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Galileo’s Principle of Relativity

1.1. Events and space–time

DEFINITION 1.1.– An event X is just an occurrence at a specific moment and at a
specific place. The space-time (or universe) is the set U of all the events.

Lightning striking a tree, a crash, the battle of Fontenoy, a birthday, the reception
of an e-mail by a computer are some examples of events. Most events are relatively
blurred, without either beginning or end or precisely defined localization. The events
which, within the limits imposed by our measuring instruments, seem instantaneous
and pointwise are called punctual events. In the following, when talking about events,
readers are referred only to punctual events.

DEFINITION 1.2.– A particle is an object appearing as a pointwise phenomenon
endowed with some time persistence.

We can see it as a sequence of events. A trace can be kept, for instance, due to a
film consisting of frames recorded by a camera. Of course, this kind of observation
has a discontinuous feature. If a high-speed camera is used, the observed events are
closer. If we imagine that the time resolution can be arbitrarily reduced, a continuous
sequence of events is obtained.

DEFINITION 1.3.– A trajectory is the continuous sequence of events revealing the
persistence of a particle and represented by a continuous map t �→ X(t).

1.2. Event coordinates

1.2.1. When?

The clock is an instrument allowing us to measure the durations.
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DEFINITION 1.4.– By the choice of a reference event X0 to which the time t0 = 0
is assigned, an observer can assign to any event X a number t called the date, equal
to the duration between X0 and X, if X succeeds to X0, and to its opposite, if X
precedes X0.

Conversely, the duration elapsed between two events X1 and X2 is calculated as
the date difference Δt = t2 − t1. We assume that all the clocks are synchronized, i.e.
they measure the same duration between any events:

Δt = Δt′. [1.1]

This means each clock measures the durations with the same unit (for instance, the
second). This also entails that if a clock assigns a date t′ to some event, the other one
assigns to the same event a date t = t′ + τ0 where τ0 depends only on both clocks.

DEFINITION 1.5.– Two events are simultaneous if, measured with the same clock,
their dates are identical.

Clearly, if two events are simultaneous for a clock, it is so for any other one.

1.2.2. Where?

The most common measuring instrument for a distance is the graduated ruler. Of
course, there exist less accurate instruments (the land-surveyor’s string or measuring
tape), while others are much more accurate (especially due to the lasers) but, for the
simplicity of the presentation, the readers are only referred to the rulers as distance
measuring instruments.

Whatever, we have just to know that the ruler allows us to measure the distance
Δs between two simultaneous events X1 and X2. We assume that all the rulers are
standardized in the sense that they measure the same distance between events:

Δs = Δs′. [1.2]

This means each ruler measures the distances with the same unit (for instance, the
meter). Let us have a break now to explain the meaning of the simultaneity between
events. When they fit the ruler graduations, the observer is informed by light signals.
The essential point is – as mentioned before – these signals arrive at the observer with
an infinite velocity, and then instantaneously.

As we assigned to each event a date, we would like to assign it a position.
Without entering into the details of the measurement method, which is not useful to
our discussion, let us say only that – in addition to the rulers – instruments are
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required to measure the angles, for instance set squares and protractors. We admit
that the measurement method allows an observer to assign to any event X three
coordinates x1, x2, x3. The column vector gathering them:

x =

⎛⎝x1

x2

x3

⎞⎠ ,

is called position of X.

DEFINITION 1.6.– To each event X, an observer can assign a time t – in the sense
prescribed by definition 1.4 – and a column x ∈ R3, called the position, by the choice
of a reference event X0 with position x0 = 0 and in such a way that for any distinct
but simultaneous events X1, X2 and X3 of respective positions x1, x2 and x3:

– if Δx = x2 − x1, we can calculate the distance between the first two by:

Δs =‖ Δx ‖ ;

– and the angle θ between the segments Δx and Δ′x = x3 − x1 by:

cos θ = Δx ·Δ′x / ‖ Δx ‖ ‖ Δ′x ‖ .

In short, any observer has available instruments measuring durations, distances
and angles. This allows him or her to assign to each event X a date t and a position x.
In the following, we adopt the following convention:

CONVENTION 1.1.– Coordinate labels:

– Latin indices i, j, k and so on run over the special coordinate labels, usually,
1, 2, 3 or x, y, z.

– Greek indices α, β, γ and so on run over the four space-time coordinate labels
0, 1, 2, 3 or t, x, y, z.

DEFINITION 1.7.– To each event X, a column X ∈ R4:

X =

(
t
x

)
=

⎛⎜⎜⎝
t
x1

x2

x3

⎞⎟⎟⎠ ,

is assigned by an observer. Their components X0 = t, Xi = xi are called
coordinates of the event. The assignment is one-to-one. Each observer creates her or
his own coordinate system.
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Hence, an observer can record the trajectory of a particle t �→ X(t) due to an
assignment t �→ X(t) in her or his own coordinate system.

Additionally, the length and angle measures allow us to calculate the areas and
volumes, at least for simple geometrical objects.

DEFINITION 1.8.– The positions being determined by an observer for simultaneous
events:

– the positions of three of its vertices being x1, x2, x3, the area of a parallelogram
is calculated by:

S =‖ Δx×Δ′x ‖,

with Δx = x2 − x1 and Δ′x = x3 − x1;

– three adjoining faces of it being defined by four of its vertices x1, x2, x3, x4, the
oriented volume of a parallelepiped is calculated by:

V = (Δx×Δ′x) ·Δ′′x,

with Δ′′x = x4 − x1.

1.3. Galilean transformations

1.3.1. Uniform straight motion

Newton’s first law claims the velocity of a particle or a body remains constant
unless the body is acted upon by an external force. This assumes we know what a
force is, at least intuitively. We prefer to take it as starting point to define the forces.

DEFINITION 1.9.– A force is a phenomenon modifying the velocity of a particle.
Hence, a free particle force moves in a straight line at uniform velocity. This is the
uniform straight motion (USM). If the velocity is null, the particle is said to be at rest
in the considered coordinate system.

The problem is that gravity is a large-scale force affecting all matter equally, so
there are no completely free particles, even in deep space. On the Earth, experiences of
USM can be carried out only in reduced regions of the space-time, for instance during
a small enough duration or with objects moving without friction on a horizontal plane.
The motion of a free particle is given by:

x = x0 + v t,
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where the initial position x0 ∈ R3 at t = 0 and the uniform velocity v ∈ R3 are
constant. The event “the particle is passing through x0 at t = 0” is represented in the
considered coordinate system by:

X0 =

(
0
x0

)
.

Introducing the 4-column:

U =

(
1
v

)
,

the event “the particle is in x at t” is represented by:

X = X0 + Ut. [1.3]

DEFINITION 1.10.– With respect to a given family of coordinate systems, a
characteristic of an object or a quantity is invariant if its representation in all the
systems of the family is identical. We also talk about the invariance of the
characteristic or the quantity and say that the coordinates changes of the family
preserve the considered characteristic or quantity.

For instance, let us consider the family of the coordinate systems of observers for
which the motion of the same particle is straight and uniform. We would like to ask
the following question: what are the coordinate changes X ′ �→ X of this family?

THEOREM 1.1.– The coordinate changes preserving:

– the USMs;

– the durations;

– the distances and angles;

– the oriented volumes;

are regular affine maps of the following form:

X = PX ′ + C, C =

(
τ0
k

)
, P =

(
1 0
u R

)
, [1.4]

where τ0 ∈ R, k ∈ R3, u ∈ R3 and R ∈ SO(3) (see Comment 1, section 1.4).

PROOF.– Parametrization [1.3] of the trajectory being affine, the coordinate change
in R4 preserves straight lines and the middle of segments. As a parallelogram is a
quadrilateral whose the diagonals meet in their middle, the coordinate change
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preserves parallelograms and, reasoning by recurrence, parallelepipeds and
parallelotopes. So, the coordinate change is affine:

X = PX ′ + C, [1.5]

where C ∈ R4 and the 4× 4 matrix P are constant. As the coordinate systems define
one-to-one assignments from X into the event X, the coordinate change is also one-
to-one. Considering the difference of the columns representing two events X1 and X2

in the considered coordinate systems:

ΔX = X2 −X1 =

(
Δ t
Δx

)
, ΔX ′ = X ′

2 −X ′
1 =

(
Δ t′

Δx′

)
,

we obtain a linear relation:

ΔX = P ΔX ′. [1.6]

Next, we put:

C =

(
τ0
k

)
, P =

(
α wT

u F

)
,

where α, τ0 ∈ R, u,w, k ∈ R3 and F is a 3× 3 matrix. Hence, [1.6] gives:

Δ t = αΔ t′ + wTΔx′.

Identifying it with condition [1.1] ensuring the invariance of the duration gives:

α = 1, w = 0.

Hence, we have:

P =

(
1 0
u F

)
. [1.7]

As P is regular, F must be so. Hence, [1.6] gives for simultaneous events:

Δx = F Δx′ .

Invariance [1.2] of the distance reads:

(Δx′)T FT F Δx′ = (Δx′)T Δx.
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The column Δx′ being arbitrary, we obtain:

FT F = 1R3 .

The matrix F is orthogonal. Taking into account that oriented volumes [1.8] are
transformed as:

V ′ = det(F )V,

their invariance entails that F is a rotation that we denote by R afterward. As
det(P ) = det(R) = 1, P is regular and so is the affine map X ′ �→ X . �

DEFINITION 1.11.– The coordinate changes [1.4] are called Galilean transformations.
Any of them can be obtained composing elementary ones from amongst:

– clock change τ0 (with k = u = 0, R = 1R3 ): t = t′ + τ0, x = x′;

– spatial translation k: t = t′, x = x′ + k;

– rotation R: t = t′, x = R x′;

– Galilean boost or velocity of transport u: t = t′, x = x′ + ut.

A general Galilean transformation reads:

x = Rx′ + u t′ + k, t = t′ + τ0, [1.8]

or in matrix form:

C =

(
τ0
k

)
, P =

(
1 0
u R

)
, [1.9]

1.3.2. Principle of relativity

If a particle is in USM for an observer, it is a also so for any other observer.
Hence, all the coordinate systems in the sense defined by definition 1.6 are
equivalent, including the ones in which the particle is at rest. In other words, we
admit in particular the equivalence between the motion and rest. Galileo Galilei
proposed in his famous ”Dialogue concerning the two chief world systems” (1632)
this point of view according to which the observations of physical phenomena do not
allow us to know whether we are in motion or at rest, provided that the motion is
straight and uniform. Galileo’s principle of relativity turns this from a negative to a
positive statement:

PRINCIPLE 1.1.– The statement of the physical laws of the classical mechanics is the
same in all the coordinate systems in the sense of definition 1.6.
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For the moment, this principle is formulated in rather general words but we will
soon make it clearer in applications. By classical mechanics, let us recall that we
consider phenomena for which the velocity of the light is so huge that it may be
considered as infinite.

1.3.3. Space–time structure and velocity addition

Up to now, the space-time was a set of which the elements – the events – were
parametrized by four coordinates. Considering only USMs, we need only affine
transformations [1.5] for the coordinate changes. In other words, the space-time U
may be perceived as an affine space of 4 dimensions and the coordinates of an event
X change according to the transformation law for the component of one of its points.
Hence, the structure of the space-time must not be imposed a priori but is deduced
from the physical observations (the USM).

Have a look now at our starting point, the USM. In the old coordinate system, it
reads:

X ′ = X ′
0 + U ′t′.

Combining it with the Galilean transformation [1.4] gives:

X = P (X ′
0 + U ′t′) + C.

Taking into account [1.8], we recover [1.3], provided that:

X0 = P (X ′
0 − U ′τ0) + C, [1.10]

U = PU ′. [1.11]

What do these relations teach us?

– Without clock change, the first one reads:

X0 = PX ′
0 + C,

which is nothing other than the transformations law for the components of a point of
U . For more general transformations, the additional term in [1.10] takes into account
the clock change.

– The second relation, [1.11], is the transformation law for the components of a
vector �U of the vector space attached to U . It will be called the 4-velocity.
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Let us consider, for instance, a particle of velocity v′ in the coordinate system X ′.
In another one X obtained from X ′ by a Galilean transformation [1.9], the 4-velocity
is given by [1.11]:

U =
dX

dt
=

(
1
ẋ

)
=

(
1
v

)
=

(
1 0
u R

) (
1
v′

)
. [1.12]

Thus, the velocity in the new coordinate system is:

v = u+Rv′. [1.13]

In particular, for a Galilean boost u, we have:

v = u+ v′.

This is the velocity addition formula. Also, combining two Galilean boosts u1 and
u2, we verify that the resulting velocity of transport is:

u = u1 + u2.

1.3.4. Organizing the calculus

For convenience, an affine transformation X ′ �→ X = PX ′ + C can be denoted
by a = (C,P ). Applying successively a1 and a2 gives a new affine transformation
a3:

a(X) = a2(a1(X)) = a2(C1 + P1X) = C2 + P2(C1 + P1X),

hence:

a3 = a2a1 = (C2, P2)(C1, P1) = (C2 + P2C1, P2P1).

This product is associative and has an identity transformation e = (0, 1R4) such
that e a = a e = a. Each affine transformation a = (C,P ) has an inverse
transformation a−1 = (−P−1C,P−1) such that a−1a = a a−1 = e. It is
straightforward to verify that the combination of two Galilean transformations a2 and
a1 is also a Galilean transformation a given by:

u = u2 +R2u1, R = R2R1, τ0 = τ2 + τ1, k = k2 +R2k1 + u2τ1. [1.14]
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It is easy to verify that the inverse transformation X �→ X ′ = P−1X + C ′ is a
Galilean transformation represented by (see Comment 2 section 1.4):

C ′ =
(
τ ′0
k′

)
, P−1 =

(
1 0

−RTu RT

)
, [1.15]

putting:

τ ′0 = −τ0, k′ = −RT (k − uτ0).

It is often convenient to organize the matrix calculation by working rather in R5,
representing the column X and the affine transformation a = (C,P ), respectively, by:

X̃ =

(
1
X

)
∈ R5 P̃ =

(
1 0
C P

)
, [1.16]

so affine transformation [1.4] looks like a simple regular linear transformation:

X̃ = P̃ X̃ ′, [1.17]

where, taking into account [1.9], the Galilean transformation a is represented by the
5× 5 matrix decomposed by blocks:

P̃ =

⎛⎝ 1 0 0
τ0 1 0
k u R

⎞⎠ . [1.18]

In a similar way, owing to [1.15], the inverse transformation is represented by:

P̃−1 =

⎛⎝1 0 0
τ ′0 1 0
k′ −RTu RT

⎞⎠ . [1.19]

1.3.5. About the units of measurement

There is still a long way to go to cover the mechanics of continua but let us stop
for a moment to have a look at the conversion of units. Let the event X be
represented in a coordinate system by X̄ where durations and times are measured
with new units. Let us say that the time and length units in the old coordinate system
are equal, respectively, to T and L in the new one. The conversion of units is given
by the scaling:

t̄ = T t, x̄ = Lx,
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or, in matrix form:

X̄ = PuX [1.20]

with:

Pu =

(
T 0
0 L1R3

)
. [1.21]

Similarly, let us apply the scaling:

X̄ ′ = PuX
′ [1.22]

Combining Galilean transformation [1.4] and scalings [1.20] and [1.22] leads to:

X̄ = P̄ X̄ ′ + C̄,

with:

P̄ = PuPP−1
u , C̄ = PuC.

Using [1.9] and [1.21] shows that

C̄ =

(
τ̄0
k̄

)
, P̄ =

(
1 0
ū R̄

)
, [1.23]

with C̄ being a simple scaling of C:

τ̄0 = T τ0, k̄ = Lk,

and:
ū = (L/T ) u, R̄ = R,

As result of the conversion of units, the rotation is invariant while the boost u is
scaled as a velocity. It is worth observing that, in a conversion of units, a Galilean
transformation a = (C,P ) turns into a Galilean transformation ā = (C̄, P̄ ) (see
Comment 3, section 1.4). The conversion does not affect the Galilean feature of an
affine transformation. Of course, calculations can be organized with 5× 5 matrices:

˜̄P = P̃uP̃ P̃−1
u where P̃u =

(
1 0
0 Pu

)
.
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1.4. Comments for experts

COMMENT 1.– This theorem is related to the Toupinian structure of the space-time
which gives a theoretical framework to the universal or absolute time and space (see
section 16.1).

COMMENT 2.– In fact, the set of all the Galilean transformations is a Lie group of
10 dimensions called Galileo’s group.

COMMENT 3.– Conversely, the normalizer of Galileo’s group in the affine group
is composed of the Galilean transformations themselves and the conversions of units
[1.20] (see section 16.2).


