
1 

Principle of Conservation of Energy and 
Rayleigh’s Principle 

The well-known principle of conservation of energy forms the basis of some 
common convenient analytical techniques in Mechanics. According to this principle, 
the total energy of a closed system remains unchanged. This means that in the 
absence of any losses due to friction etc., the sum of the total potential energy and 
the kinetic energy of a vibratory system will be a constant. Although in practice 
there will always be some damping, and hence dissipation of energy, for many 
mechanical systems such losses may be neglected. Such systems are called 
conservative systems. 

The natural frequencies of conservative systems may be obtained by equating the 
maximum kinetic energy (Tm) to the maximum total potential energy (Vm) associated 
with vibration. The meaning of these energy terms is very important. To illustrate 
the principle of conservation of energy, and the meaning of the energy terms let us 
study some simple vibratory systems. 

1.1. A simple pendulum 

Consider the oscillatory motion of the simple pendulum consisting of a bob of 
mass m and a massless string of length L as shown in Figure 1.1. It would be at rest 
in a vertical configuration under gravity field. If it is given a small disturbance βm 
and then released, it will tend to vibrate about this equilibrium state. The restoring 
action of the gravity force will initiate a motion toward the equilibrium state but as 
the bob approaches the lowest point in its motion it has a velocity and therefore 
carries on swinging up on the other side until the gravity force causes it to come to a  
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2     The Rayleigh–Ritz Method for Structural Analysis 

halt momentarily. In the absence of any damping forces, this motion would go on 
forever, but in reality the damping forces will help to put an end to this vibration 
after some time. 

 

Figure 1.1. Simple pendulum 

Assuming that energy loss associated with mechanical friction and aerodynamic 
resistance is negligible, we have two types of energy term to consider. These are the 
kinetic energy (denoted by T1, T2) where the subscripts 1 and 2 refer to states  
1 and 2 respectively, and the potential energy (denoted by V1, V2). The kinetic 
energy is proportional to the square of the velocity and the potential energy is 
dependent on the vertical position of the bob.  

The pendulum will have the maximum kinetic energy as the bob passes through 
the equilibrium state (state 1) at which time it will have the lowest potential energy. 
At the time of maximum excursion (state 2), the bob will be at its highest point, and 
therefore the system will have the maximum potential energy, but since it has no 
velocity its kinetic energy will be minimum. The potential energy can be defined 
arbitrarily by selecting a datum. In our example, the increase in the potential energy 
as the system changes from state 1 to state 2 is entirely associated with the vibration, 
and will be referred to as the maximum potential energy hereafter. As the bob 
returns to state 1 from state 2, it loses potential energy and gains kinetic energy. The 
maximum kinetic energy associated with vibration is the kinetic energy at state 1 
minus the kinetic energy at state 2. (The latter is not necessarily absolutely zero, as 
the support point may have a velocity. In rotating systems care must be taken to 
ensure that the kinetic energy terms are calculated correctly.) Since the total energy 
is conserved, the maximum kinetic energy associated with vibration must be equal 
to the maximum total potential energy associated with vibration. The inclusion of 
the phrase “associated with vibration” is used here since terms such as “maximum” 
and “total” can otherwise cause confusion. 
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From the principle of conservation of energy: 

1 1 2 2V T V T+ = +  

i.e. 2 1 1 2V V T T− = −                

The gain in potential energy as the bob moves from state 1 to state 2 is the 
maximum potential energy associated with vibration and may be denoted by Vm.  

2 1 mV V V− =  

Similarly the maximum kinetic energy associated with vibration is: 

1 2 mT T T− =   [1.1] 

From the above equations we have m mV T=   

In applying the principle of conservation of energy for vibratory systems, it is 
sufficient to equate the maximum potential and kinetic energy terms associated with 
vibration. 

To find the circular natural frequency ω of an undamped system, the motion may 
be assumed to be simple harmonic. 

i.e. β = βm sin(ωt+α), where t is time and α is a phase shift angle. 

Then d
dt
β β= = ωβm cos(ωt+α) 

The maximum velocity is therefore = Lωβm  

 This means the maximum velocity is equal to the amplitude of vibration times 
the frequency. This statement is true for any natural mode, since at natural modes 
the vibration is simple harmonic.  

Hence 
2( )

2
m

m
L

T m
ωβ

=  

The potential energy is due to the change in position of the gravity force mg. 

Thus (1 cos )m mV mgL β= −  
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Substituting these into equation [1.1] gives: 

2( )
(1 cos )

2
m

m
L

m mgL
ωβ β= −  

For small amplitude vibration, 
2

(1 cos )
2
m

m
ββ− =  

This gives: 
2 2( )

2 2
m mL

m mgL
ωβ β

=  

This actually gives us two possible solutions. One is that βm = 0. This implies 
there will not be any motion and is therefore a trivial solution. The other solution is: 

ω2 = g/L  

in which case 0mβ ≠  and vibration is possible. That is to say, in the absence of any 

external force, the system can vibrate freely at a frequency of /g Lω =  rad/s. This 
is therefore the circular natural frequency of the pendulum. The natural frequency in 
Hz (cycles/s) is 2 / 2f g Lω π π= = . From this point onwards, for simplicity, we 
will refer to circular natural frequencies as natural frequencies. 

The simple pendulum is a “single degree of freedom” system. This means it can 
only vibrate in one specific mode, in this case, the string and the bob rotating about 
the equilibrium state. In cases where the mode is defined, the above method yields 
the exact value of the natural frequency. We will soon see why it is not always 
possible or convenient to get the exact frequency. 

1.2. A spring-mass system 

Consider the motion of a simple spring-mass system shown in Figure 1.2. A rigid 
body of mass m is connected to a linear elastic spring of stiffness k. Assume that the 
system is free to vibrate only axially (in the direction of the spring). If the mass is 
displaced from the equilibrium state by distance û which induces a force in the 
spring and then released, it would tend to return to its equilibrium state. However as 
it approaches the equilibrium state it has a velocity and this velocity causes the mass 
to move away from the equilibrium state now on to the opposite side. Then as the 
spring force develops, the motion comes to an end momentarily and the mass then 
returns to the equilibrium state and the cycle repeats as in the case of the pendulum. 
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The maximum vibratory potential energy in the spring is given by 
2ˆ

2m
kuV =  and the 

maximum kinetic energy is 
2 2ˆ

2m
m uT ω= .

 

 

Figure 1.2. A spring-mass system 

Using equation [1.1], 
2 2 2ˆ ˆ

2 2
ku m uω=  

For a non-trivial solution, we have the natural frequency given by /k mω = . 

For multidegree of freedom systems and continuous systems, calculation of the 
energy terms requires an assumption about their modes. This method results in exact 
values of natural frequencies only if the exact modes are used in the calculations. If 
the exact mode is not known, it has been shown that the use of any other mode shape 
that does not violate any geometric constraints of the system results in a frequency 
that cannot be lower than the exact fundamental natural frequency. This is one of the 
many interesting proofs that Lord Rayleigh gives in his famous book The Theory of 
Sound [RAY 45a]. This is best illustrated through some examples. We will start with 
a two degree of freedom system, as its exact solution is easily understood. 

1.3. A two degree of freedom system 

Consider the vibration of the spring-mass system shown in Figure 1.3. The 
masses are assumed to be free to move only in the axial direction. Since the two 
masses can be moved independently of each other there are two degrees of freedom. 
The relevant values for the stiffness and mass are shown in the figure. Let the 
dynamic displacement of the masses be u1, u2 and their amplitudes be û1, û2. The 
various energy terms may be written in terms of û1 and û2. 
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Figure 1.3. A two degree of freedom system 

If u1 = û1 sin(ωt+α) and u2 = û2 sin(ωt+α), then the velocities are given by: 

1u  = ω û1 cos(ωt+α) and 2u  = ω û2 cos(ωt+α).  

The maximum potential energy due to vibration is  

Vm = (1/2)100 (û1)2 +(1/2)200 (û2 – û1)2 

The maximum kinetic energy is: 

Tm = (1/2)(0.2) ω2 û1
2 + (1/2)(0.3) ω2 û2

2 

Using the principle of conservation of energy, Vm = Tm. 

This gives: 

(1/2)100 (û1)2 +(1/2)200 (û2 - û1)2 = (1/2)(0.2) ω2 û1
2 + (1/2)(0.3) ω2 û2

2 

i.e. ω2 = [(1/2)100 û1
2 +(1/2)200 (û2 - û1)2]/[ (1/2)(0.2) û1

2 + (1/2)(0.3) û2
2] 

This equation, which is the Rayleigh Quotient, can be condensed into the 
following form: 

ω2 = (100 η2 + 200 (1– η)2)/(0.3 + 0.2 η2),  [1.2] 

where η = û1/ û2 (the mode). This is equivalent to normalizing the amplitude of the 
displacements of the masses with respect to û2. Note that modes give a relationship 
between the displacements of the degrees of freedom in the system. 

Unlike the first example, this does not immediately yield a value for the  
natural frequency. However, it may be solved by assuming a relationship between û1  
 

State 1 (equilibrium, springs unstressed) 

State 2 (at the time of maximum excursion)) 

 

  

 

û1 û2 

100 N/m 200 N/m 

0.2 kg 0.3kg 



Principle of Conservation of Energy and Rayleigh’s Principle     7 

and û2 (i.e. assuming a mode). The exact natural frequencies and modes found by 
solving the two equations of motion (obtainable by applying Newton’s second law) 
are: 

ω1 = 12.97 rad/sec, û1/ û2 = 0.75 and ω2 = 44.72 rad/sec, û1/ û2 = -2 

Substituting the fundamental mode into the frequency equation gives the exact 
result for the fundamental natural frequency. Any other value for η results in a 
higher value for the frequency (see Figure 1.4). This is an important observation and 
will be discussed later. 

 

Figure 1.4. Variation of calculated frequency with trial mode 

It is possible to show that the frequency calculated will not be lower than the 
fundamental natural frequency. We will do this by expressing the assumed mode in 
terms of the natural modes. 

1
1 2

2

ˆ 0 75 2 0
ˆ 1 00 1 00

  
u . - .

G  +G
u . .

=  

Then the total potential energy is: 

 Vm = (1/2)(100)(0.75 G1 – 2 G 2)2 + (1/2)(200)( (0.75 G 1 – 2 G 2) –( G 1+ G 2))2 

   = 34.375 G 1
2+ 1100 G 2

2 
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Tm = (ω2/2)(0.2)(0.75 G 1 – 2.0 G 2)2 + (ω2/2)(0.3)( G 1+ G 2)2 

 = ω2(0.20625 G 1
2 + 0.55G 2

2) 

It may be noted that the energy terms do not contain the product G1G2 and this is 
due to the orthogonality of the natural modes:  

Vm= Tm gives 

2 2
1 2

2 2
1 2

34.375  + 1100
0.20625  +0.55

G G
G G

ω 2 =  [1.3] 

This may be written as  

ω2 = (K1 G 1 
2 + K2 G 2

2)/(M1 G 1
2 + M2 G 2

2) [1.4] 

where K1, K2 and M1, M2 are generalized stiffness and mass terms associated with 
the first and second modes. 

Taking only the terms associated with G1 will result in ω1 and taking only the 
terms associated with G2 will yield ω2.  Any combination of the two modes will 
result in a frequency which will be an upperbound to ω1 as shown below. 

If the assumed mode is the exact first mode, then equation [1.4] will give the first 
natural frequency; 

i.e. ω1
2 = K1 G1 

2/ M1G1
2 = K1/ M1 

Therefore,  

K 1 = M 1ω1
2    [1.5] 

Similarly it can be shown that  

K2 = M 2ω2
2    [1.6] 

Substituting equations [1.5] and [1.6] into equation [1.4] gives:   

ω2 = (M 1 ω1
2 G 1

2 + M 2 ω2
2 G 2

2)/( M 1 G 1
2 + M 2 G 2

2) 

Dividing the numerator and denominator of the RHS of this equation by ω1
2 G1

2 

gives: 

(ω/ω1)2 = (M 1 + M 2(ω2 /ω1)2  (G 2/G1)2)/( M 1
 + M 2(G 2/ G1)2) 

Since ω2 ≥ ω1, on the R.H.S., the numerator ≥ denominator. Hence ω ≥ ω1. 
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This means that the calculated frequency will be an upperbound to the 
fundamental natural frequency.  In the next chapter we will extend this proof for a 
system with any number of degrees of freedom, and discuss Rayleigh’s principle.  
We will then see that this statement of boundedness is true for all conservative 
systems, as long as the assumed displacement configuration satisfies certain 
conditions as explained in the next chapter. 



 


