongly attenuating disks
were included; their function was to allow us to assess the impact of an inaccurate
representation of such objects on the reconstruction quality of the region of interest.
Two versions of the phantom, in which the attenuation of the disks was either that of
iron or that of aluminum, were used. Second, the central part (region of interest, with
a 30 mm sidelength and 186 × 186 grid size) comprised two types of objects,
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respectively moderately and strongly attenuating, arranged in such manner that
resolution and estimation variance could be simply assessed. The phantom is
represented in Figure 1.3, and the corresponding data were generated using the same
procedure as that described in section 1.4.1.
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b) Central part, corresponding to the region of interest, of size 186 × 186

Figure 1.3. Phantom used to test the approach to reconstruction of the medium by
decomposition in background and region of interest (based on [HAM 10]). The gray levels

correspond to an attenuation in Hounsfield units, on a [−1000,3000] scale
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From these data, the background was reconstructed first, with an analytical method
(filtered backprojections) at full resolution, and second, by iteratively minimizing the
criterion J under a monoenergetic assumption, using the L-BFGS-B algorithm, with
resolutions of 1,240, 480, 240, 160, 120, 80 and 40. The quality of reconstruction
not being critical, the stopping rule was set to a high value. For each resolution of
the background, the region of interest was then reconstructed, still with the proposed
iterative method under the monoenergetic assumption, under the following conditions:
for visual assessment, the regularization parameter was set to a low value, so as to
bring forward the artifacts related to the imperfect representation of the background,
and the value of the stopping rule was set to an intermediate value (good quality of
reconstruction). For the evaluation of the resolution, the regularization parameter was
adjusted for each reconstruction so as to obtain an estimation variance similar to that
of the analytical reconstruction. There again, the value of the stopping rule was set to
an intermediate value common to all reconstructions. As in the previous paragraph,
the resolution was evaluated from the MTF of the reconstruction [DRO 82, HAM 10].
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Figure 1.4. Analysis of regions of interest obtained with a low common value of the
regularization parameter (based on [HAM 10]). Each thumbnail represents the difference
between the exact region of interest and the region of interest reconstructed with a particular
background, on a [−250, 250] scale in Hounsfield units. The background disks presented
the attenuation characteristics of iron. There is an almost complete absence of artifacts for
background resolutions higher than 120

Figure 1.4 presents the results of the reconstruction of the region of interest for a
low value of the regularization parameter when background discs have the
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attenuation characteristics of iron. In order to better appreciate the presence of
artifacts, each thumbnail represents the difference between the exact region of
interest and the reconstructed region of interest with a particular background. When
the background is reconstructed iteratively, lack of artifacts can be observed for
resolutions higher than 120, which corresponds to a factor greater than 10 between
the sidelengths of pixels of the background and of the region of interest. Significant
artifacts can also be observed when the analytically reconstructed background is used
at full resolution. When the background disks have the attenuation characteristics of
aluminum (less attenuating than iron), the results of the region of interest
reconstruction are similar to those of Figure 1.4, except in the case of the analytically
reconstructed background where no artifacts are observed [HAM 10].

MTFs corresponding to the reconstructions of the region of interest with
backgrounds obtained iteratively with different resolutions are presented in
Figure 1.5. The background disks had the attenuation characteristics of iron. It can be
observed that there is no significant loss of resolution in the region of interest for
background resolutions greater than 120. Similar results were obtained when
background disks had the attenuation characteristics of aluminum [HAM 10]. These
results are thus consistent with the visual inspection of reconstruction artifacts.
Finally, our experiments showed that the total volume of computation required to
reconstruct the region of interest is lower when the background is obtained
analytically, then grows according to the resolution chosen to iteratively reconstruct
the background.

These results indicate that the quality of the reconstruction of the region of
interest is relatively insensitive to that of the background. In most cases, an analytical
reconstruction of the background with full resolution of the background is sufficient,
except in the presence of very strongly attenuating objects (e.g. prostheses with
stainless steel components). In this case, iterative reconstruction with low resolution
(factor up to 10 on the pixel sidelength) should be used, which results in a substantial
increase in the total amount of computation. These simulation results have been
confirmed by tests on real data carried out with a physical resolution phantom (CTP
528 section of the Catphan600© phantom, see [HAM 10] for full results). This
validates, at least in a 2D context, the reconstruction approach by decomposition of
the object into background and region of interest, and confirms that it is unnecessary
to carry out the joint, simultaneous or sequential estimation of μAP and μRI.

1.4.3. Consideration of the polyenergetic character of the X-ray source

The results reported in Figure 1.5 support the choices made in section 1.3.3
regarding the algorithm and the minimization procedure, at least in the framework
adopted to perform those tests (2D geometry, monoenergetic model). We hypothesize
that these results remain valid in more complex situations (3D geometry,
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polyenergetic model). The subject of this section is to briefly illustrate the effect of
accounting for the polyenergetic nature of the source, first with simulated data in 2D,
then with real data in 3D.
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Figure 1.5. MTF of regions of interest reconstructed with backgrounds obtained iteratively
at different resolutions (according to [HAM 10]). Background disks with the attenuation
characteristics of iron. It can be observed that there is no significant loss of resolution for
background resolutions greater than 120. Similar results were obtained when the background
disks had the attenuation characteristics of aluminium

1.4.3.1. Simulated data in 2D

Data were generated using the same phantom (disks located in the background:
attenuation characteristics of iron) and the same simulation process as for the
evaluation of the approach by region of interest. This choice is justified by the
presence of strongly attenuating objects within the phantom, and by the fact that the
polyenergetic character of the X-ray source is accounted for in the projection
simulation process. First, the background was reconstructed analytically, on a 512 ×
512 grid. Second, the region of interest was estimated by the proposed method, under
the monoenergetic and polyenergetic hypotheses, with the same resolution as that of
the background (size 80 × 80). In both cases, the hyperparameters were empirically
adjusted, and the stopping rule was set to a low value (very good quality of
reconstructed image) such as to bring forward the differences between methods.
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Figure 1.6. Results of the reconstruction of the region of interest under monoenergetic and
polyenergetic hypotheses. The gray levels correspond to the attenuation at 70 keV expressed
in Hounsfield units, on a [−1000,3000] scale. Under a monoenergetic hypothesis, it can be
observed that there are many artifacts, and several structures present in the region of interest
are not reconstructed. Under a polyenergetic hypothesis, these defects have disappeared almost
completely

An example of reconstructions of regions of interest is presented in Figure 1.6. It
can be observed that under a monoenergetic hypothesis, the reconstructed image
presents visible defects: shadow areas due to the disks of the background, significant
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underestimation of the attenuation at the center of the image, absence of certain
structures. These defects have almost completely disappeared from the reconstructed
object when accounting for the polyenergetic character of the source during the
reconstruction of the region of interest. This improvement is achieved at the cost of
an increase in the volume of computation by a factor ranging between 2 and 3.

These results, and the many other tests we have carried out, indicate that
accounting for the polyenergetic character of the X-ray source in the reconstruction
method leads to a significant improvement in the quality of reconstructions, in the
presence of strongly attenuating objects, both in the background and in the region of
interest. It should be underlined that this improvement depends on the accuracy of
the polyenergetic attenuation model, which in practice, can be difficult to assess, or
even questionable.

1.4.3.2. Real data in 3D

The results presented here were obtained from the multimodality vascular
phantom schematically represented in Figure 1.7. It consists of a tube, simulating a
blood vessel, with two calibrated stenoses, one of which is located inside a stent.
This setup is included in a block of agar simulating soft tissue, and a contrast agent
can be injected into the tube. The phantom was imaged with a clinical tomograph
(Siemens SOMATOM 16) using the protocol used for peripheral vascular
examinations (16 arrays of 672 detectors each, helical mode, 1,160 projections per
rotation, flying focal spot). The reconstructions were performed by the tomograph in
accordance with this protocol (512× 512 images, 0.7 mm spaced slices) on a field of
view of 15 cm in diameter.

Figure 1.7. Multimodality vascular phantoms used to generate the data.
The stent is placed around one of the two stenoses

Reconstructions were carried out with the proposed method, under monoenergetic
and polyenergetic hypotheses, using the raw data collected by the tomograph. It
should be emphasized that these “raw” data have undergone extensive preprocessing,
part of which aiming to limit the artifacts related to the polyenergetic character of the
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X-ray source. Therefore, this casts a doubt on the accuracy of the polyenergetic
attenuation model that we use. The chosen region of interest had a sidelength of
3.25 cm and was discretized on a 128 ×128 × 94 grid to obtain the same voxel size
as that of the reconstruction generated by the tomograph. The background was
reconstructed analytically by the tomograph, on a full field of view 50 cm in diameter
(512 × 512 grid). The hyperparameters were empirically adjusted so as to achieve
the same estimation variance as that of images provided by the tomograph, and the
stopping rule was set to an average value to obtain a satisfactory image quality
without unduly increasing the volume of computation.
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Figure 1.8. Results of the reconstruction of the region of interest. Gray levels correspond to
the attenuation at 70 keV expressed in Hounsfield units, on a [−200,1100] scale. The proposed

reconstructions present a significant improvement

An example of reconstruction is presented in Figure 1.8. The selected slice
corresponds to the extremity of a stent fitted with distal markers. It can be observed
that the method we have developed produces a significant improvement over the
image provided by the tomograph, notably with regard to the presence of shadow
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areas and to the size of the strongly attenuating markers. However, reconstructions
under monoenergetic and polyenergetic hypotheses appear almost identical.

A more complete evaluation of these methods was made from the reconstructions
of eight vascular phantoms. After result anonymization and random ordering, several
clinically significant parameters were evaluated in two ways: by semi-automatic
measures resulting from a clinical image analysis software, and by manual
measurements independently carried out by two physicians. Statistical analysis
confirmed that iterative reconstructions provide more accurate indications about the
shape and size of the stent. In addition, this analysis showed that, under a
polyenergetic hypothesis, intra-stent stenosis measurements are more accurate (in the
statistical sense) than in the other two methods. These results thus confirm the
conclusions drawn from the 2D simulation results.

1.5. Conclusion

Our goal was to develop a 3D reconstruction method in XRCT capable of
processing clinical data for vascular imaging. The difficulties related to the modeling
of the data formation process and to the size of the corresponding estimation problem
have been overcome, at least partially, by developing a parsimonious representation
of the projection operator, by decomposing the medium to reconstruct into
background and region of interest, by developing an optimization procedure tailored
to this decomposition and by carefully selecting the minimization algorithm. The last
difficulty mentioned in the introduction, that is to say, problems to access the raw
data, has been overcome by combining a certain degree of collaboration with the
manufacturer and a significant dose of reverse engineering in order to determine the
precise structure of the datafiles. The method we have developed provides room for
many improvements aiming to accelerate computations particularly with regard to
the representation and the coding of the projection / backprojection operator, and to
the implementation of the optimization procedure (massive parallelization for
example). Nevertheless, the results indicate that, for some specific applications,
methods such as those presented here are of real practical interest, because they
provide reconstructed images of a significantly higher quality than the images
produced by clinical apparatus.

More generally, image reconstruction is a typical example of an ill-posed inverse
problem, and it is interesting to analyze the nature of the difficulties and the manner
to overcome them with regard to the elements presented in Demoment’s synthesis
article [DEM 89], which reflects the state of our knowledge a little more than 20
years ago. Demoment’s article focuses on the methodological aspects of solving
image reconstruction and restoration problems, essentially under the assumption of
linearity of the data formation model. The article insists on the notion of ill-posed
inverse problem, on various regularization techniques and on the question of the
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determination of the value of hyperparameters. The article also deals, in a less
detailed manner, with the case of nonlinear data formation models such as those
encountered in diffraction tomography, and with the difficulties of the practical
computation of the solution.

With regard to 3D reconstruction in XRCT, the method presented here, as well as
recent literature, clearly indicate that the ill-posed character of the problem, and the
regularization techniques necessary for its solution, are now recognized and taken
into account by the research community. The question of the specification of the
value of hyperparameters does not pose any major practical difficulty, due to the
existence of specific acquisition protocols which allow us to calibrate reconstruction
methods. The interest of the community seems to have shifted toward the application
of these methods to real large-size datasets, along with the problems of computation
time and implementation arising therefrom. The development of methods usable in
practice involves the harmonious choice of a data formation model, of a
minimization procedure for the resulting criterion, and of specific optimization
algorithms. The method that we have presented is a – quite imperfect – attempt
pointing in this direction. A significant proportion of recent works in 3D XRCT also
follows this path [KAC 11].

This situation does not seem limited to XRCT. The same trend can be perceived
in emission tomography and diffraction tomography, but with certain nuances such as
the attachment of certain communities to the automatic determination of the value of
hyperparameters [BER 97]. This can be interpreted as the result of a widespread
recognition of the methodological issues synthesized in [DEM 89]. This recognition
has made it possible to address problems hampered by the presence of nonlinearities
in the data formation process or by their ill-conditioning, with the frequent additional
difficulty of a large volume of data. This explains the important place taken by
implementation issues. This brief analysis thus brings forward the impact that
methodological studies may have, some 20 years later, on the approach to various
problems and the development of practical solutions.
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