Chapter 1

Recap on Digital Signal
Processing

Signal processing consists of handling data in order to extract information
considered relevant, or to modify them so as to give them useful properties:
extracting, for example, information on a plane’s speed or distance from a
RADAR signal, making an old and decayed sound recording clearer, synthe-
sizing a sentence on an answering machine, transmitting information through
a communication channel, etc.

The processing is called digital if it deals with a discrete sequence of values
{21, x2,...}. There are two types of scenario: either the observation is already
a sequence of numbers, as is the case for example for economic data, either the
observed phenomenon is “continuous-time”; and the signal’s value x(t) must
then be measured at regular intervals.

This second scenario has tremendous practical applications. This is why an
entire section of this chapter is devoted to the operation called sampling.

The acquisition chain is described in Figure 1.1.
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Figure 1.1 — Digital signal acquisition
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The essential part of the acquisition device is usually the analog-to-digital
converter, or ADC, which samples the value of the input voltage at regular
intervals — every T seconds — and provides a coded representation at the output.

To be absolutely correct, this coded value is not exactly equal to the value
of z(nTy). However, in the course of this chapter, we will assume that zs(n) =
x(nTs). The sequence of these numerical values will be referred to as the digital
signal, or more plainly as the signal.

T, is called the sampling period and Fy = 1/T the sampling frequency. The
gap between the actual value and the coded value is called quantization noise.

Obviously, the sampling frequency must be high enough “in order not to
lose too much information” — a concept we will discuss later on — from the orig-
inal signal, and there is a connection between this frequency and the sampled
signal’s “frequential content”. Anybody who conducts experiments knows this
“graph plotting principle”: when the signal’s value changes quickly (presence
of “high frequencies”), “many” points have to be plotted (it would actually be
preferable to use the phrase “high point density”), whereas when the signal’s
value changes slowly (presence of low frequencies), fewer points need to be
plotted.

To sum up, the signal sampling must be done in such a way that the nu-
merical sequence {zs(n)} alone is enough to reconstruct the continuous-time
signal. The sampling theorem specifies the conditions that need to be met for
perfect reconstruction to be possible.

1.1 The sampling theorem

Let z(t) be a continuous signal, with X (F') its Fourier transform, which will
also be called the spectrum. The sample sequence measured at the frequency
F, = 1/Tys is denoted by xs(n) = x(nTs).

Definition 1.1 When X(F') # 0 for F' € (By, B2) and X (F) = 0 everywhere
else, x(t) is said to be (B, Ba) band-limited. If x(t) is real, its Fourier transform
has a property called Hermitian symmetry, meaning that X (F) = X*(—F), and
the frequency band’s expression is (—B,+B). A common misuse of language
consists of referring to the signal as a B-band signal.

Perfect reconstruction

Our goal is to reconstruct z(t), at every time ¢, using the sampling sequence
xs(n) = x(nTs), while imposing a “reconstruction scheme” defined by the ex-
pression (1.1):

“+o0

y(t) = Z x(nTs)h(t — nTy) (1.1)

n=-—oo



Recap on Digital Signal Processing 3

A X ()] AIX(F)]
U, I i
B Signal B —B Signal 4B

band band

Figure 1.2 — Spectra of band-limited signals

where h(t) is called a reconstruction function. Notice that (1.1) is linear with
respect to 2(nTy). In order to reach this objective, two questions have to be
answered:

1. is there a class of signals x(t) large enough for y(¢) to be identical to z(t)?
2. if that is the case, what is the expression of h(t)?

The answers to these questions are provided by the sampling theorem (1.1).

Theorem 1.1 (Sampling theorem)
Let x(t) be a (By, Ba) band-limited signal, real or complex, and let {x(nTs)} be
its sample sequence, then there are two possible cases:

1. If Fs = 1/Ty is such that Fs > By — By, then x(t) can be perfectly
reconstructed from its samples x(nTys) using the expression:

+oo
z(t) = Z x(nTs)hp,, B, (t —nTy) (1.2)

n=—oo

where the FT of the reconstruction function h(p, p,)(t) is:

Hip, iy (F) = 3 1(F € (B1, By)) (13)

S

2. If Fs = 1/Ts < Bg — By, perfect reconstruction turns out to be impossible
because of the “spectrum aliasing” phenomenon.

The proof uses the Poisson summation formula which gives the relation
between X (F') and the values of z(t) at sampling times nTy, and makes it
possible to determine the expression of the spectrum of the signal y(¢) defined
by equation (1.1).
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Lemma 1.1 (Poisson formula) Let x(t) be a signal, and X (F) its Fourier
transform. Then for any T:

1 +oo +o0o
T k:_OOX(F — kF,) = n;mx(nTs) exp(—2jmnFTy) (1.4)

where the left member is assumed to be a continuous function of F.

We will use the following definition for the discrete-time Fourier transform.
We will see another completely equivalent expression of it (definition 1.3), but
more frequently used in the case of numerical sequences.

Definition 1.2 (DTFT) The sum Z:;io_oo x(nTy) exp(—2jmnFTy) is called
the Discrete-Time Fourier Transform (DTFT) of the sequence {xz(nT5s)}.

‘We now go back to the sampling theorem. By using the fact that the Fourier
transform of h(t—nTy) is H(F)e~27™¥FTs the Fourier transform of y(t), defined

by (1.1), can be written:

Y(F) = f x(nTy) x H(F)e= 2™
+oo
- H;F) > X(F - kF,) (1.5)

k=—o00

Therefore, if Fy > By — By, the different contributions X (F — kF) do
not overlap, and by simply assuming H g, p,)(F) = Ts1(F € (By, B2)), Y (F)
coincides exactly with X (F'). Figure 1.3 illustrates this case for a real signal.
In this case, By = —B and By = B.
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Figure 1.3 — Real signal reconstruction
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Except if specified otherwise, we will assume from now on that x(t) is real.
The sufficient reconstruction condition can be written as follows:

F, > 2B (1.6)

The limit frequency 2B is called the Nyquist frequency. Still in the same
case, the Fourier transform of a possible reconstruction function is Hg(F') =
Tsrectop(F), and therefore:

sin (27 Bt)

hup (1) = gt

(1.7)

It should be noted that the function Hp(F) = Tsrectap(F') is not the only
possible function. If Fy is assumed to be strictly greater than 2B, then we can
choose a filter with larger transition bands (see Figure 1.3), making it easier to
design.

When there is no possible doubt, we will not indicate the dependence on
B, and simply write h(t) instead of hp(t).

Anti-aliasing filter

The reconstruction formula (1.1), is, according to the Poisson formula (1.4),
associated with the periodization of the spectrum X (F') with the period F;. It
follows that, for Fy < 2B, the different non-zero parts of the spectrum over-
lap, making perfect reconstruction impossible. The overlapping phenomenon
is called spectrum aliasing.

Figure 1.4 illustrates the spectrum aliasing phenomenon for a real signal
whose frequential content is of the “low-pass” type, implicitly meaning that it
“fills up” the band (—F,/2,+F,/2).

Except in some particular cases, we will assume that spectrum signals are
of this type, or that they can be modified to fit this description.

Figure 1.4 — The aliasing phenomenon
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For a real signal, showing aliasing means that the frequencies beyond the
frequency Fs/2 can be “brought back” to the (—Fy/2,+F,/2) band.
In practice, the following cases will occur:

1. the sampling frequency is imposed: if, knowing how the data is used, the
aliasing phenomenon is considered to “cause damage”, the appropriate
procedure for sampling a real signal requires the use of low-pass filter-
ing called anti-aliasing filtering which eliminates the components of the
frequencies higher than Fy/2;

2. the sampling frequency is not imposed: in this case, it can be chosen
high enough so that the aliased components of the signal do not alter
the expected results. If this is not possible, F is set, and the situation
becomes the same as in the first case.

Speech signals are a good example. If they are sampled at 8,000 Hz, an ex-
tremely common value, high enough to make the person speaking recognizable
and understandable, and if no anti-aliasing filtering is done, the reconstructed
signal contains a “hissing” noise. This alone justifies the use of an anti-aliasing
filter. The irretrievable loss of high frequency components is actually better
than the presence of aliasing.

Figure 1.5 illustrates the case of a “low-pass”, prefiltered, real signal to
prevent aliasing.
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Figure 1.5 — Absence of aliasing after [—Bo, +Bo] filtering

In general, it is important to understand that anti-aliasing filtering must
be done in the band that is considered essential (useful band) to the unaliased
signal reconstruction. The low-pass filtering mentioned here corresponds to a
low-pass sampled signal.

The following general rule can be stated:
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The sampling operation of a signal at the frequency F; must be preceded
by an anti-aliasing filtering with a gain equal to 1 and with a width of
F in the useful band.

Spectrum aliasing and ambiguity

For a given signal, for any integer k, it is not possible to distinguish Fy from
Fy = Fy + kF,, k € Z, which is called the image frequency of Fy relative to
Fs. Hence, x1(t) = sin(2nFyt) and z2(t) = sin(2n(Fo + kFs)t), with k € Z
take exactly the same values if both are collected at frequency Fy. This is the
ambiguity due to the spectrum aliasing phenomenon (or generally speaking to
the Poisson formula).

1.2 Spectral contents

1.2.1 Discrete-time Fourier transform (DTFT)
The sampling period T appears in the DTFT’s expression in definition 1.3.

Definition 1.3 (DTFT) The discrete-time Fourier transform of a sequence
{z(n)} is the function of the real variable f, periodic with period 1, defined by:

—+oo

X(f)= 3 (n)exp(~2jmnf) (18)

n=—oo

As you can see, we need only impose FTs = f and replace x(nTs) by x(n)
to go from (1.4) to(1.8)(").

Definition (1.3) calls for a few comments: it can be proven that if {x(n)} is
summable () |z(n)| < +00), the series (1.8) converges uniformly to a continu-
ous function X (f). However, if {z(n)} is square summable (3, |z(n)|? < +00)
without having a summable modulus, then the series converges in quadratic
mean. There can be no uniform convergence.

Because of its periodicity, the DTFT is plotted on an interval of length 1,
most often the intervals (—1/2,+1/2) or (0,1).

Starting off from X (f), how can we go back to x(n)? One possible answer
is given in the following result.

Theorem 1.2 (Inverse DTFT) If X(f) is a periodic function with period
1, and if fol | X(f)|2df < +oo, then X(f) =, x(n)e” 2™ where the x(n)
coefficients are given by:
1/2 _
sy = [ X(f)ermia (1.9)
—1/2
(M X (F), which refers to the FT in (1.4) must not be confused with X (f), the DTFT.
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As in the continuous-time case, we have the Parseval formula:

+0oo 1/2
S e = / XA (1.10)

n=—oo - /

and the conservation of the dot product:

+oo 1/2
> a(my*(n) = 71/2X(f)Y*(f)df (1.11)

Because the left member of (1.10) is, by definition, the signal’s energy,
| X (f)|* represents the energy’s distribution along the frequency axis. It is
therefore called the energy spectral density (esd), or spectrum. In the literature,
this last word is associated with the function |X(f)|. If X(f) is included,
this adds up to three definitions for the same word. But in practice, this is
not important, as the context is often enough to clear up any ambiguity. It
should be pointed out that the two expressions |X(f)| and |X(f)|* become
proportional if the decibel scale is used, by imposing:

Sap(f) = 20logo |X (/)] (1.12)

1.2.2 Discrete Fourier transform (DFT)
Definition of the discrete Fourier transform

A computer calculation of the DTFT, based on the values of the samples xz(n),
imposes an infinite workload, because the sequence is made up of an infinity of
terms, and because the frequency f varies continuously on the interval (0, 1).
This is why, digitally speaking, the DTFT does not stand a chance against the
Discrete Fourier Transform, or DFT. The DFT calculation is limited to a finite
number of values of n, and a finite number of values of f.

The digital use of the DFT has acquired an enormous and undisputed prac-
tical importance with the discovery of a fast calculation method known as the
Fast Fourier Transform, or FFT.

Consider the finite sequence {z(0), ..., (P — 1)}. Using definition (1.8),
its DTFT is expressed X(f) = Y202} 2(n)e~%™ where f € (0,1). In order
to obtain the values of X (f) using a calculator, only a finite number N of
values for f are taken. The first idea that comes to mind is to take N values,
uniformly spaced-out in [0, 1[, meaning that f = k/N with k € {0, ..., N —1}.
This gives us the N values:

P-1
X (k/N) = Zx )e~2dmnk/N (1.13)
n=0
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In this expression, P and N play two very different roles: IV is the number
of points used to calculate the DTFT, and P is the number of observed points
of the temporal sequence. N influences the precision of the plotting of X (f),
whereas P is related to what is called the frequency resolution.

In practice, P and N are chosen so that N > P. We then impose:

. z(n) forned{0,...,P—1}
x(”):{o forne{P,...,N—1}

Obviously:
P—-1 . N-1 )
X(/{/N) _ $(ﬂ)€72jﬂnk/N — Z j(n)€72]7rnk/N
n=0 n=0

Because the sequence z(n) is completed with (N — P) zeros, an operation
called zero-padding, in the end we have as many points for the sequence #(n)
as we do for X (k/N). Choosing to take as many points for both the temporal
sequence and the frequential sequence does not restrict in any way the concepts
we are trying to explain. This leads to the definition of the discrete Fourier
transform.

Definition 1.4 Let {x(n)} be a N-length sequence. Its discrete Fourier trans-
form or DFT is defined by:

N—-1

X(k) =Y amWxr*,  ke(0,1,...N-1) (1.14)
n=0
where Wy = e~ 2™/N (1.15)

is an N -th oot of unity, that is to say such that WY = 1. The inverse formula,
leading from the sequence {X (k)} to the sequence {x(n)}, is:

1 N-1

(n) = ];) X (k)Wy"* (1.16)

Properties of the DFT

The properties of the DFT show strong similarities with those of the DTFT.
However, there is an essential difference. In the formulas associated with the
DFT, all the index calculations are done modulo N.

Fast Fourier transform

The fast Fourier transform, or FFT, first published in 1965 by J. W. Cooley
and J. W. Tuckey [8], is a fast DFT calculation technique. The basic algorithm,
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many versions of which can be found, calculates a number of points N, equal to
a power of 2, and the time saved compared with a direct calculation is roughly:

N
IOgQ(N)

gain =

To get a better idea, if N = 1,024, the FFT is about 100 times faster than
the direct calculation based on the definition of the DFT.

1.3 Case of random signals

In the case of a random process, also referred to as a “time series”, the notion
of “spectral content” needs to be treated with caution. More specifically, the
Fourier transform of a single random process trajectory generally does not exist.
However, theoretical developments [3] lead us to define the spectrum associated
with a random process by the DTFT of the covariance function:

+o0o
Sxx(f) =DTFT (RXX(H)) — Z RXX(n)€727rjnf (1.17)

n—=—oo

Sxx(f) is called the power spectral density (psd).

A fairly simple alternative idea is to use the Fourier transform of that sin-
gle record of length N. This leads us to the definition of a periodogram. A
periodogram is the random function of f € (0,1) defined by:

2

N-1
In(f) = % > X(n)e 2™/ (1.18)
n=0

Unfortunately the periodogram is not a good estimator of the spectral den-
sity [3]. However a consistent estimate can be derived by averaging or smoothing
periodograms.

The filtering equations also exhibit a fundamental difference in comparison
to the deterministic case (Y (f) = H(f)X(f)). In the random case, the psds
are linked by the relation:

Syv (f) = H())*Sxx(f) (1.19)
Note that there is a second filtering equation which can be used:

Syx(f)=H(f)Sxx(f) (1.20)

where Sy x (f), which is called the interspectrum, refers to the Fourier transform
of {RYX (n) }
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1.4 Example of the Dual Tone Multi-Frequency
(DTMF)

On a Dual Tone Multi-Frequency (DTMF) phone keyboard, each key is asso-
ciated with the sending of a signal. This signal is the sum of two sines the
frequencies (in Hz) of which are given in the correspondence Table 1.1.

Hz | 1,209 | 1,336 | 1,477
697 | 1 2 3
770 | 4 5 6
852 | 7 8 9
941 | 0 #

Table 1.1 — Frequency correspondence table

This means that when you dial “5” on your phone, the signal z(t) =
cos(2m x 1,336 x t) + cos(2m x 770 X t) is sent through the phone line.

COMMENTS:

— these frequencies belong to the (300 Hz - 3,400 Hz) band, the phone band
for the switched network (fixed phones). The frequencies associated with
the columns are all greater than those associated with the lines. This lay-
out can help to find the phone number using the signal. Finally, the fre-
quencies were chosen so as not to have frequency ratios equal to integers.
As we have seen, a non-linear operation can cause multiples (harmonics)
of the fundamental frequency to appear, causing some confusion;

— the keyboard is designed to always send signals for periods longer than
71 = 65 milliseconds. This value was chosen so that the two frequencies
contained in the signal could easily be separated. In the worst case, the
difference in frequency is AFpi, = 1,209 — 941 = 268 Hz (corresponding
to the x key), therefore 71 needs to be such that AFy,;,m > 1. With the
values that were chosen, AFi,m > 17;

— finally, it must be possible to tell the difference between the number C'
being sent for a duration of 7" and the number C'C being sent for the
same duration. This is why, after each key is released, a zero signal is
sent for at least 80 ms (even if you can dial faster than that!).

Exercise 1.1 (DTMF signal processing) (see p. 187)
We are going to try to find a 10 digit phone number using the signal sent
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by the phone. We will start by sampling the signal at a frequency of 8,000
samples per second, a speed much higher than twice the highest frequency,
that is 2 x 1,477 = 2,954 Hz.

The following program creates such a signal:

%===== genekey.m

clear

Fs=8000; % sampling freq.
tel='0145817178"'; lt=length(tel); % seq. of numbers
%===== coding table

keys="'123456789*0#'; nbkeys=length(keys);
FreqB=[697 770 852 941]; FreqH=[1209 1336 1477];
Fregskeys=...

[FreqB(1) FreqH(1); FreqB(1) FreqH(2); % 1 et 2
FreqB(1) FreqH(3); FreqB(2) FreqH(1); % 3 et 4
FreqB(2) FreqH(2); FreqB(2) FreqH(3); % 5 et 6
FreqB(3) FreqH(1); FreqB(3) FreqH(2); % 7 et 8
FreqB(3) FreqH(3); FreqB(4) FreqH(1); % 9 et *
FreqB(4) FreqH(2); FreqB(4) FreqH(3)];% 0 et #
%===== constraints
tton=0.065; tsil=0.080; % in seconds
%==== construction of the seq. of frequencies
Fregs=zeros(1lt,2);
for k=1:1t
ind=find(keys==tel(k)); % test of the number
Fregs(k, :)=Freqskeys(ind,:); % associated Freq.
end
freqs=Freqs/Fs; % normalized freq.
%===== construction of the signal
y=zeros (100+fix (100*rand) ,1); % starting with signal=0

dton=fix(1000*rand(1t,1)+tton*Fs); % number duration
dsil=fix(1000*rand(1t,1)+tsil*Fs); % silence duration
for k=1:1t
sigu=cos(2*pi*(0:dton(k)) '*freqs(k,:))*ones(2,1);
y=[y;sigu;zeros(dsil(k),1)];

J===== some noise is added

1lx=length(y); py=y'*y/lx;

SNR=30; 7% signal to noise ratio
pb=py*10~(-SNR/10) ; x=y+sqrt(pb)*randn(lx,1);
%===== plotting of the signal
tps=(0:1x-1) /Fs; plot(tps,x); grid

set(gca, 'xlim', [0 (1x-1)/Fsl])

In order to simulate the perturbations on an actual phone call, the program
adds noise created by sqrt(pb)*randn(L,1). SNR is the signal-to-noise ratio
(in dB) chosen equal to 30 dB. The resulting signal is shown in Figure 1.6.

We are going to find the 10 digit number in this signal in two steps. First,
we will determine the beginning and the end of the signal’s active zones, then
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Figure 1.6 — DTMF Signal

we will analyze each of the intervals to extract the frequencies and therefore
the corresponding digit. To determine the beginning and the end of the active
zones of the signal, we are going to estimate the “instantaneous power” and
compare it to a threshold value. We will see later on as we study random
phenomena what we mean exactly by “estimating the instantaneous power”.
Here, we will merely be considering the quantity:

P, = % Yoo (1.21)
k=n—N+1

which gives a relevant indication on the signal’s fluctuations. The choice of N
is done as a compromise. Counsider, for example,the signal z(n) represented in
Figure 1.6. If N is very small, P, will be very close to the amplitude 2. The
risk would be to make the conclusion that the power is equal to zero whenever
the amplitude is close to 0 (which happens every period). If, on the contrary,
N is very high, we might include a silence and miss the beginning or the end
of an active part. Quantitatively, N must therefore be much greater than the
longest of the periods of the active parts, and much smaller than the duration
of the wanted signal, that is to say 65 ms. This can be expressed:

S

697
For Fs = 8,000, and with N = 100, this double inequality is satisfied.

< N < 65 x 1072F,

1. write a program that measures the “instantaneous power” and determines
the beginning and the end of the signals associated with a digit;

2. write a program that determines the digit associated with each portion
of the signal.






