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Deterministic Signals






Chapter 1

Signal Fundamentals

Although this work is mainly focused on discrete-time signals, a discussion of
continuous-time signals cannot be avoided, for at least two reasons:

— the first reason is that the quantities we will be using — taken from nu-
meric sequences — are taken from continuous-time signal sampling. What
is meant is that the numeric value of a signal, such as speech, or an
electroencephalogram reading, etc., is measured at regular intervals;

— the second reason is that for some developments, we will have to use math-
ematical tools such as Fourier series or Fourier transforms of continuous-
time signals.

The objective is not an extensive display of the knowledge needed in the
field of deterministic signal processing. Many other books have already done
that quite well. We will merely give the main definitions and properties useful
to further developments. We will also take the opportunity to mention systems
in a somewhat restricted meaning, this word referring to what are called filters.

1.1 The concept of signal

A deterministic continuous-time signal is defined as a function of the real time
variable ¢:

Signal = function z(t), t € R

The space made up of these functions is completed by the Dirac pulse
distribution, or 0(t) function. Actually a distribution (a linear functional), this
object can be handled just like a function without any particular problems in
the exercises we will be dealing with.

The following functions spaces are considered:
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~ Li(R) is the vector space of summable functions such that [ [z(t)|dt <
—+00;

— Lq(a,b) is the vector space (vector sub-space of L;(R)) of functions such

that [* |z (t)|dt < +oo;

— Ly(R) is the vector space of finite energy functions such that [, [x(t)|*dt <
—+00;

— Lo(a,b) is the vector space (vector sub-space of La(R)) of functions such
that [7 |z (t)|?dt < +o0;

— the set of “finite power” functions characterized by:

1 [T/2
lim —/ |z(t)|?dt < +o0
T—+oo T —T/2

L5(0,T) has the structure of what is called a Hilbert space structure with
respect to the scalar product [ z(¢)y*(t)dt, a property that is often used for
decomposing functions, for example in the case of Fourier series.

In the course of our work, we will need to deal with a particular type of
signal, in sets that have already been defined, taken from R*.

Definition 1.1 (Causal and anticausal signals) Signals x(t) such that
x(t) = 0 for t < 0 are said to be causal. Signals x(t) such that x(t) = 0
fort > 0 are said to be anticausal.

1.1.1 A few signals

We will often be using particular functions characteristic of typical behaviors.
Here are some important examples:

— the unit step function or Heaviside function is defined by:
u(t) = 1(t € (0, +o0l) (1.1)
Its value at the origin, ¢ = 0, is arbitrary. Most of the time, it is chosen
equal to 1/2. The unit step can be used to show causality: x(t) is causal
if x(t) = x(t)u(t);
— the sign function is defined using the unit step by sign(t) = 2u(t) — 1;
— the gate or rectangle function is defined by:

recty(t) = 1(t € (=T/2,T/2)) = u(t+ T/2) —u(t —T/2)  (1.2)

It will be used to express the fact that a signal is observed over a finite
time horizon, with a duration of T'. The phrases rectangular windowing
and rectangular truncation of x(t) are also used: zp(t) = x(t)rectp(t);
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— the pulse, or Dirac function, has the following properties which serve the
purpose of calculation rules:

1. fR t)ydt =1 and Jg 0(t)z(t)dt = 2(0).

= Jpx(u)d(t— u)du = (xx0)(t) (* is the convolution operation).

(t)5(t - to) = x(to)d(t —to).

(@(u) x0(u —t0))(t) = (z 6)(t —to) = (t —to).
(at) = <>/|a\ for a £ 0.
vit, f w)du = 1(t € (0,4+00)) = u(t) and therefore du(t)/dt =
5(t). Thlb result makes it possible to define the derivative of a
function with a jump discontinuity at a time to. Let x(t) =
xo(t) + au(t — to) where xo(t) is assumed to be differentiable. We
have dz(t)/dt = dxo(t)/dt + ad(t — to);

.@.C":“E”.M

— the sine function is defined by:
x(t) = g sin(wot + @) = xosin(27 fot + @) (1.3)

where zg is the peak amplitude of the signal, wy its angular frequency (in
radians/s), ¢ its phase at the origin, fo = wy/27 its frequency (in Hz)
and T = 1/ fy its period;

— the complex exponential function is defined by:
z(t) = o exp(2j7 fot + jo) (1.4)

— the sine cardinal is defined by sinc(t) = sin(nt)/wt. It is equal to 0
for all integers except ¢ = 0 (hence its name). We have [, sinc(t)dt = 1,
J sinc(u)sinc(u—t)du = sinc(t) and the following orthogonality property,
for n € N:

. . _J1 with n=0
/Rsmc(u)smc(u—n)du— {O with n %0

1.1.2 Spectral representation of signals

Fourier series

A periodic signal with a period of T' = 1/ fy may be decomposed as a sum of

complex exponentials, a sum we will refer to as Fourier series':

+oo
x(t)F:S Z X e2imkfot
k=—o00 (1.5)

I :
X = —/ x(t)e”2mkfot gt
T Jo

1We will only be using the complex exponential decomposition, since it easily leads to the
one with the sine and cosine functions.
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fo=1/T is called fundamental frequency, and its multiples are called har-
monic frequencies. A few comments should be made:

— asignal with a bounded support on (¢1, t2) is also expandable in a Fourier
series, but the series converges to the periodized function outside of the
(t1,t2) interval;

— expression 1.5 indicates that X} is the k-th component of x(t) in the
orthonormal basis of the complex exponentials {T’l/zezj”kfot}kez in the
Hilbert space Lo(0,T);

—rm(t) = Zii_M X1,e2 kT §5 the best length M approximation of x(t)
in the sense of the least squares. Sometimes L2 can be used instead of

FS . .. . . . .
= to indicate that the Fourier series convergence is ensured and is not
uniform, which results in:

I

— when z(t) is continuous, xp(t) converges uniformly to x(t) for any ¢,
when M — +o0;

2

M
x(t) — Z X2 ™ /T gt —s 0 when M — +oo (1.6)
k=M

— if «(t) shows first order discontinuities, xs(¢) will converge to the half-
sum of the left and right limits of x(¢). Finally, zps(¢) can show some
non-evanescent oscillations in the neighborhoods of all discontinuities.
This phenomenon is referred to as the Gibbs phenomenon;

— we have Parseval’s relation:
1 7 )
U S (1.7)
0 kez

Because the first member of 1.7 is by definition the signal’s power, the
sequence {|Xx|?} can be interpreted as the power distribution along the
frequency axis. It is also called power spectral density, or psd.

Fourier transform

The spectral contents X (f) of the function z(t) € Li(R) N Ly(R) can be repre-
sented by an integral that uses complex exponentials, an integral we will call
Fourier transform:

X(f):/Ra:(t)e’Qj’rftdt — :c(t):/RX(f)er”ftdf (1.8)



Chapter 1 - Signal Fundamentals 59

| X (f)] is called spectrum of x(t). The Fourier transform’s main properties
are summarized in Appendix Al.
The convolution property 11.1 leads to Parseval’s formula:

/R e (b)|2dt = / X(f) (1.9)

Because the left member of 1.9 is, by definition, the signal’s energy, | X (f)|?

can be interpreted as the energy distribution along the frequency axis. It is
also called energy spectral density, or esd.
More generally, we have:

/ w(t)y” (1)t = / X(N)Y*(f)df (1.10)
R R

ExAMPLE 1.1 (Analytical signal)

Let x(t) be a continuous time real signal. The analytical signal associated
with x(t) is the signal z(¢) that has Z(f) = 2U(f) X (f) as its Fourier transform,
where X (f) is the Fourier transform of x(t) and U(f) is the function equal to
1if f>0and 0if f <0. U(0) is chosen equal to 1/2.

Using the properties of the continuous-time Fourier transform, show that
the real part of z(t) is equal to z(t), and determine its imaginary part called
the Hilbert transform of x(t).

HINTS : let:
p(t) = Re(z(t) = (2(t) + 2" (1)) /2

Using the Fourier transforms, we get:
P(f)=(Z(H) +Z°(=))2=UHX) +U(=H)X"(=])

Because z(t) is real, X (f) = X*(—f), and therefore, P(f) = X(f),
which means p(t) = z(¢). As a conclusion, Re(z(t)) = x(t).

Likewise, let:
q(t) = Im(2(t)) = (2(t) — 2"(t))/2)
Using the Fourier transforms, we get:

Q) = (Z(f) =27 (=))/2j = =iUNHX() = U=HX(=]))
—i(U(f) =U(=))X(F)

Because U(f) — U(—f) is the sign(f) function, Q(f) =
—jsign(f)X(f). This equation can be interpreted as filtering (see
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paragraph 1.2) with the complex gain filter —jsign(f). Its gain
is equal to 1, meaning that the Fourier transforms of the output
and input have the same modulus, |Q(f)| = |X(f)|. In the liter-
ature, the transformation that associates the output signal y(¢) of
the complex gain filter —jsign(f) with the real signal x(t) is called
the Hilbert transform.

As a conclusion, the analytical signal associated with the real signal
x(t) is written (Figure 1.1):

z(t) = x(t) + j2(¢)

where 2(t) refers to the Hilbert transform of x(t).

1 x(t)
(t) | h 2(t) = a(t) + ji(t)
(real) fhlbefrt . analytical signal
! ransiorm .
L (Sein?0.

Figure 1.1 — Analytical signal construction

1.2 The concept of system

A system transforms the signal x(t) and delivers a signal y(¢), the result of this
alteration. We will refer to this transformation as y(t) = 7 [x(u),t], and x(t)
and y(t) will be called the input and the output of the system respectively.

Filters

A filter with x(t) as the input and y(t) as the output is a system defined by:

y(t) = / z(uw)h(t — u)du = / z(t — u)h(u)du (1.11)
R R
The existence of the integral has to do with how the set 2~ of considered
signals z(t) is chosen. Among the sets that have practical interest, two of them
play a fundamental role: the signals that have a Fourier transform and those
made up of a linear mix of complex exponentials.
Certain conditions have to be met:

— first, in the case of 2" sets that show some practical interest, such a
system is linear: 7 [a121(u) + asx2(u), t] = a1 T [x1(u), t] + a2 T [x2(u), t];
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— second, it is time-invariant: 7 [ax(u),t —to] = T [ax(u —1p),t]. Another
way of expressing it is to say that the output is independent of the time
origin.

ExaMPLE 1.2 (Counterexample)
The system defined by y(t) = fot x(u)du is linear but is time-dependent.

HINTS : the output corresponding to the signal z(t — t):

g(t) = fot x(u —to)du = tto z(v)dv

_to

is different from:

y(t —tg) = fgito x(u)du

which is the output at time ¢ — to when x(t) is used as the input
signal.

Impulse response

The h(t) function found in 1.11 is called the filter’s impulse response. The
output y(t), convolution product of z(t) and h(t), is denoted y(t) = (x * h)(t).

A causal system is a system that depends only on the current and previous
inputs. This means that a filter is causal if h(t) = 0 for t < 0.

Frequency response

Let us first consider the case of x(t) signals that have a Fourier transform X (f).
Using the convolution product’s property leads us to:

The H(f) function is called the filter’s frequency response or complex gain.

Let us now take a look at signals x(¢) that are a linear mix of complex
exponentials. Because of the linearity property, all we have to do is calculate
the output with z(t) = exp(2j7 fot) as the input. We get:

y(t) = /Rexp(2j7rf0(t —u))h(u)du = H(fy)exp(2j7 fot)

Therefore, the complex output signal H( fy) exp(2j7 fot) corresponds to the
complex exponential exp(2j7 fot). In this case, complex exponentials are called
the eigenfunctions of the filters, the eigenvalue beeing H(fy).
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Stability

A system is said to be BIBO stable if for any Bounded Input x(¢) the Output
y(t) is Bounded, that is |z(t)] < A = |y(t)] < B. Stability is an essential
system property.

A filter is BIBO stable if and only if:

/ [ (uw)]du < 400
R

1.3 Summary

The following table contains some definitions and properties that will be used
throughout the next lessons. The properties corresponding to the discrete time
are also shown. It must be noted that the Laplace transform is given in its
bilateral form. It is most often seen in the form f0+°o x(t)e *tdt in the control

field. The same applies for the z transform and its related form $,°0 z(n)z~".

Continuous time Discrete time

Discrete time Fourier transform

X(f) = a(n)e ™

Fourier transform

X(f) :/a:(t)e_Qj”ftdt

nez
) 1/2

(1) :/X(f)e%"ftdf z(n) = X (f)eX ™ df
R —1/2

Fourier series

T
X(k) = %/ a(t)e 2T gy
0

(1) 23 X(k)e T

kEZ

Discrete Fourier transform

N-1

X(k) _ x(n)672j7rkn/N
n=0
1 N-—-1 )

m(n) _ = X(k)erwnk/N
N k=0

Linear filter (¢t € R)

(zxh)(t) < X(F)H(S)
BIBO stability < / |h(t)]|dt < 400
R

Linear filter (n € Z)

(@ % h)(n) < X(f)H(])

BIBO stability < Y _ [h(n)| < +o0
nez
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Continuous time

Discrete time

Bilateral Laplace transform

X(s)= [ xz(t)e *'dt X(z) = Z z(n)z™"
IR C+joo » nez
x(t) = o /cjoo X(s)e™ds z(n) = %%%X(z)zn—ldz

z-Transform

Filter (t € R)
(z*h)(t) <> X(s)H(s)
BIBO stability < imaginary axis be-

longs to the domain of convergence of
H(s).

Filter (n € Z)
(x*h)(n) < X(2)H(z)

BIBO stability < unit circle belongs to
the domain of convergence of H(z).




