
Chapter 1

Concepts of Material Fatigue

1.1. Introduction

1.1.1. Reminders on the strength of materials

1.1.1.1. Hooke’s law

We accept that the strain at a point of a mechanical part is proportional to the
elastic force acting on this point. This law assumes that the strains remain very small
(elastic phase of the material). It enables us to establish a linear relationship between
the forces and the deformation or between the stresses and the strains. In particular,
if we consider the normal stress and the shear stress, we can write successively

nE  [1.1]

tG  [1.2]

where

E = Young’s modulus or elastic modulus

G = shear modulus or Coulomb’s modulus
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2 Fatigue Damage

n = tensile strain parallel to the axis of the part (


 ) if  is the initial length of

the object and  is its extension.

t = relative strain in the plane of the cross-section

The following table gives several values of the Young’s modulus E:

Material Young’s modulus E (Pa)

Steel 2 to 2.2 1011

Brass 1 to 1.2 1011

Copper 1.1 1011

Zinc 9.5 1010

Lead 5 109

Wood 7 to 11 109

Table 1.1. Some values of Young’s modulus

NOTE.– Hooke’s law is only an approximation of the real relationship between
stress and strain, even for small stresses [FEL 59]. If Hooke’s law is perfectly
respected, the stress strain process would thus be, below the elastic limit,
thermodynamically reversible, with complete restitution of the energy stored in the
material. Experience shows that this is not the case and that, even at very low levels
of stress, a hysteresis exists. The process is never perfectly reversible.

1.1.1.2. Stress–strain curve

Engineering stress–strain curve

Let us consider the curve obtained by carrying out a tensile test on a cylindrical
sample of length  , made of mild steel for example, and by tracing the traction force
F according to the extension  that the sample experiences or, which amounts to

the same thing, the normal stress
S
F according to the relative expansion
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 (strain). The test is carried out by making force F grow progressively,

starting from zero.

The stress strain curve thus obtained, traced in the axes ( ,  ), has an identical
shape since the changing of the variable corresponds to a proportional
transformation (S cross-section,  useful length of the bar). This dimensionless
diagram is characteristic of the material here, and not of the sample considered
(Figure 1.1).

Figure 1.1. Stress–strain diagram of a ductile material.
u = ultimate stress, y = yield stress, p = proportional limit,

F = fracture stress OA = linear region, AE = plastic region

This curve can be broken down into four arcs. Arc OA corresponds to the elastic
region where the strain is reversible; the elongation there is proportional to the force
(Hooke’s law):

0
F
E S

 


 [1.3]

(E = Young’s modulus, 0S = initial cross-section of the sample of length  ).

This relation can also be written
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[1.4]

(
S
F ). In reality, the expansions  of this zone are very small and the above

curve is very badly proportioned.

There are several definitions of the elastic limit, chosen according to the case for
an elongation of 0.01 %, 0.1 % or 0.2 %, the latter value being the most frequently
used.

We call the proportional limit P the maximum stress up to which the material
does not show residual strain after unloading [FEO 69].

The BC zone, called the yielding region, corresponds to a significant stretching
of the sample for an almost constant traction force. This stage has a variable length
according to the materials; it can possibly be unnoticeable on some recordings. The
strain is permanent and homogeneous.

The yield stress y is the stress beyond which the strain increases without a

notable increase in the load (point B). We call the ultimate tensile strength (UTS)
u the ratio between the maximum force maxF that a sample can bear and the

initial area 0S of the cross-section of the sample before testing (Figure 1.1):

max
u

0

F
S

  [1.5]

The CD zone, strain hardening region, represents an elongation of the sample
with the force which is produced much more slowly than in the elastic zone. Work
hardening corresponds to a plastic strain of the metal at a temperature lower than the
recrystallization temperature (which makes it possible to replace the strained, work-
hardened structure with a new structure with reformed grains).

If, after having increased the force F from 0 to Fm such that the point m belongs
to arc CD, the load is decreased, we notice that the point shows the straight segment
mn going from m and parallel to 0A (Figure 1.2). For a zero load, there remains a
residual elongation. This is called plastic extension. The strain is permanent.
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Figure 1.2. Plastic expansion

Let us recall that as long as point (F,  ) remains on 0A, it describes this
segment in the opposite direction if the load is taken back to zero. 0A is a perfectly
elastic zone, not leading to a residual elongation.

If, from n, the sample is loaded again, the new diagram is made up of arcs nm,
mDE (Figure 1.3). We note that the rectilinear segment (elastic zone) of the work-
hardened bar is longer than 0A. A stretched material can thus bear greater loads
without residual strain.

Figure 1.3. New diagram after plastic strain

The mechanical properties of a work-hardened metal are modified a lot: the
elastic limit, the breaking load and the hardness are greatly increased, the expansion
to fracture, the resistance and the necking are generally reduced.

It is in this zone that the neck is formed, the part of the sample where the cross-
section reduces as quickly when the load increases, thus setting the future fracture
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area (necking phenomenon). The force F passes through a maximum (at D) when the
relative reduction of the area S in this domain becomes equal to the relative increase
of the stress.

Between D and E, the extension of the bar is produced with a reduction of the
force F (the average stress in the area of the neck continues to grow however).
Necking is when the specimen’s cross-section starts to stretch significantly. The size
of the neck varies with the nature of the material.

When the metal begins to neck, as the cross-sectional area of the specimen
decreases due to plastic flow, it causes a reversal of the engineering stress–strain
curve; this is because the engineering stress is calculated assuming the original
cross-sectional area (S0) before necking.

DE is the necking region [FEO 69]. At E, the sample fractures. The fracture
strength F is the ratio between the load to fracture FF and the cross-sectional area

0S :

F
F

0

F
S

  [1.6]

These definitions assume that the cross-section and the length of the sample do
not vary much during the application of the load. In most practical applications, this
hypothesis leads to results that are precise enough. The stress–strain curve traced
with these definitions is called the engineering stress–strain curve (Figure 1.4).

Figure 1.4. Stress–strain diagram – ultimate tensile
strength and true ultimate strength
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True stress–strain curve

In reality, beyond the elastic limit, the dimensions of the sample change when
the load is applied. It is thus more exact to define the stresses by dividing the applied
force by the real cross-section of the sample.

We call the true tensile ultimate strength u t the ratio between the maximum
force maxF that a sample can bear and the area m tS of the true cross-section of the
sample when the force is equal to maxF :

max
u t

m t

F
S

  [1.7]

The true fracture strength Ft is the load at fracture FF divided by the true
cross-sectional area FtS of the sample [LIU 69].

F
Ft

F t

F
S

  [1.8]

The stress–strain curve obtained in these conditions is called the true stress–
strain curve (Figure 1.4).

Like the ultimate tensile strength, the true fracture strength can help an engineer
to predict the behavior of the material, but is not itself a practical strength limit.

If 0S is the initial cross-sectional area of the piece and St is the area of the
section after work hardening, we call the work-hardening rate the ratio
0 t

t

S S
100

S


.

Finally, we call the strain at break  (%) the average residual strain which takes
place at the time of fracture, linked to a determined length of the sample. If d is the
diameter of the bar before testing, the standard length chosen is 05 d  

0

0
(%) 100


 




[1.9]

A material is more plastic the larger the value of  .  characterizes the ability
of the material to show large residual strains without fracture.
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The materials which, on the other hand, split without going through significant
residual strains are called brittle.

Fragility is thus the opposite of plasticity. These materials have stress strain
curves without a stretching stage and without a work-hardening zone. Their
resistance to tension coincides in practice with their stretching limit (Figure 1.5).

Figure 1.5. Diagram for a brittle material

It should be noted that the values defined here for a tension test can also be
defined in compression. Furthermore, for the same material, we see differences in
the numerical values of these parameters according to the nature of the stress.

The materials can naturally also break under the effects of compression. Plastic
materials above all have a curve comparable to that in tension, with an elastic zone,
stretching stage, work-hardening zone, etc. Beyond this, the curve, instead of
decreasing, increases rapidly, the cross-section of the compressed material then
increases after a barrel-like distortion in the sample.

Let us finally recall that we call hardness the property of the material to resist
mechanical penetration of other bodies [FEO 69] (Brinell, Rockwell, hardness, etc.).

We will not study variations of the properties according to the temperature here.

NOTE.–

All the observations above correspond to the case where the force F is applied
very slowly. Materials have a different behavior under dynamic loads. Two criteria
can be retained to evaluate this type of load:

– we can consider that the load varies quickly if it transmits significant speeds to
particles of the body under strain, so that the total kinetic energy of the masses in
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movement make up a significant part of the total work of the exterior forces; this
first criterion is the one used during the analysis of the oscillations of elastic bodies;

– we can link the speed of variation of the load to the speed of evolution of the
plastic strains, the preferred process during the study of the mechanical properties
of the materials when there is a quick strain.

1.1.1.3. Poisson’s ratio

A bar subjected to tension forces is subject to two types of strain:

– an extension  or x 



along its longitudinal axis;

– a transversal reduction y . Experience shows that y x    , where  is a

constant of the material called Poisson’s ratio.

For metals,  varies from 0.25 to 0.35. It is close to 0.3 for steels and aluminum
alloys.

1.1.2. Fatigue

Fatigue phenomena, with formation and growth of cracks in machine elements
subjected to repeated loads below ultimate strength, was discovered during the 19th
century with the arrival of machines and freight vehicles functioning under dynamic
loads larger than those encountered before [NEL 78].

According to H.F. Moore and J.B. Kommers [MOO 27], the first work published
on failure by fatigue was by W. Albert, a German mining engineer. In 1829 he
carried out repeated loading tests on welded chains of mine winches. S.P. Poncelet
was perhaps the first to use the term fatigue in 1839 [TIM 53].

The most important problems of failure by fatigue were found around 1850
during the development of the European railroad (axes of car wheels). An initial
explanation was that metal crystallizes under the action of the repeated loads, until
failure. The source of this idea is the coarsely crystalline appearance of many
surfaces of parts broken by fatigue. This theory was disparaged by W.J. Rankine
[RAN 43] in 1843. The first tests were carried out by Wöhler between 1852 and
1869 [WÖH 60].

The dimensioning of a structure to fatigue is more difficult than with static loads
[ROO 69] because ruptures by fatigue depend on localized stresses. Since the fatigue
stresses are in general too low to produce a local plastic deformation and the
redistribution associated with the stresses, it is necessary to carry out a detailed
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analysis which takes into account both the total model of the stresses and the strong
localized stresses due to the concentrations.

On the other hand, analysis of static stresses only requires the definition of the
total stress field, the high localized stresses being redistributed by local deformation.
Three fundamental steps are necessary:

– definition of the loads;

– detailed analysis of the stresses; and

– consideration of the statistical variability of the loads and the properties of
materials.

Fatigue damage strongly depends on the oscillatory components of the load, its
static component and the order of application of the loads.

Fatigue can be approached in several ways and, in particular, by:

– the study of Wöhler’s curves (stress versus number of cycles, or S-N, curves);

– the study of cyclic work hardening (low-cycle fatigue); and

– the study of the crack propagation rate (fracture mechanics).

The first of these approaches is the most used. We will present some aspects of
them in this chapter.

1.2. Types of dynamic loads (or stresses)

The load applied to equipment can vary in different ways:

– periodic or cyclic;

– random; or

– quickly between two stationary states (transitory).

It can also be zero average, any average, constant or not.

1.2.1. Cyclic stress

In the simplest case, the load applied varies in a sinusoidal manner between
max and min around the rest position (zero mean).
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Consider a stress (t) varying periodically in time; (t) values over a period
(the smallest part of the function periodically repeating) are called “cycle of stress”.
The most common cycle is the sinusoidal cycle.

Figure 1.6. Non-zero mean sinusoidal cycle of stress

We refer to the largest algebraic value of the stress during a cycle as maximum
stress max and the smallest algebraic value (the traction stress being positive) as
the minimum stress min .

The mean stress m is the permanent (or static) stress on which the cyclic stress
is superimposed.

a is the amplitude of the oscillatory stress a max m    .

We define the cycle coefficient or stress variation rate (or “stress ratio”) as:

min

max
R





[1.10]

We also define another parameter A:

a

m
A





[1.11]

which relates the alternating stress amplitude to the mean stress. A and R are linked
by equation [1.12]:

1-A
R=

1+A
or

1-R
A=

1+R
[1.12]
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We refer to the difference

d max min a2      [1.13]

as the range of stress. a is called the purely alternating stress when it varies
between equal positive and negative values.

1.2.2. Alternating stress

An alternating stress evolves between a positive maximum and a negative
minimum where absolute values are different.

Figure 1.7. Alternating stress (completely reversed stressing)

In the case of a zero mean stress (m = 0), we have R = –1 and the cycle is said
to be symmetric or alternating symmetric [BRA 81], [CAZ 69], [RAB 80],
[RIC 65b].

The cyclic load can also be superimposed on a constant static load m . If a is
the cyclic load amplitude:

max m a    

min m a   

When min or max is zero, the cycle is said to be pulsating [FEO 69].

Two cycles are similar if they have the same R coefficient.

When R is ordinary, we can consider that such a cycle is the superimposition of:

 a constant stress m
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 a symmetric cyclic stress of amplitude a. We have:

 max min max
m 1 R

2 2
   

    [1.14]

 max min max
a 1 R

2 2
  

    [1.15]

It is considered that the endurance of a component does not depend on the law of
variation in the interval (max, min). We also ignore the influence of the frequency
of the cycle [RIC 65b].

1.2.3. Repeated stress

When the stress varies between 0 and max > 0, between 0 and min < 0, i.e.
when R = 0, we say that the load is repeated (m = a).

Figure 1.8. Repeated stress (zero-to-tension stressing)

1.2.4. Combined steady and cyclic stress

The stress is said to be combined steady and cyclic or fluctuating when 0 < R < 1
(m > a), i.e. when max and min are similar.
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1.2.5. Skewed alternating stress

In this case, –1 < R < 0 (with 0 < m < a).

Figure 1.9. Skewed alternating stress

Figure 1.10. Combined steady and cyclic stress (0 < R < 1)

These cyclic loads can be encountered e.g. in rotating machines.

1.2.6. Random and transitory stresses

In many cases, we cannot consider vibrations as sinusoidal. For example,
vibrations from an aircraft’s floor or on missile devices are random vibrations with
randomly variable amplitude in time. Energy is distributed in a wide frequency
interval, instead of being centered on a given frequency (Volume 1, Chapter 1 and
Volume 3).
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Other phenomena such as shocks measured on an aircraft’s landing gear, the
starting or stopping of rotating machines, missile and launcher staging, etc. are all
transitory, either centered on a given frequency or not.

All these loads lead to effects of fatigue that are much harder to evaluate
experimentally, especially in a projected manner. In the following sections, we will
show how we can estimate them.

1.3. Damage arising from fatigue

We define the modification of the characteristics of a material, primarily due to
the formation of cracks and resulting from the repeated application of stress cycles,
as fatigue damage. This change can lead to a failure.

We will not consider here the mechanisms of nucleation and growth of the
cracks. We will simply state that fatigue starts with a plastic deformation, initially
highly localized around certain macroscopic defects (inclusions, cracks of
manufacture, etc.), under total stresses which can be lower than the yield stress of
the material. The effect is extremely weak and negligible for only one cycle. If the
stress is repeated, each cycle creates a new localized plasticity. After a number of
variable cycles, depending on the level of the applied stress, ultra-microscopic
cracks can be formed in the newly plastic area. The plastic deformation then extends
from the ends of the cracks which increase until becoming visible with the naked
eye, and lead to failure of the part. Fatigue damage is a cumulative phenomenon.

If the stress–strain cycle is plotted, the hysteresis loop obtained is an open curve
whose form evolves depending on the number of applied cycles [FEO 69]. Each
cycle of stress produces certain damage and the succession of the cycles results in a
cumulative effect.

The damage is accompanied by modifications of the mechanical properties and,
in particular, of a reduction of the static ultimate tensile strength Rm and of the
fatigue limit strength.

This is generally local to the place of a geometrical discontinuity or a
metallurgical defect. The fatigue damage is also related to metallurgical and
mechanical phenomena, with the appearance and growth of cracks depending on the
microstructural evolution and mechanical parameters (possibly with the effects of
the environment).
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The damage can be characterized by:

 evolution of a crack and energy absorption of plastic deformation in the plastic
zone which exists at the ends of the crack;

 loss of strength in static tension;

 reduction of the fatigue limit stress up to a critical value corresponding to the
failure; and

 variation of the plastic deformation which increases with the number of cycles
up to a critical value.

Figure 1.11. Unclosed hysteresis loop

We can suppose that fatigue is [COS 69]:

 the result of a dynamic variation of the conditions of load in a material;

 a statistical phenomenon;

 a cumulative phenomenon; and

 a function of material and of amplitude of the alternating stresses imposed on
material.

There are several approaches to the problem of fatigue:

 establishing empirical relations taking experimental results into account;

 expressing in an equation the physical phenomena in the material, including
microscopic cracks starting from intrusion defects and propagation of these
microscopic cracks until macro-cracks and failure are obtained.
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Cazaud et al. [CAZ 69] quote several theories concerning fatigue, the principal
theories being:

 mechanical theories;

 theory of the secondary effects (consideration of the homogenity of the
material, regularity of the distribution of the effort);

 theory of hysteresis of pseudo-elastic deformations (discussion based on
Hooke’s law);

- theory of molecular slip,

- theory of work hardening,

- theory of crack propagation, and

- theory of internal damping;

 physical theories, which consider the formation and propagation of the cracks
using models of dislocation starting from extrusions and intrusions;

 static theories, in which the stochastic character of the results is explained by
the heterogenity of materials, the distribution of the stress levels, cyclic character of
loading, etc.;

 theories of damage; and

 low-cycle plastic fatigue, in the case of failures caused by approximately
N < 104 cycles.

The estimate of the lifetime of a test bar is carried out from:

 a curve characteristic of the material (which gives the number of cycles to
failure according to the amplitude of stress), in general sinusoidal with zero mean
(S-N curve); and

 a law of accumulation of damages.

The various elaborated theories are distinguished by the selected analytical
expression to represent the curve of damage and the by the manner of cumulating
the damages.

To avoid failures of parts by fatigue dimensioned in statics and subjected to
variable loads, we were initially tempted to adopt arbitrary safety factors. If badly
selected, i.e. insufficient or too large, these could lead to excessive dimensions and
masses.

An ideal design would require use of materials in the elastic range.
Unfortunately, the plastic deformations always exist at points of strong stress
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concentration. The nominal deformations and stresses are elastic and linearly related
to the applied loads. This is not the case for stresses and local deformations which
exist in metal at critical points, and which control resistance to fatigue of the whole
structure.

It therefore proved necessary to carry out tests on test bars for better estimating
of the resistance to fatigue under dynamic load, beginning with the simplest, i.e. the
sinusoidal load. We will see in the following chapters how the effects of random
vibrations most frequently met in practice can be evaluated.

1.4. Characterization of endurance of materials

1.4.1. S-N curve

The endurance of materials is studied in the laboratory by subjecting test bars cut
in the material to be studied to stresses (or strains) of amplitude  until rupture,
generally sinusoidal with zero mean.

Following the work of Wöhler [WÖH 60], [WÖH 70] carried out on axes of
trucks subjected to rotary bending stresses, we note that for each test bar, the number
N of cycles to failure (endurance of the part or fatigue life) depends on . The curve
obtained in plotting  against N is termed the S-N curve (stress versus number of
cycles) or Wöhler’s curve or endurance curve. The endurance is therefore the ability
of a machine part to resist fatigue.

Taking into account the huge variations of N with , it is usual to plot log N
(decimal logarithm in general) on abscissae. Logarithmic scales on abscissae and on
ordinates are also sometimes used.

This curve is generally composed of three zones [FAC 72], [RAB 80]
(Figure 1.12):

 zone AB: corresponding to low-cycle fatigue, which corresponds to the largest
stresses higher than the yield stress of material, where N varies from one-quarter of
cycle with approximately 104 to 105 cycles (for mild steels). In this zone, we observe
significant plastic deformation followed by failure of the test bar. The plastic
deformation p can be related here to the number of cycles to the failure by a simple
relationship of the form:

N Ck
p  [1.16]
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where the exponent k is close to 0.5 for common metals (steels, light alloys)
[COF 62].

Figure 1.12. Main zones of the S-N curve

 zone BC: often approximates a straight line on log-linear scales (or sometimes
on log-log scales), in which the fracture certainly appears under a stress lower than
previously, without the appearance of measurable plastic deformation. There are
many relationships proposed between  and N to represent the phenomenon in this
domain where N increases and when  decreases. This zone, known as the zone of
limited endurance, lies between approximately 104 cycles and 106 to 107 cycles.

 zone CD: where D is a point which, for ferrous metals, is ad infinitum. The S-
N curve generally presents a significant variation of slope around 106 to 107 cycles,
followed in a clear way to a greater or lesser extent, marked by a zone (CD) where
the curve tends towards a limit parallel with the N axis. On this side of this limit, the
value of  is denoted D ; there is never failure by fatigue whatever the number of
cycles applied. D is referred to as the fatigue limit and represents the stress with
zero mean of greater amplitude for which we do not observe failure by fatigue after
an infinite number of cycles. This stress limit does not exist or can be badly defined
for certain materials [MEG 00], [NEL 78] (e.g. high-strength steels, non-ferrous
metals).

For sufficiently resistant metals, where it is not possible to evaluate the number
of cycles which the test bar would support without damage [CAZ 69] (too large a
test duration) and to take account of the scatter of the results, the concept of
conventional fatigue limit or endurance limit is introduced. It is about the greatest
amplitude of stress  for which 50% of failures after N cycles of stress is observed.
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It is denoted m  0 ,  D N . N can vary between 106 and 108 cycles [BRA 80a, b].

For steels, N  107 and   D D107  . The notation D is used in this case.

NOTE.–

Brittle materials do not have a well-defined fatigue limit [BRA 81], [FID 75].

For extra-hardened tempered steels (certainly titanium, copper or aluminum
alloys), or when there is corrosion, this limit remains theoretical and without
interest since the fatigue life is never infinite.

When the mean stress m is different from zero, it is important to associate m
with the amplitude of the alternating stress. The fatigue limit can be written a or

aD in this case.

Figure 1.13. Sinusoidal stress with (a) zero and (b) non-zero mean

Definition

The endurance ratio is the ratio of the fatigue limit D (normally at 107 cycles)
to the ultimate tensile strength Rm of material:

m

D
R

)N(
=R


[1.17]

NOTE.–

The S-N curve is sometimes plotted on reduced scales on axes ( mR , N),
in order to be able to proceed more easily to comparisons between different
materials.
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Figure 1.14. S-N curve on reduced axes

1.4.2. Influence of the average stress on the S-N curve

According to the value of the stress ratio R, the S-N curve has a different slope
and intercept (Figure 1.15).

Figure 1.15. Influence of the stress ratio

K. Gołoś and S. Esthewi [GOŁ 97] define an “influence coefficient” aimed to
take into account the influence of the average stress. This coefficient (N) is
function of the number of cycles to fracture N. It is written

(N) N   [1.18]
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where  and  are experimental parameters determined during tests carried out with
R = 0 and R = –1.

(N) is determined from the slope of the curves in the Haigh diagram (Figure
1.16) [PAW 00].

Figure 1.16. Haigh diagram – calculation of the influence coefficient

1.4.3. Statistical aspect

The S-N curve of a material is plotted by successively subjecting ten (or more)
test bars to sinusoidal stresses of various amplitudes. The results show that there is
considerable scatter in the results, in particular for the long fatigue lives. For a given
stress level, the relationship between the maximum and the minimal value of the
number of cycles to failure can exceed 10 [ROO 69], [NEL 78].

The dispersion of the results is related on the heterogenity of materials, the
surface defects, the machining tolerances and, in particular, to metallurgical factors.
Among these factors, inclusions are most important. Scatter is in fact due to the
action of fatigue in a metal, which is generally strongly localized. Contrary to the
case of static loads, only a small volume of material is concerned. The rate of fatigue
depends on the size, orientation and chemical composition of some material grains
which are located in a critical zone [BRA 80b], [LEV 55], [WIR 76].

In practice, it is therefore not realistic to characterize the resistance to fatigue of
a material by a S-N curve plotted from only one fatigue test at each stress level. It is
more correct to describe this behavior by a curve in a statistical manner, the
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abscissae providing the endurance Np for a survival of p percent of the test bars
[BAS 75], [COS 69].

The median endurance curve (or equiprobability curve) denoted N50 (i.e.
survival of 50% of the test bars), or sometimes the median curves with 1 to
3 standard deviations or other isoprobability curves, are generally given [ING 27].

Without other indication, the S-N curve is the median curve.

Figure 1.17. Isoprobability S-N curves

NOTE.– The scatter of fatigue life of non-ferrous metals (aluminum, copper, etc.) is
less than that of steels, probably because these metals have fewer inclusions and
inhomogenities.

1.4.4. Distribution laws of endurance

For high stress levels, endurance N follows a log-normal law [DOL 59],
[IMP 65]. In other words, in scales where the abscissa carry log N, the distribution
of log N follows, in this stress domain, a roughly normal law (nearer to the normal
law when  is higher) with a scatter which decreases when  increases. M. Matolcsy
[MAT 69] considers that the standard deviation s can be related to the fatigue life at
50% by an expression of the form

 s N A N 50
 [1.19]

where A and  are constant functions of material.
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Example 1.1.


Aluminum alloys 1.125
Steels 1.114–1.155
Copper wires 1.160
Rubber 1.125

Table 1.2. Examples of values of the exponent 

G.M. Sinclair and T.J. Dolan [SIN 53] observed that the statistical law
describing the fatigue evolution is roughly log-normal and that the standard
deviation of the variable (log N) varies with the amplitude of the applied stress
according to an exponential law.

Figure 1.18. Log-normal distribution of the fatigue life

In the endurance zone, close to D , F. Bastenaire [BAS 75] showed that the
inverse 1/N of endurance follows a modified normal law (with truncated tail).

Other statistical models were proposed e.g. following [YAO 72], [YAO 74]:

 the normal law [AST 63];

 extreme value distribution;

Weibull’s law [FRE 53]; and

 the gamma law [EUG 65].
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From a compilation of various experimental results, P.H. Wirshing [WIR 81]
checked that, for welded tubular parts, the log-normal law is that which adapts best.
It is this law which is most often used [WIR 81]. It has the following advantages:

 well-defined statistical properties;

 easy to use; and

 adapts to large variations in coefficient.

Tables 1.3 and 1.4 give values of the variation coefficient of the number of
cycles to failure for some materials noted in the literature [LAL 87].

Value 0.2 of the standard deviation (on log N) is often used for the calculation of
the fatigue lives (for notched or other parts) [FOR 61], [LIG 80], [LUN 64],
[MEH 53].

Authors Materials Conditions NV (%)

Whittaker
and

Besuner
[WHIT 69]

Steels Rm  1650 MPa (240 ksi)
Steels Rm  1650MPa (240 ksi)

Aluminum alloy
Alloy titanium

36
48
27
36

(Log-normal)

Endo and
Morrow
[END 67]
[WIR 82]

Steel 4340

7075-T6

2024-T4

Titanium 811

Low-cycle
fatigue
(N < 103)

14.7

17.6

19.7

65.8

Swanson
[SWA 68]

Steel SAE 1006

Maraging steel 200 grade

Maraging steel Nickel 18%

Fatigue under
narrow band
random noise

25.1

38.6

69.0

Gurney
[GUR 68]

Welded structures Mean 52

Table 1.3. Examples of values of the variation coefficient of the number
of cycles to failure
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1.4.5. Distribution laws of fatigue strength

Another way of resolving the problem consists of studying the fatigue strength
of the material [SCH 74], i.e. the stress which the material can resist during N
cycles. This strength also has a statistical character; strength to p percent of survival
and a median strength are also defined here.

The response curve represents the probability of failure during a test with
duration limited to N cycles, depending on the stress  [CAZ 69], [ING 27].

The experiment shows that the fatigue strength follows a roughly normal law
whatever the value of N and is fairly independent of N [BAR 77]. This constancy is
masked on the S-N diagrams by the choice of the log-linear or log-log scales, scatter
appearing to increase with N. Some values of the variation coefficient of this law for
various materials, extracted from the literature, can be found in [LAL 87].

Authors Materials Conditions NV (%)

Blake and

Baird [BLA 69]
Aerospace components Random loads 3 to 30

Epremian and

Mehl [EPR 52]

Steels

Log-normal law

s mlog log 2.04 to

8.81

Log-

normal

law

Ang and

Munse [Ang 75] Welding 52

Whittaker

[WHIT 72]

Steel UTS  1650 MPa

Steel UTS > 1650 MPa

36

48

Aluminum alloys

Titanium alloys

22

36

Wirsching

[WIR 83b]
Welding (tubes) 70 to 150
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Wirsching and Wu

[WIR 83c]

RQC - 100 Q

Plastic strain

Elastic strain

15 to 30

55

Waspaloy B

Super alloys

Containing Nickel

Plastic strain

Elastic strain

42

55

Wirsching

[WIR 83a]

VN , often about 30% to 40%, can reach 75%

and even exceed 100%.

Low-cycle fatigue field: 20% to 40% for the

majority of metal alloys.

For N large, VN can exceed 100%.

Yokobori

[YOK 65]

Steel

Rotational bending or traction compression
28 to 130

Dolan and Brown

[DOL 52]

Aluminum alloy 7075.T6

Rotational bending
44 to 80

Sinclair and

Dolan [SIN 53]

Aluminum alloy 75.S-T

Rotational bending
10 to 100

Levy

[LEV 55]

Mild steel

Rotational bending
43 to 75

Konishi and

Shinozuka

[KON 56]

Notched plates - Steel SS41

Alternate traction

18 to 43

Matolcsy

[MAT 69] Synthesis of various test results 20 to 90

Tanaka and Akita

[TAN 72]

Silver/nickel wires

Alternating bending
16 to 21

Table 1.4. Examples of values of the variation coefficient
of the number of cycles to failure
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Figure 1.19. Gaussian distribution of fatigue strength

Authors Materials Parameter NV (%)

Ligeron
[LIG 80]

Steels
Various alloys Fatigue limit stress 4.4 to 9.4

Yokobori
[YOK 65] Mild steel Fatigue limit stress 2.5 to 11.3

Mehle
[MEH 53] Steel SAE 4340 20 to 95

Epremian
[WIR 83a]

Large variety of
metallic materials

Endurance stress (failure
for given N )

5 to 15

Table 1.5. Examples of values of the variation coefficient of
the endurance strength for a given N

For all the metals, J.E. Shigley [SHI 72] proposes a variation coefficient D
(ratio of the standard deviation to the mean) equal to 0.08 [LIG 80], a value which
can be reduced to 0.06 for steels [RAN 49].

1.4.6. Relation between fatigue limit and static properties of materials

Some authors tried to establish empirical formulae relating the fatigue limit D
and its standard deviation to the mechanical characteristics of the material (Poisson
coefficient, Young’s modulus, etc.). For example, the relations listed in Table 1.6
were proposed for steels [CAZ 69], [LIE 80].
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After completing a large number of fatigue tests (rotational bending, on test bars
without notches). A. Brand and R. Sutterlin [BRA 80a] noted that the best
correlation between D and a mechanical strength parameter is that obtained with
the ultimate strength Rm (tension):

 m
4

m%50D R102.157.0R  for 800 1300 Rm N/mm2

 m
4

mD R104.156.0R  for Rm  800 N/mm2 or Rm  1300 N/mm2

All these relations only correctly represent the results of the experiments which
made it possible to establish them, and therefore are not general. A. Brand and
R. Sutterlin [BRA 80a] tried, however, to determine a more general relation,
independent of the size of the test bars and stress, of the form:

 DM a b log

where a and b are related to Rm . DM is the real fatigue limit related to the
nominal fatigue limit Dnom by

 DM t DnomK

where K t = stress concentration factor.  is the stress gradient, defined as the value
of the slope of the tangent of the stress field at the notch root divided by the
maximum value of the stress at the same point, i.e.








lim
x

d

dx0

1
.

The variation coefficient is defined:

v
s

D

D

 



6 %

where v is independent of Rm . A. Brand and R. Sutterlin [BRA 80a] recommend a
value of 10%.
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Houdremont and
Mailander

  5RR25.0 meD 
Re= yield stress
Rm= ultimate stress

Lequis,
Buchholtz and

Schultz

 100%ARR175.0 meD 
A% = lengthening, in

percent.

Fry, Kessner and
Öttel

  D m eR R 
 proportional to Rm

and  inversely
proportional

Heywood D
mR
2

eD R43.0150 

Brand 121R32.0 mD 

Lieurade and
Buthod [LIE 82]

77R37.0 mD 

16R38.0 mD 

A2R41.0 mD 

SR39.0 mD 

(to 15% near)

S = striction, expressed
in %

Jüger  SRR2.0 meD 

Rogers meD R25.0R4.0 

Mailander   mD R%2049.0 

  eD R%3065.0 

Stribeck    meD RR%20285.0 

In all the above relations, D , Rm and Re are expressed in N mm/ 2 .

Feodossiev

[FEO 69]

Steel, bending: 4.0D  to mR5.0

Very resistant steels: mD R
6
1

4000  (in kg cm/ 2 )

Non-ferrous metals: 25.0D  to mR5.0

Table 1.6. Examples of relations between the fatigue limit and the
static properties of materials
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1.4.7. Analytical representations of S-N curve

Various expressions have been proposed to describe the S-N curve representative
of the fatigue strength of a material, often in the limited endurance domain (the
definition of this curve has evolved over the years from a deterministic curve to a
curve of statistical character).

Figure 1.20. Representation of the S-N curve in semi-logarithmic scales

The S-N curve is generally plotted in semi-logarithmic scales of log N and , in
which it presents a roughly linear part (around an inflection point), a curve
characteristic of the material (BC) and an asymptote to the straight line   D .

Among the many more or less complicated representations (none of which are
really general), the following relations can be found [BAS 75], [ DEN 71], [LIE 80].

1.4.7.1.Wöhler relation

    log N [1.20]

This relation does not describe the totality of the curve since  does not tend
towards a limit D when N   [HAI 78]. It represents only the part BC. It can
also be written in the form [WÖH 70]:

N e ba   [1.21]

1.4.7.2. Basquin relation

The relation suggested by Basquin in 1910 [BAS 10] is of the form

ln ln    N [1.22]
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i.e.

N Cb  [1.23]

where

 
1

b
and ln C 





The parameter b is sometimes referred to as the index of the fatigue curve
[BOL 84].

Figure 1.21. Significance of the parameter b of Basquin’s relation

In these scales, the curve can be entirely linearized (upwards) by considering the
amplitudes of the true stresses (and neither nominal). Expression [1.23] can also be
written:

  = RF N [1.24]

or

N b  RF
b [1.25]

where RF is the fatigue strength coefficient. This expression is generally valid for

high values of N ( 104). If there is a non-zero 0 mean stress, constant C must be
replaced by:

C 1- 0
m



Rm
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where C is the constant used when 0 0 and Rm is the ultimate strength of the
material [WIR 83a].

In the expression N Cb  , the stress tends towards zero when N tends towards
the infinite. This relation is therefore representative of the S-N curve only for part
BC. In addition, it represents a straight line in logarithmic scales and not in semi-
logarithmic scales (log-linear). A certain number of authors presented the results of
the fatigue tests in these scales (log-log) and showed that part BC is close to a
straight line [MUR 52]. F.R. Shanley [SHA 52] considers in particular that it is
preferable to choose these scales. H.P. Lieurade [LIE 80] notes that the
representation of Basquin is less appropriate than that of the relation of Wöhler in
the intermediate zone, and that the Basquin method is not better around the fatigue
limit. It is very much used, however.

To take account of the stochastic nature of this curve, P.H. Wirsching [WIR 79]
proposed treating constant C like a log-normal random variable of mean C and
standard deviation C and provides the following values, in the domain of the great
numbers of cycles:

– median: 1.55 1012 (ksi)(1),

– variation coefficient: 1.36

(statistical study of S-N curves relating to connections between tubes).

Some numerical values of the parameter b in Basquin’s relationship

Metals. The range of variation of b is 3–25. The most common values are
between 3 and 10 [LEN 68]. M. Gertel [GER 61], [GER 62] and C.E. Crede
and E.J. Lunney [CRE 56b] consider a value of 9 to be representative of most
materials. It is probably a consideration of this order that led to the choice of 9 by
standards such as MIL-STD-810, AIR, etc. This choice is satisfactory for most light
alloys and copper but may be unsuitable for other materials. For instance, for steel,
the value of b varies between 10 and 14 depending on the alloy. D.S. Steinberg
[STE 73] mentions the case of 6144-T4 aluminum alloy for which 14b 
( 7814 1026.2N  ).

b is approximately 9 for ductile materials and approximately 20 for brittle
materials, whatever the ultimate strength of the material [LAM 80].

1 1 ksi = 6.8947 MPa
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Material Type of fatigue test min

max


 b

2024-T3 aluminum Axial load –1 5.6
2024-T4 aluminum Rotating beam –1 6.4
7075-T6 aluminum Axial loading –1 5.5
6061-T6 aluminum Rotating beam –1 7.0
ZK-60 magnesium 4.8
BK31XA-T6 magnesium Axial load 0.25 8.5

Rotating beam –1 5.8
QE 22-T6 magnesium Wöhler –1 3.1
4130 steel

Standardized Axial load –1 4.5
Hardened Axial load –1 4.1

6Al-4V Ti Axial load –1 4.9
Beryllium

Hot pressed Axial load 0 10.8
Block 0.2 8.7

–1 12.6
Cross Rol Sheat Axial load 0.2 9.4
Invar Axial load 4.6
Anneal copper 11.2
1S1 fiberglass 6.7

Table 1.7. Examples of values of the parameter b [DEI 72]

The lowest values indicate that the fatigue strength drops faster when the number
of cycles is increased, which is generally the case for the most severe geometric
shapes. The lower the stress concentration, the higher the value of parameter b.
Table 1.7 gives the value of b for a few materials according to the type of load
applied: tension-compression, torsion, etc. and the value of the mean stress, i.e. the
ratio min max  .

A few other values are given by R.G. Lambert [LAM 80] with no indication of
the test conditions.
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Material b

Copper wire

Aluminum alloy 6061-T6

7075-T6

Soft solder (63-37 Tin - Lead)

Steel 4340 (BHN 243)

Steel 4340 (BHN 350)

Nickel IN-718

AZ31B Magnesium alloy

9.28

8.92

9.65

9.85

10.5

13.2

16.67

22.4

Table 1.8. Examples of values of the parameter b [LAM 80]

Figure 1.22. Examples of values of the parameter b [CAR 74]

It should be noted that the b parameter of an assembly can differ appreciably
from that of the material of which it is composed. The b parameter defined in
experiments for a steel ball bearing is, for example, close to 4. That of steel or
aluminum welded parts has a b value between 3 and 6 [BSI 80], [EUR 93],
[HAA 98], [LAS 05], [MAN 04], [SHE 05], [TVE 03].

It is therefore necessary to be very cautious when choosing the value of this
parameter, especially when reducing the test times for constant fatigue damage
testing.
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Case of electronic components

The failures observed in electronic components follow the conventional fatigue
failure model [HAS 64]. The equations established for structures are therefore
applicable [BLA 78]. During initial tests on components such as capacitors, vacuum
tubes, resistors, etc. and on equipment, it was observed that the failures (lead
breakage) generally occurred near the frame resonance frequencies, generally below
500 Hz [JAC 56]. The analysis of tests conducted on components by D.L. Wrisley
and W.S. Knowles [WRI] tends to confirm the existence of a fatigue limit.

Electronic components could be expected a priori to be characterized by a
parameter b of around 8 or 9 for fatigue strength, at least in the case of discrete
components with copper or light alloy leads. That is the value chosen by some
authors [CZE 78].

Few pieces of data have been published on the fatigue strength of electronic
components. C.A. Golueke [GOL 58] provides S-N curves plotted from the results
of fatigue testing conducted at resonance on resistors, for setups such that the
resonance frequency is between 120 Hz and 690 Hz. Its results show that the S-N
curves obtained for each resonance are roughly parallel. On xlogNlog  scales
(acceleration), parameter b is very close to 2. Components with the highest
resonance frequency have the longest life expectancy, which demonstrates the
interest of decreasing the component lead length to a minimum.

Figure 1.23. Examples of S-N curves of electronic components [GOL 58]

This work also reports that the most fragile parts regarding fatigue strength are
the soldered joints and interconnections followed by capacitors, vacuum tubes,
relays to a much lesser extent, transformers and switches.
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M. Gertel [GER 61], [GER 62] writes the Basquin relation N Cb  in the
form

N
C

C
b

D
b

D
b



 
  1 [1.26]

where D is the fatigue limit. If the excitation is sinusoidal [GER 61] and if the
structure, comparable to a one-degree-of-freedom system, is subjected to tension-
compression, the movement of mass m is such that

m y S   [1.27]

where  is stress in the part with cross-section S. If the structure is excited at
resonance, we have:

 y Q x [1.28]

and

x
S

m Q



[1.29]

Knowing that the specific damping energy D is related to the stress by









e

en
R8.0if8n
R8.0if4.2n

JD [1.30]

and that the Q factor can be considered as the product:

Q K Km v [1.31]

where

K
E D

m 
 2

is the dimensionless factor of the material, E is Young’s modulus, and where Kv is
the dimensionless volumetric stress factor, we obtain
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, [1.33]

yielding the value of the parameter b of resistors in N– axes (instead of N, x):

b 2 (n 1)  [1.34]

which, for 4.2n  , is equal to 2  1.4 = 2.8. These low values of b are confirmed
by other authors [CRE 56b], [CRE 57], [LUN 58]. Some relate to different
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component technologies [DEW 86], [PER 08]. Among the published values are, for
instance:

Resistors: b = 2.4 to 5.8

Vacuum tubes: b = 0.6

C.E. Crede [GER 61], [GER 62]

Capacitors: b = 3.6 (leads)

Vacuum tubes: b = 2.83 to 2.13

E.J. Lunney and C.E. Crede [CRE 56b]

Circuit boards - Electric fault,

then failure: b = 3 to 6

J. De Winne [DEW 86]

Electronic equipment (assumes

copper wire) b=2.4

Complex electrical and

electronic equipment items

b =4.0

W. O. Hughes and M. E. McNelis

[HUG 04]

Weldings b = 5.7 H.S. Gopalakrishna and J. Metcalf

[GOP 89]

Electrical contact failures b = 4 D.S. Steinberg [STE 00]

Table 1.9. Some values of b parameter

1.4.7.3. Some other laws

Other laws include that of C.E. Stromeyer [STR 14]:

 log - = - log ND    [1.35]
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or

  








D

bC

N

1

[1.36]

or

  - N = CD
b

[1.37]

Here,  tends towards D when N tends towards infinity.

A. Palmgren [PAL 24] stated that

 = D 












C

N A

b1

[1.38]

or

( - ) N + A) = CD
b  ( [1.39]

a relation which is better adjusted using experimental curves than Stromeyer’s
relation.

According to W. Weibull [WEI 49],

 



- C

N + A
D

Rm D

b












1

[1.40]

where Rm is the ultimate strength of studied material. This relation does not
improve the preceding relation. It can be also written:

 =
F

(N + A)
D 1 b [1.41]

where F is a constant and A is the number of cycles (different from 1/4)
corresponding to the ultimate stress [WEI 52]. It was used in other forms, such as:
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C

N

n1

[1.42]

with n = 1 [PRO 48], n = 2 [FER 55] and

 






D

mR
b N-a [1.43]

where a and b are constants [FUL 63].

According to Corson [MIL 82],

( - A
C

N
D

- D   )  [1.44]

Bastenaire [BAS 75] stated that:

     N B e CD
A D  


 

  [1.45]

1.5. Factors of influence

1.5.1. General

A great number of parameters affect fatigue strength and hence the S-N curve.
The fatigue limit of a test bar can therefore be expressed in the form [SHI 72]:

DvrfsscD KKKKKK   [1.46]

where D is the fatigue limit of a smooth test bar and where the other factors make
it possible to take into account the following effects:

scK scale effect

Ks surface effect
K temperature effect

fK form effect (notches, holes, etc.)

rK reliability effect
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vK various effects (loading rate, type of load, corrosion, residual stresses,
stress frequency, etc.)

These factors can be classified as follows [MIL 82]:

 factors depending on the conditions of load (type of loads:
tension/compression, alternating bending, rotational bending, alternating torsion,
etc.);

 geometrical factors (scale effect, shape, etc.);

 factors depending on the conditions of surface;

 factors of a metallurgical nature; and

 factors of environment (temperature, corrosion etc).

We examine some of these parameters in the following sections.

1.5.2. Scale

For the sake of simplicity and minimizing cost, the tests of characterization of
strength to fatigue are carried out on small test bars. The tacit and fundamental
assumption is that the damage processes apply both to the test bars and the complete
structure. The use of the constants determined with test bars for the calculation of
larger parts assumes that the scale factor has little influence.

A scale effect can appear when the diameter of the test bar is increased,
involving an increase in the concerned volume of metal and in the surface of the
part, and thus an increase in the probability of cracking. This scale effect has as its
origins:

 mechanics: existence of a stress gradient in the surface layers of the part,
variable according to dimensions, weaker for the large parts (case of the non-
uniform loads, such as torsion or alternating bending);

 statistics: larger probability of existence of defects being able to start
microscopic cracks in the large parts; and

 technological: surface quality and material heterogenity.

It is noted in practice that the fatigue limit is smaller when the test bar is larger.
With equal nominal stress, the greater the dimensions of a part, the greater its fatigue
strength decreases [BRA 80b], [BRA 81], [EPR 52].
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B.N. Leis [LEI 78] and B.N. Leis and D. Broek [LEI 81] demonstrated that,
under conditions to ensure that similarity is respected strictly at the critical points
(notch root, crack edges, etc.), precise structure fatigue life predictions can be made
from laboratory test results. Satisfying conditions of similarity is sometimes difficult
to achieve, however, since there is a lack of understanding of the factors controlling
the process of damage rate.

1.5.3. Overloads

We will see that the order of application of loads of various amplitudes is an
important parameter. It is observed in practice that:

1. For a smooth test bar, the effect of an overload leads to a reduction in the
fatigue life. J. Kommers [KOM 45] showed that a material which was submitted to
significant over-stress, then to under-stress, can break even if the final stress is lower
than the initial fatigue limit. This is because the over-stress produces a reduction in
the initial fatigue limit. By contrast, an initial under-stress increases the fatigue limit
[GOU 24].

J.R. Fuller [FUL 63] noted that the S-N curve of a material which has undergone
an overload turns in the clockwise direction with respect to the initial S-N curve,
around a point located on the curve with ordinate of amplitude 1 of the overload.

The fatigue limit is reduced. If n2 cycles are carried out on the level 2 after n1
cycles at level 1 , the new S-N curve takes the position 3 (Figure 1.24).

Figure 1.24. Rotation of the S-N curve of a material which has undergone
an overload [FUL 63]
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Rotation is quantitatively related to the value of the ratio 1 1n N on the over-
stress level 1. J.R. Fuller defines a factor of distribution which can be written for
two load levels:
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where q is a constant generally equal to 3 (notch sensitivity of material to fatigue to
the high loads), NA is the number of cycles on the highest level A and Na is the
number of cycles on the lower level a .

If   1, all the stress cycles are carried out at the higher stress level (Na  0 ).
This factor  enables the distribution of the peaks between the two limits A and

a to be characterized and is used to correct the fatigue life of the test bars
calculated under this type of load. It can be used for a narrowband random loading.

2. For a notched test bar, on which most of the fatigue life is devoted to the
propagation of the cracks by fatigue, this same effect led to an increase in the fatigue
life [MAT 71]. Conversely, an initial under-load accelerates cracking. This
acceleration is all the more significant since the ensuing loads are larger. In the case
of random vibrations, they are statistically not very frequent and of short duration so
that the under-load effect can be neglected [WEI 78].

1.5.4. Frequency of stresses

The frequency, within reasonable limits of variation, is not important [DOL 57].
It is generally considered that this parameter has little influence as long as the heat
created in the part can be dissipated and a heating does not occur which would affect
the mechanical characteristics. (Stresses are considered here to be directly applied to
the part with a given frequency. It is different when the stresses are due to the total
response of a structure involving several modes [GRE 81]).

An assessment of the influence of the frequency shows [HON 83]:

 the results published are not always coherent, particularly because of corrosion
effects;

 for certain materials, the frequency can be a significant factor when it varies
greatly, acting differently depending on materials and load amplitude; and

 its effect is much more significant at high frequencies.
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For the majority of steels and alloys, it is negligible for f  117 Hz. In the low
number of cycle fatigue domain, there is a linear relation between the fatigue life
and the frequency on logarithmic scales [ECK 51]. Generally observed are:

 an increase in the fatigue limit when the frequency increases; and

 a maximum value of fatigue limit at a certain frequency.

For specific treatment of materials, unusual effects can be noted [BOO 70],
[BRA 80b], [BRA 81], [ECK 51], [FOR 62], [FUL 63], [GUR 48], [HAR 61],
[JEN 25], [KEN 82], [LOM 56], [MAS 66a], [MAT 69], [WAD 56], [WEB 66],
[WHI 61]. I. Palfalvi [PAL 65] demonstrated theoretically the existence of a limiting
frequency, beyond which the thermal release creates additional stresses and changes
of state.

The effect of frequency seems more marked with the large numbers of cycles
and decreases when the stress tends towards the fatigue limit [HAR 61]. It becomes
paramount in the presence of a hostile environment (for example, corrosive medium,
temperature) [LIE 91].

1.5.5. Types of stresses

The plots of the S-N curves are generally obtained by subjecting test bars to
sinusoidal loads (tension and compression, torsion, etc.) with zero mean. It is also
possible to plot these curves for random stress or even by applying repeated shocks.

1.5.6. Non-zero mean stress

Unless otherwise specified, it will be assumed in what follows that the S-N curve
is defined by the median curve. The presence of a non-zero mean stress modifies the
fatigue life of the test bar, in particular when this mean stress is relatively large
compared to the alternating stress. A tensile mean stress decreases the fatigue life; a
compressive stress increases it.

Since the amplitudes of the alternating stresses are relatively small in the fatigue
tests with a great number of cycles, the effects of the mean stress are more important
than in the tests with a low number of cycles [SHI 83].

If the stresses are large enough to produce significant repeated plastic strains, as
in the case of fatigue with a small number of cycles, the mean strain is quickly
released and its effect can be weak [TOP 69], [YAN 72].
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Figure 1.25. Sinusoidal stress with non-zero mean

When the mean stress m is different from zero, the sinusoidal stress is
generally characterized by two parameters from: a , max , min and
R   min max .

Although this representation is seldom used, it is possible to use the traditional
representation of the S-N curves with the logarithm of the number of cycles to
failure on the abscissa axis and on the ordinate stress max , the curves being plotted
for different values of m or R [FID 75], [SCH 74].

Figure 1.26. Representation of the S-N
curves with non-zero mean versus R

Figure 1.27. Representation of the S-N
curves with non-zero mean versus the

mean stress
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Other authors plot S-N curves with a versus N for various values of m , and
propose empirical relations between constants C and b of Basquin’s relation
(N Cb  ) and m [SEW 72]:

Figure 1.28. Example of S-N curves with non-zero mean

Example 1.2.

Aluminum alloy:

3
m

2
mm10 25697.018776.137677.245982.9Clog 

3
m

2
mm 00657.004786.0213676.096687.3b 

(m in units of 10 ksi)(2)

It is generally agreed to use material below its yield stress ( emax R ) only,
which limits the influence of m on the lifespan. The application of static stress
leads to a reduction in a (for a material, a stress mode and a given fatigue life). It is
therefore interesting to know how a varies with m . Several relations or diagrams
were proposed to this end.

2 1 ksi = 6.8947 MPa.
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For tests with given m , we can correspond each value of the fatigue limit D to
each value of m . All of these values D are represented on diagrams known as
“endurance diagrams” which, as for the S-N curves, can be drawn for given
probabilities [ATL 86].

1.6. Other representations of S-N curves

1.6.1. Haigh diagram

The Haigh diagram is constructed by plotting the stress amplitude a against the
mean stress at which the fatigue test was carried out, for a given number N of cycles
to failure [BRA 80b], [BRA 81], [LIE 82]. Tensions are considered as positive and
compressions as negative.

Let m be the mean stress, a the alternating stress superimposed on m , a
the purely alternating stress (zero mean) which, applied alone, would lead to the
same lifetime and D the fatigue limit.

Point A represents the fatigue limit D in purely alternating stress and point B
corresponds to the ultimate stress during a static test (a  0). The straight lines
starting from the origin (radii) represent couples a and m . They can be
parameterized according to the values of the ratio a mR    . The coordinates of a
point on the line of slope equal to 1 are (m , m ) (repeated stress [SHI 72]).

Figure 1.29. Haigh diagram
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The locus of the fatigue limits observed during tests for various values of the
couple ( m a, ) is an arc of curve crossing A and B. The domain delimited by arc
AB and the two axes represents the couples ( m a, ) for which the fatigue life of
the test bars is higher than the fatigue life corresponding to D .

As long as    max  m a remains lower than the yield stress Re , the curve
representing the variations of a with m is roughly a straight line. For max  Re,
we have, at the limit,

  max   Re m a

 a e mR  .

This line crosses the axis O m at a point P on abscissa Re and O a at a point Q
on ordinate Re . Let C be the point of O a having as ordinate max ( Re). The arc
CB is the locus of the points ( m a, ) leading to the same fatigue life. This arc of
curve crosses the straight line PQ at T. Only the arc (appreciably linear) crossing by
T on the left of PQ is representative of the variations of a varying with m for
max  Re. On the right, the arc is no longer linear [SCH 74].

Curve AB has been represented by several analytical approximations, starting
from the value of D (for m  0), and from a and m , used to build this diagram
a priori in an approximate way [BRA 80a], [GER 74], [GOO 30], [OSG 82],
[SOD 30]:

 Goodman line (1930) modified by J. O. Smith [SMI 42] (1942):
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 Söderberg line (1930):
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and



50 Fatigue Damage

 Gerber parabola (1874):
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Figure 1.30. Haigh, Gerber, Goodman and Söderberg representations

The Haigh diagram is plotted for a given endurance N0, in general fixed at
107 cycles, but it can also be established for any number of cycles. In this case, curve
CTB can similarly be represented depending on the case by:

Modified Goodman Söderberg Gerber
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[1.53]

These models make it possible to calculate the equivalent stress range eq ,
taking into account the non-zero mean stress using the relation [SHI 83]:

 eq
a


1

[1.54]

where  is the total stress range, m ma 1 R  (modified Goodman), m is
mean stress and Rm is ultimate tensile strength.
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Relationships [1.51]–[1.53] can be written in the form

Modified Goodman Söderberg Gerber
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a
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mR
  1 [1.55] 1
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[1.56] 
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1 [1.57]

The two most widely accepted methods are those of Goodman and Gerber.
Experience has shown that test data tends to fall between the Goodman and Gerber
curves. Goodman is often used due to mathematical simplicity and slightly
conservative values.

Depending on materials, one of the representations is best suited. Nevertheless,
the modified Goodman line is often considered too imprecise and leads to
conservative results (it predicts lifetimes lower than real lifetimes) [HAU 69],
[OSG 82], except close to the points m  0 and Rm  0 . It is good for brittle
materials and conservative for ductile materials.

The Gerber representation was proposed to correct this conservatism; it adapts
better to the experimental data for  a m . The case  m a can correspond to
plastic deformations. The model is worse for m  0 (compression). It is
satisfactory for ductile materials.

The Söderberg model eliminates this latter problem, but it is more conservative
than that of Goodman. It is used in applications where neither fatigue failure nor
yielding should occur.

E.B. Haugen and J. A. Hritz [HAU 69] observe that:

– the modifications made by Langer (which exclude the area where the sum
 a m is higher than Re) and by Sines are not significant;

– it is desirable to replace the static yield stress by the dynamic yield stress in
this diagram; and

– the curves are not deterministic. It is preferable to use a Gerber parabola in
statistical matter, of the form:
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1
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[1.58]

where D and Rm are mean values, like

1
S3RS3

2

Rm

m

D

a

D




















[1.59]

where
D

S and SR are the standard deviations of D and Rm , respectively

[BAH 78].

Figure 1.31. Haigh diagram. Langer and Sines modifications

NOTE.– The Haigh diagram can be built from the S-N curves plotted for several
values of the mean stress m (Figures 1.32 and 1.33)

A static test makes it possible to evaluate mR . A test with zero mean stress yields

a  . For given N, the curves mi have an ordinate equal to  D iN .
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Figure 1.32. S-N curves with non-zero mean stress,
for construction of the Haigh diagram

Figure 1.33. Construction of the
Haigh diagram

Other relations

Von Settings-Hencky ellipse or Marin ellipse [MAR 56] is defined:
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[1.60]
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where a is allowable stress when m  0, a is allowable stress (for the same
fatigue life N) for given m  0 and ml is a constant.

The case of ml  1 (Goodman) is conservative. The experiment shows that
ml  2 . A value of 1.5 is considered correct for the majority of steels [DES 75].

J. Bahuaud [MAR 56] states that:
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[1.62]

where

t compression

t tension

R
R
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and tR is the true ultimate tensile and compressive strength.

If strength tR is unknown, it can be approximated using

 umt Z1R92.0R  [1.63]

where Zu is the striction coefficient and Rm is conventional ultimate strength.

According to Dietmann,
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All these relations can be gathered in the more general form
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  [1.65]

where k1, k2 , r1 and r2 are constant functions of the chosen law.

r1 r2 k1 k2

Söderberg 1 1 1 e mR R

Modified Goodman 1 1 1 1
Gerber 1 2 1 1
Von Mises-Hencky 2 2 1 1
Marin 1 ml 1 1

Table 1.10. Values of the constants of the general law (Haigh diagram)

NOTE.– In rotational bending, the following relation can be used in the absence of
other data [BRA 80b]:

Dtension compression
D rotativebending 0.9


  [1.66]
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Morrow [MOR 68] proposes to amend Goodman’s relationship for non-ferrous
materials, using the true fracture strength F (true fracture strength from a tension
test) of the material instead of the ultimate strength mR :

a m
'
a F

1
 

 
 

[1.67]

Hence

' m
a a

fB
1
 

     
[1.68]

As a second alternative, Morrow also proposed to change the true fracture
strength with the strength to fracture coefficient '

f from the stress-life curve the

stress intercept '
f at one reversal ( b '

fN   ) [BRI 44].

a m
' '
a f
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[1.69]

which results in the following formula:

' m
a a '

f
1
 
    
  

[1.70]

Dowling [DOW 04] considers this method to be appropriate for ductile
materials. It seems to be acceptable for aluminum alloys and not as good for steels
as the Morrow method using the true stress at fracture.

Walker [WAL 70] gives a relation in which an additional parameter is involved
:

' 1
a max a

     [1.71]

This parameter  is a fitting constant characteristic of the material. The interest of
this parameter lies in the possibility of better representing the experimental results
than previous methods.



56 Fatigue Damage

The value actually observed lies between 0.25 and 0.53 [NIH 86]. Choosing a
conventional value equal to 0.5 is often proposed.

If R is the ratio between the minimum stress and the maximum stress of a cycle,
this relation can also be expressed from [1.15] as [DOW 04]:

'
a max

1 R
2

     
 

[1.72]

or

1
'
a a

2
1 R


      

[1.73]

K.N. SMITH, P. WATSON and T.H. TOPPER [SMI 70] propose a relation widely
used in the uniaxial fatigue calculation (SWT method):

 '
a max a a m a         [1.74]

The quadratic equation has only one positive root:

2'
m a

a
m

2
1 1

2

 
            

[1.75]

From relation [1.15], this expression can also be written:

'
a max

1 R
2


   [1.76]

or

'
a a

2
1 R

  


[1.77]

The SWT model is thus a particular case of the Walker model, for an adjustment
coefficient 0.5  , we again find the SWT model.
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Bergman and Seeger [BER 79] introduce an additional coefficient in the Smith-
Watson-Topper relation, including the sensitivity of the material to the influence of
the average stress [NIH 86].

 ' '
a a m ak      [1.78]

Here, the calculation of a also brings into play the only positive root:

2'
m a

a
m

2
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2

 
            

[1.79]

The SWT relationship corresponds to k = 1. The real values observed lie
between 0.4 and 0.7 in practice. The value k = 0.4 gives the best results with respect
to other methods [WEH 91].

All methods should only be used for tensile mean stress values. For cases where
the mean stress is small relative to the alternating stress (R << 1), there is little
difference in the methods. As R approaches 1, the models show large differences.
There is a lack of experimental data available for this condition, and the yield
criterion may set design limits.

Morrow’s relationship using the true fracture strength F is distinctly better
than the Goodman relationship modified for various metals, but has the disadvantage
that values of F are not always available. Morrow with f' works well for steels,
but not for aluminum alloys. It gives non-conservative results by predicting lifetimes
largely greater than real lifetimes.

The SWT method is a reasonable choice for general use which avoids previous
difficulties. It is quite accurate for aluminum alloys, and for steels it is acceptable,
although not quite as good as Morrow with F or f' and it tends to be non-
conservative for compressive mean stresses. But SWT is consistently better than
Morrow with F for the non-ferrous metals [DOW 04].

The Walker approach enables greater precision thanks to the introduction of an
adjustable parameter γ. The disadvantage of this model lies in the determination of
this coefficient which requires many tests to be carried out.
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1.6.2. Statistical representation of Haigh diagram

We saw that in practice, the phenomena of fatigue are represented statistically.
The Haigh diagram can take such a form.

For example, if the Gerber relation is chosen, parabolic curves are plotted on the
axes a , m to describe the variations of a given stress a corresponding to a given
number of cycles to failure with given probability.

Figure 1.34. Statistical representation of the Haigh diagram

It has been shown that the distribution of the alternating stresses obtained while
crossing the arcs of parabola by a straight line emanating from the origin O (slope

a m  ) is roughly Gaussian [ANG 75].

1.7. Prediction of fatigue life of complex structures

A very difficult problem in the calculation of the fatigue life of a structure is the
multiplicity of the sites of initiation of cracks and the mechanisms which determine
the life resulting from fatigue of the structure. It could be observed that these sites
and mechanisms depend on the environment of service, the amplitude and the nature
of the loads.

B.N. Leis [LEI 78] classes fatigue analysis methods into two principal
categories:

 indirect approach, in which we try to predict the fatigue life (estimate and
accumulation of damage) on the basis of deformation and stress acting far from the
potential areas of initiation of the cracks by fatigue, depending on the external
displacements and forces (black box approach); and
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 the direct approach, in which we try to predict the fatigue life on the basis of
stress and deformations acting on the potential sites of initiation. These stresses and
deformations are local.

The first approach cannot take into account the local inelastic action at the site of
initiation of fatigue, whereas the direct approaches can introduce this non-linearity.

The direct approach allows correct predictions of initiation of cracks in a
structure provided that the multiplicity of the sites of initiation and mechanisms
which control the life in fatigue are correctly taken into account.

1.8. Fatigue in composite materials

An essential difference between metals and composites lies in their respective
fatigue behavior. Metals usually break by initiation and propagation of crack in a
manner which can be predicted by fracture mechanics. The composites present
several modes of degradation such as the delamination, failure of fibers, disturbance
of the matrix, presence of vacuums, failure of the matrix and failure of the
composite. A structure can present one or several of these modes and it is difficult to
say a priori which will prevail and produce the failure [SAL 71].

Another difference with metals relates to behavior due to low frequency fatigue.
It is often admitted that metals follow, for a low number of cycles, Coffin-Manson’s
law relating the number of cycles to failure N to the strain range. This is of the form:

p N C  [1.80]

where 5.0 . The composites are more sensitive to the strain range and more
resistant to fatigue when undergoing large numbers of cycles than with a low
number of cycles. A structure can break due to the part of the load spectrum relating
to small stresses if it is metallic, whereas the same structure in composite would
break because of high loads.

The fatigue strength of composite materials is affected by various parameters
which can be classified as follows [COP 80]:

– factors specific to the material: low thermal conductivity, leading to an
important increase in the temperature if the frequency is too high, defects related on
the heterogenous structure of material and its implementation (bubbles, etc.), natural
aging related to its conditions of storage, etc.;
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– factors related to the geometry of the test bars:

- shape, holes, notches (stress concentration factors), as with metals;

- irregularities of surface being able to modify the thickness of the test bars in a
significant way (important in the case of non-uniform stresses (torsion, bending,
etc.);

– stress and environment conditions:

- mode of application of the stresses (torsion, etc.),

- frequency,

- mean stress,

- hygrothermic environment, and

- corrosion (surface deterioration of polymer comparable with corrosion).

For example, R. Cope and A. Balme [COP 80] show that a resin polyester-
fiberglass composite or laminate obeys a fatigue degradation model because of:

– degradation of the interface fiber-resin;

– degradation by cracking and loss of the resin polyester; and

– progressive damage of the reinforcement.

They use an index of reference for damage evolution depending on the number n
of cycles of the ratio 0G G (where G is rigidity modulus in torsion after n cycles and
G0 is the same modulus at the test commencement) and observe a threshold nS .
Beyond this threshold, the material starts to adapt in an irreversible way and undergo
damage.

The effect of temperature results in a decrease of the threshold nS for weak
deformations and an increase in the number of cycles for failure (for t  60 C).

The presence of mean stress amplifies the fatigue damage in an important way.

It is often considered that Miner’s rule strongly overestimates the fatigue life of
the structures in composites [GER 82].




