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Linear Elasticity

The purpose of this chapter is to recall the theory of linear elasticity which is
the general framework of the following chapters. We consider in the following
deformable solids in quasi-static equilibrium (no inertia forces). We introduce
hereafter the notations and the vocabulary of a theory which is supposed to be
known by the reader.

1.1. Notations

Tensors will be used to represent the physical quantities which describe
an elastic solid such as the displacement vector, the strain tensor, the stress
tensor, etc. The physical space is endowed with an orthonormal reference(
O, e-1

, e-2
, e-3

)
where O is the origin and e-i

is the base vector in direction i. A
geometrical point M of the physical space is represented by its coordinates in
this reference, that is the components of vector OM in the base

(
e-1
, e-2

, e-3

)
.

The following notations will be used to represent the tensors and their
components in the base

(
e-1
, e-2

, e-3

)
:

– latin letters in italic represent scalars: x, y, z, X,Y, Z, ...etc.;

– 2D or 3D vectors, i.e. first-order tensors, are underlined. Latin indices,
i, j, k, l... go through 1, 2, 3 whereas Greek indices, α, β, γ, δ,... go through
1, 2. So, x- = (x1, x2) = (xα) is a 2D vector and x- = (x1, x2, x3) = (xi) is a
3D vector. The following equivalent notations of the same vector will be used:

x- = (x1, x2, x3) = (xi) = x1e-1
+ x2e-2

+ x3e-3
= xie-i

,
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where the Einstein convention of summation over repeated indices has been
used. This convention will be used in all the continuation;

– the 2D or 3D second-order tensors are underlined with a tilde. So, σ∼ =
(σαβ) is a 2D second-order tensor and σ∼ = (σij) is a 3D second-order tensor.
All the following notations of the same second-order tensor are equivalent:

σ∼ =

⎛
⎝σ11 σ12 σ13

σ21 σ22 σ23
σ31 σ32 σ33

⎞
⎠ = (σij) =

∑
i,j=1,2,3

σije-i
⊗ e-j

= σije-i
⊗ e-j

,

where e-i
⊗ e-j

is the tensorial (or dyadic) product of vector e-i
with vector e-j

.
We recall that the tensorial product of vector a- with vector b- is the second-
order tensor a-⊗ b-= (aibj);

– fourth-order tensors are underlined with two tildes:

C∼∼ = Cijkle-i
⊗ e-j

⊗ e-k
⊗ e-l

.

The following contraction operations will be used:

x- · y
-
= xiyi, σ∼.n- = (σijnj) , p∼ · q∼ = (pikqkj) ,

σ∼ : ε∼ = σijεji, C∼∼ : ε∼ = (Cijklεlk) ;

– the norm of a vector or a second-order tensor is denoted as:∣∣x-∣∣ =√
x- · x- =

√
x21 + x22 + x23,

∣∣∣σ∼∣∣∣ =√
Tσ∼ : σ∼.

Here, the (ij) components of the transpose tensor Tσ∼ are equal to the (ji)
components of σ∼;

– let X(x-) = X (x1, x2, x3) be a scalar field. The partial derivative of X
with respect to xi is denoted by:

∂X

∂xi
= X,i.

The gradient of X is the vector

∇X = (X,i) ;
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– this notation is extended to vector fields. Let ξ
-
(x-) =(

ξ1(x-), ξ2(x-), ξ3(x-)
)

be a vector field. Then, its gradient, denoted as
∇ξ
-

, is the second-order tensor (ξi,j). The symmetric part of the gradient,
denoted by ∇sξ

-
, is the second-order tensor given by:

∇sξ
-
=

(
1

2
(ξi,j + ξj,i)

)
.

1.2. Stress

A solid body occupying the smooth domain V in an equilibrium state is
subjected to internal cohesive forces which maintain its integrity under the
action of external forces. According to the Cauchy continuum model theory,
the internal forces in the solid can be represented by a second-order tensor so-
called stress field, usually denoted by σ∼

(
x-
)
, x- ∈ V or more simply σ∼, which

is assumed to be sufficiently smooth. The physical interpretation of σ∼ is the
following: consider a fictitious plane surface of infinitesimal area δa, centered
at point x-, and oriented by the unit normal vector n- which separates into two
sides the material located in the immediate vicinity of point x-: a side + in the
direction of n- and a side – in the opposite direction. Such a surface is called a
facet. Then, the elementary vector

δf
-
= σ∼

(
x-
) · n-δa [1.1]

represents the resultant force which is applied by the matter situated on the
side + of the facet on those situated on the side – (Figure 1.1). Hence,
σ∼(x-) · n- appear as the limit as δa goes to zero of the ratio of δf

-
and δa. It

should be noted that the Cauchy model assumes that the norm of the resultant
moment of the forces exerted by the matter situated on the side + of the facet
on those situated on the side – can be neglected with respect to

∣∣∣δf
-

∣∣∣√δa.
Cauchy showed that, under this assumption, the equilibrium of the
tetrahedron of vertex x- and the infinitesimal sides δx1, δx2, δx3 imposes the
symmetry of the stress tensor σ∼: σij = σji for all i, j, or equivalently

Tσ∼ = σ∼. [1.2]
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δf
-
= σ∼ · n-δa

n-

δa

Figure 1.1. Elementary force δf
-

, Cauchy stress σ∼,

and elementary facet n-δa

Similarly, the equilibrium of the parallelepiped rectangle centered at x- of
infinitesimal sides δx1, δx2, δx3 leads to the equilibrium equation:

∇x · σ∼ + f
-

ext = 0, [1.3]

where f
-

ext(x-) is the volumic density of at distance external body forces such as
gravity. The divergence of σ∼, noted ∇x ·σ∼, is the vector whose i-th component
is σij,j . In components, the equilibrium equation can be written as:

σij,j + f ext
i = 0.

In most cases, σ∼(x-) is piece-wise continuously differentiable and its
divergence is understood in the classical meaning to which the following
condition must be added. Let Γ be a surface discontinuity of σ∼ and n- its
normal vector. Then, the equilibrium of a facet situated at Γ of normal n-
imposes the continuity of the stress vector σ∼(x-) · n- (and not all the
components of σ∼!) when x- goes through Γ (Figure 1.2). A weak formulation
of the equilibrium equation [1.3] is obtained by performing the scalar product
of [1.3] by a smooth field of virtual velocity vectors, v-(x-), and then
integrating over the domain V :∫

V

(
∇x · σ∼ + f

-
ext
)

· v- dV = 0.
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σ∼ · n-

n-

Γ

Figure 1.2. Continuity of the stress vector

Using the following integration by parts formula:∫
V

(
∇x · σ∼

)
· v- dV = −

∫
V
σ∼ : ∇s

x v- dV +

∫
∂V

(
σ∼ · n-

)
· v- da,

where ∂V is the boundary of V of outer normal n-, we get:

∫
V
σ∼ : ∇s

x v- dV =

∫
V
f
-

ext · v- dV +

∫
∂V

(
σ∼ · n-

)
.v- da [1.4]

for all smooth vector field v-. Hence, the left-hand side of this equation appears
as the internal power in the virtual velocity field v- and T- = σ∼ · n- appears as
the external surfacic force applied at the boundary of the domain.

Considering in the above equation rigid body velocity vectors of the form:

v-
(
x-
)
= a-+ b-× x-, [1.5]

where a- is an arbitrary velocity vector and b- is an arbitrary rotation (pseudo)
vector, we find that ∇s

x v- is null and that the equilibrium equation imposes that
the resultant external forces and moments must be null:∫
V
f
-

ext dV +

∫
∂V

T- da = 0,

∫
V
x- × f

-
ext dV +

∫
∂V

x- × T- da = 0. [1.6]
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1.3. Linearized strains

Assume that the solid occupies the smooth domain V0 in the initial
configuration, i.e. before the application of the external body forces f

-
ext and

the external forces per unit surface T-. The material point initially located at
X- ∈ V0 is now located in x- ∈ V in the current configuration with:

x- = X- + ξ
-

(
X-
)
.

Here, ξ
-
(X- ) is the displacement field defined on V0 (Figure 1.3). We assume

throughout this book that the deformation of the solid is infinitesimal which
means that:∣∣∣∇X ξ

-

∣∣∣ � 1 ⇔ ∀i, j = 1, 2, 3

∣∣∣∣ ∂ξi∂Xj

∣∣∣∣ � 1. [1.7]

ξ
-X- x-

δX- δx-

VV0

Figure 1.3. Deformation of a solid

Consider the segment of material connecting point X- to point X- + δX- in
the initial configuration where δX- is an infinitesimal vector. This segment is
transformed into the segment connecting point x- image of X- in the current
configuration to point x-+ δx- image of X- + δX- in the current configuration.
We get:

x-+ δx- = X- + δX- + ξ
-

(
X- + δX-

) ≈ X- + δX- + ξ
-

(
X-
)
+
(
∇Xξ

-

)
· δX-

at the first-order in
∣∣δX- ∣∣. Hence,

δx- = δX- +
(
∇Xξ

-

)
· δX- =

(
δ∼ +∇Xξ

-

)
· δX- ,
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where δ∼ is the second-order unit tensor having diagonal components equal to
1 and 0 otherwise. Using [1.7], it can be seen that the relative extension of
segment

[
X- ,X- + δX-

]
in this transformation is given (at first-order in∣∣∣∇X ξ

-

∣∣∣) by the formula:

∣∣δx-∣∣− ∣∣δX- ∣∣∣∣δX- ∣∣ ≈ δX-∣∣δX- ∣∣ · ε∼
(
X-
) · δX-∣∣δX- ∣∣ , [1.8]

where

ε∼
(
X-
)
= ∇s

X ξ
-

[1.9]

is the symmetric second-order tensor of linearized strains.

Indeed, we have:

∣∣δx-∣∣2 = δX- ·
(
δ∼ + T∇Xξ

-

)
·
(
δ∼ +∇Xξ

-

)
· δX-

= δX- ·
(
δ∼ + T∇Xξ

-
+∇Xξ

-
+ T∇Xξ

-
· ∇Xξ

-

)
· δX-

Neglecting the term T∇Xξ
-

· ∇Xξ
-

which is of order
∣∣∣∇X ξ

-

∣∣∣2 , we obtain:

∣∣δx-∣∣2 ≈ ∣∣δX- ∣∣2 + 2δX- · ε∼ · δX- .

Then, taking the square root of
∣∣δx-∣∣2 / ∣∣δX- ∣∣2 and taking into account [1.7],

which implies
∣∣∣ε∼∣∣∣ � 1, [1.8] is obtained.

It can be shown that, for simply connex domains, the necessary and
sufficient conditions on ε∼ to be the symmetric part of the gradient of a
displacement field [1.9] are:

2ε23,23 = ε33,22 + ε22,33 with circular permutation of the indices, [1.10]

and

ε13,23 + ε32,31 = ε12,33 + ε33,21 with circular permutation

of the indices. [1.11]
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Moreover, the rigid body displacements of the form

ξ
-

(
x-
)
= a-+ b-× x- [1.12]

are the only one that generate null linearized strain fields.

1.4. Small perturbations

As it has been mentioned in the above sections, the stress field is defined
on the current configuration which is unknown a priori. The equilibrium
equation is written in this configuration on domain V (Euler variable, x-)
whereas the strain field is defined by [1.9] in the initial configuration V0

(Lagrange variable, X- ). The small perturbations assumption stipulates that,
besides the infinitesimal transformation assumption [1.7], we have:∣∣∣ξ

-

∣∣∣ /L � 1 [1.13]

where L is a typical length of the domain V0, as its diameter, for instance. This
assumption enables us to identify the initial and the current geometries. Thus,
the stress field σ∼(x-) defined on V is identified with the field σ∼(X- ) defined on
V0, obtained by substituting X- for x-. Using assumptions [1.7] and [1.13], the
equilibrium equation [1.3] on V is replaced by the following equation on V0:

∇X · σ∼ + f
-

ext (X- ) = 0. [1.14]

In all the continuation, we adopt the small perturbations assumption: initial
and current configurations V0 and V are identified, as well as the derivations
with respect to variables x- and X- .

1.5. Linear elasticity

Under the assumption of small perturbations with constant temperature
from a free-stress initial configuration (i.e. the stress field is identically null in
the absence of external loads), the linear elastic constitutive law can be
written as:

σ∼
(
x-
)
= C∼∼

(
x-
)
: ε∼
(
x-
)
, or equivalently σij = Cijklεlk, [1.15]
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where C∼∼ (x-) is the fourth-order elastic stiffness tensor which represents a
local physical property of the material located in the vicinity of point x-.
When C∼∼ does not vary with x- we say that the material is homogeneous,
otherwise it is heterogeneous. The symmetries of σ∼ and ε∼ imply the following
minor symmetries on the components of C∼∼ :

Cijkl = Cjikl = Cijlk.

For thermodynamic reasons, the tensor C∼∼ must fulfill the following major
symmetry on its components:

Cijkl = Cklij ,

and be positive definite in the sense of the following quadratic form in ε∼, which
is called the strain elastic energy density:

w
(
ε∼,x-

)
=

1

2
ε∼ : C∼∼

(
x-
)
: ε∼ =

1

2
Cijkl

(
x-
)
εijεkl ≥ 0

for all ε∼, with w(ε∼,x-) = 0 ⇒ ε∼ = 0. Actually, w dV is the elastic (i.e
reversible) energy stored in the infinitesimal volume element dV when it is
brought from the initial configuration to the deformed current configuration
with a strain ε∼. This energy is a quadratic form of ε∼ whose components (i.e
the components of C∼∼ ) are physical characteristics of the material located at
x-. Due to both minor and major symmetries, there are only 21 independent
components of C∼∼ . In the presence of material symmetries, subject of section 8
of this chapter, this number can be reduced up to two for an isotropic material
which behaves in the same way in all the directions of the space.

Besides, the constitutive relation [1.15] can be inverted giving:

ε∼
(
x-
)
= S∼∼

(
x-
)
: σ∼

(
x-
)
,

where

S∼∼
(
x-
)
=
(
Sijkl

(
x-
))

= C∼∼
−1
(
x-
)

is the fourth-order tensor of elastic compliance at point x-. This tensor has the
same minor and major symmetries as C∼∼ and it defines the following quadratic
form which is called the stress elastic energy density:

w∗
(
σ∼,x-

)
=

1

2
σ∼ : S∼∼

(
x-
)
: σ∼ =

1

2
Sijkl

(
x-
)
σijσkl ≥ 0

for all σ∼, with w∗(σ∼,x-) = 0 ⇒ σ∼ = 0.
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We have

w∗
(
σ∼,x-

)
= w

(
ε∼,x-

)
for all couples (σ∼, ε∼) complying with the linear elastic constitutive law [1.15].
Let us indicate that the quadratic form ε∼ → w(ε∼,x-), or σ∼ → w∗(σ∼,x-),
completely defines the constitutive law at point x- since tensor C∼∼ (x-),
respectively tensor S∼∼(x-), can be obtained by taking the second-order
derivative of w with respect to ε∼, respectively σ∼:

Cijkl

(
x-
)
=

∂2w

∂εij∂εkl
, Sijkl

(
x-
)
=

∂2w∗

∂σij∂σkl
.

The quadratic formes w and w∗ are actually dual in the sense of the
Legendre–Fenchel transform:

w∗
(
σ∼
)
= sup

ε∼

{
σ∼ : ε∼ − w

(
ε∼
)}

and

w
(
ε∼
)
= sup

σ∼

{
σ∼ : ε∼ − w∗

(
σ∼
)}

, [1.16]

where the dependence on x- has been omitted. Thus, for all couples (σ∼, ε∼),

w
(
ε∼
)
+ w∗

(
σ∼
)

≥ σ∼ : ε∼ [1.17]

with equality if, and only if, σ∼ and ε∼ comply with the constitutive law
σ∼ = C∼∼ : ε∼.

1.6. Boundary value problem in linear elasticity

Let us summarize the problem to be solved: the smooth domain V
(identical to V0) is given and the fields of elasticity stiffness tensor C∼∼ and
body forces f

-
ext are also given on V . The unknowns are the displacement

field ξ
-

, the strain field ε∼ and the stress field σ∼. They are solution of the partial
differential equations on V , [1.3], [1.9] and [1.15]:⎧⎪⎨

⎪⎩
∇ · σ∼ + f

-
ext = 0,

ε∼ = ∇sξ
-
,

σ∼
(
x-
)
= C∼∼

(
x-
)
: ε∼
(
x-
)
.

[1.18]
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Yet, the resolution of this system requires boundary conditions on ∂V , the
boundary of V : on each portion of ∂V of outer normal n-, three components
must be prescribed among the six components of both the displacement vector
ξ
-

and the stress vector T- = σ∼ · n-. For instance, restraint boundary conditions
impose that the three components of the displacement vector ξ

-
must vanish at

the boundary (Dirichlet boundary conditions). Free boundary conditions mean
that the three components of the stress vector T- are null (Neumann boundary
conditions). Uniform pressure conditions prescribe that the stress vector T- is
equal to −pn- where p > 0 is the given pressure. No friction bilateral contact
conditions can be written as: ξ

-
· n- = 0, m- 1

· T- = 0 and m- 2
· T- = 0

where (n-,m- 1
,m- 2

) is a local orthonormal basis at the considered point of the
boundary.

It can be proved that, under suitable regularity conditions, the system
(1.18) + boundary conditions has unique stress and strain solutions, ε∼ and σ∼,
the uniqueness of displacement field ξ

-
being not guaranteed unless boundary

conditions eliminate rigid body displacements (i.e those displacements fields
which produce null strain field). In all the continuation, we will consider such
well-posed linearized elasticity problems.

1.7. Variational formulations

In this section, we recall the main variational formulations of problem
(1.18) + boundary conditions. Let us be more specific about boundary
conditions although other boundary conditions can be considered in a very
similar way. We assume that ∂V , the boundary of V , is divided into two parts:
∂Vξ where the displacement vector ξ

-
is prescribed and ∂VT where the stress

vector T- is prescribed as:

ξ
-
= ξ
-
d on ∂Vξ and T- = T-

d on ∂VT . [1.19]

Here, ξ
-
d and T-

d are given functions.

1.7.1. Compatible strains and stresses

We introduce the set of kinematically compatible strain fields: it is the set
KC

(
ξ
-
d
)

of strain fields on V which are generated by regular enough
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displacement fields complying with the kinematic boundary condition on
∂Vξ:

KC
(
ξ
-
d
)
=
{
ε∼, ∃ regular enough ξ

-
, ε∼ = ∇sξ

-
on V, ξ

-
= ξ
-
d on ∂Vξ

}
.

[1.20]

Let ε∼
′ be an arbitrary strain field in KC

(
ξ
-
d
)

. Then, ε∼ ∈ KC
(
ξ
-
d
)

is

equivalent to ε∼ = ε∼
′ + ε∼

0 with ε∼
0 ∈ KC0 where KC0 is the set KC

(
ξ
-
d
)

obtained by setting ξ
-
d = 0:

KC0 ≡ KC
(
ξ
-
d = 0

)
. [1.21]

The set SC
(
f
-

ext,T-
d
)

of statically compatible stress fields is the set of
regular enough stress fields complying with both equilibrium equation with
f
-

ext and static boundary conditions on ∂VT :

SC
(
f
-

ext,T-
d
)
=
{
σ∼ regular enough,

∇ · σ∼ + f
-

ext = 0 on V, T- = T-
d on ∂VT

}
. [1.22]

Similarly, let σ∼
′ be an arbitrary stress field in SC

(
f
-

ext,T-
d
)

. Then, σ∼ ∈
SC

(
f
-

ext,T-
d
)

is equivalent to σ∼ = σ∼
′ +σ∼

0 with σ∼
0 ∈ SC0 where SC0 is the

set SC
(
f
-

ext,T-
d
)

obtained by setting
(
f
-

ext,T-
d
)
=
(
0-,0-

)
:

SC0 ≡ SC
(
f
-

ext = 0,T-
d = 0

)
. [1.23]

Let ε∼ be in KC
(
ξ
-
d
)

and σ∼ be in SC
(
f
-

ext,T-
d
)

. Then, due to formula
[1.4], we have:∫

V
σ∼ : ε∼ dV = Φ

(
ξ
-

)
+Φ∗

(
σ∼
)
, [1.24]
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where the functionals Φ and Φ∗ are respectively defined by:

Φ
(
ξ
-

)
=

∫
V
f
-

ext · ξ
-
dV +

∫
∂VT

T-
d.ξ
-
da [1.25]

and

Φ∗
(
σ∼
)
=

∫
∂Vξ

T-.ξ-
d da. [1.26]

In particular, for ε∼ ∈ KC0 and σ∼ ∈ SC0, we will have:∫
V
σ∼ : ε∼ dV = 0, [1.27]

which means that KC0 and SC0 are orthogonal in the sense of the above
equation. Let x- → ε∼(x-) and x- → σ∼(x-) be two smooth fields of symmetric
second-order tensors on V . We introduce the following two functionals:

W
(
ε∼
)
=

∫
V
w
(
ε∼
(
x-
)
,x-

)
dV =

1

2

∫
V
ε∼
(
x-
)
: C∼∼

(
x-
)
: ε∼
(
x-
)
dV [1.28]

and

W ∗
(
σ∼
)
=

∫
V
w∗

(
σ∼
(
x-
)
,x-

)
dV =

1

2

∫
V
σ∼
(
x-
)
: S∼∼

(
x-
)
: σ∼

(
x-
)
dV. [1.29]

1.7.2. Principle of minimum of potential energy

Let the displacement field ξ
-
s, the strain field ε∼

s and the stress field σ∼
s be

the solutions of the elasticity problem [1.18–1.19]. Then,
(
ξ
-
s, ε∼

s
)

minimizes
the potential energy

W
(
ε∼
)

− Φ
(
ξ
-

)
[1.30]

over all kinematically compatible fields in KC
(
ξ
-
d
)

. Indeed, since W is
quadratic in ε∼, we have by simple algebra:

W
(
ε∼
)
= W

(
ε∼
s
)
+W

(
ε∼ − ε∼

s
)
+

∫
V
σ∼
s
(
x-
)
:
(
ε∼
(
x-
)− ε∼

s
(
x-
))
dV, [1.31]
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where the equation

σ∼
s
(
x-
)
= C∼∼

(
x-
)
: ε∼

s
(
x-
)

has been used. Using∫
V
σ∼
s
(
x-
)
:
(
ε∼
(
x-
)− ε∼

s
(
x-
))

dV = Φ
(
ξ
-

)
− Φ

(
ξ
-
s
)
, [1.32]

the positiveness of W
(
ε∼ − ε∼

s
)

guarantees the result.

1.7.3. Principle of minimum of complementary energy

Similarly, it can be shown that the stress σ∼
s minimizes the complementary

energy

W ∗
(
σ∼
)

− Φ∗
(
σ∼
)

[1.33]

over all statically compatible stress fields in SC
(
f
-

ext,T-
d
)

.

Moreover, we have the following two remarkable properties: the first
property stipulates that the value at the solution of the potential energy is
opposite the value of the complementary energy at this solution:

W
(
ε∼
s
)

− Φ
(
ξ
-
s
)
+W ∗

(
σ∼
s
)

− Φ∗
(
σ∼
s
)
= 0. [1.34]

This motivates the use of the term “complementary energy” for the
functional W ∗ − Φ∗. The second is the Clapeyron formula which stipulates
that the elastic energy stored in the material is equal to half the work of
external forces:

W
(
ε∼
s
)
= W ∗

(
σ∼
s
)
=

1

2

∫
V
σ∼
s
(
x-
)
: ε∼

s
(
x-
)
dV =

1

2

(
Φ
(
ξ
-
s
)
+Φ∗

(
σ∼
s
))

.

[1.35]
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1.7.4. Two-energy principle

Let ε∼ be in KC
(
ξ
-
d
)

and σ∼ be in SC
(
f
-

ext,T-
d
)

, then we have:

W
(
ε∼ − ε∼

s
)
+W ∗

(
σ∼ − σ∼

s
)
= W

(
ε∼ − S∼∼ : σ∼

)
= W ∗

(
σ∼ − C∼∼ : ε∼

)
. [1.36]

Indeed, the last right-hand equation in the above formula is easy to obtain
by simple algebra. Moreover, we have:

σ∼ − C∼∼ : ε∼ = σ∼ − σ∼
s + σ∼

s − C∼∼ : ε∼ = σ∼ − σ∼
s − C∼∼ :

(
ε∼ − ε∼

s
)
. [1.37]

Hence,

W ∗
(
σ∼ − C∼∼ : ε∼

)
= W ∗

(
σ∼ − σ∼

s
)
+W ∗

(
C∼∼ :

(
ε∼ − ε∼

s
))

−
∫
V

(
σ∼ − σ∼

s
)
:
(
ε∼ − ε∼

s
)

[1.38]

Noticing that ε∼− ε∼
s ∈ KC0 and σ∼ −σ∼

s ∈ SC0, the last right-hand term in
the above equation is null due to the orthogonality of KC0 and SC0. Finally,
the result is obtained because we have W ∗

(
C∼∼ :

(
ε∼ − ε∼

s
))

= W
(
ε∼ − ε∼

s
)

by simple algebra.

1.8. Anisotropy

Before recalling the concepts of anisotropy and material symmetries, the
objective of this section, it is useful to recall the Voigt matrix representation of
elasticity tensors.

1.8.1. Voigt notations

In some cases, it is convenient to represent the second-order symmetric
tensors of stress σ∼ = (σij) and strain ε∼ = (εij) by the two six-component

columns
[
σ∼
]

and
[
ε∼
]
, respectively:
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[
σ∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33√

2σ23√
2σ31√
2σ12

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

[
ε∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33√

2ε23√
2ε31√
2ε12

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Introducing multiplier
√
2 in the non-diagonal components ensures the

identification of the scalar product
[
σ∼
]

·
[
ε∼
]

with the contraction product
σ∼ : ε∼. Indeed, we have:

[
σ∼
]

·
[
ε∼
]
= σ∼ : ε∼ = σ11ε11 + σ22ε22 + σ33ε33 + 2σ23ε23

+2σ31ε31 + 2σ12ε12

Using these notations, one can easily check that the constitutive equation
can be written in the following matrix form:

σ∼ = C∼∼ : ε∼ ⇐⇒
[
σ∼
]
=
[
C∼∼
]

·
[
ε∼
]

where
[
C∼∼
]

is the symmetric 6 × 6–matrix given in terms of Cijkl by:

[
C∼∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133

√
2C1123

√
2C1131

√
2C1112

C2222 C2233

√
2C2223

√
2C2231

√
2C2212

C3333

√
2C3323

√
2C3331

√
2C3312

2C2323 2C2331 2C2312

SYM 2C3131 2C3112

2C1212

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The inversion of the previous equation gives:

ε∼ = S∼∼ : σ∼ ⇐⇒
[
ε∼
]
=
[
S∼∼
]

·
[
σ∼
]

where
[
S∼∼
]

is the symmetric 6 × 6-matrix inverse of
[
C∼∼
]
:

[
S∼∼
]
=
[
C∼∼
]−1

.
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Its components in terms of Sijkl are:

[
S∼∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

S1111 S1122 S1133

√
2S1123

√
2S1131

√
2S1112

S2222 S2233

√
2S2223

√
2S2231

√
2S2212

S3333

√
2S3323

√
2S3331

√
2S3312

2S2323 2S2331 2S2312

SYM 2S3131 2S3112

2S1212

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The elastic strain and stress energy densities can be expressed using the
matrix representations of the elasticity tensors as follows:

w =
1

2
ε∼ : C∼∼ : ε∼ =

1

2

[
ε∼
]

·
[
C∼∼
]

·
[
ε∼
]

and

w∗ =
1

2
σ∼ : S∼∼ : σ∼ =

1

2

[
σ∼
]

·
[
S∼∼
]

·
[
σ∼
]
.

1.8.2. Material symmetries

An orthogonal transformation is a linear application mapping any
orthonormal basis into an orthonormal basis. Hence, it is a second-order
tensor, O∼ , which can be represented by its components in the basis(
e-1
, e-2

, e-3

)
by O∼ = (Oij), with the following property:

TO∼ = O∼
−1

where TO∼ is the transpose of O∼ . The above property is equivalent to TO∼ ·O∼ = δ∼
which can be written in components OkiOkj = δij where δ is the Kronecker
symbol, equal to 1 if i = j and to 0 otherwise, and δ∼ is identity second-order
tensor.

Let us consider a medium occupied by a homogeneous material of elasticity
stiffness tensor C∼∼ . Let ε∼ be an uniform strain of the medium. We recall that
the relative extension of an infinitesimal segment along the normal vector n- is
given by n- · (ε∼·n-) = εijninj . By definition, the image of ε∼ by the orthogonal
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transformation O∼ is the unique strain tensor ε∼
† which preserves the relative

extension of any infinitesimal segment in the transformation O∼ . So, we have:

n- ·
(
ε∼ · n-

)
= n-

† ·
(
ε∼
† · n-†

)
for all n- and n-

† = O∼ · n-. It can be deduced that:

ε∼
† = O∼ · ε∼ · TO∼ . [1.39]

Or, in components:

ε†ij = OikOjlεkl. [1.40]

We say that the orthogonal transformation O∼ is a material symmetry of the
elastic medium and that this medium is invariant under the action of O∼ if, and
only if, for all ε∼, the strain elastic energy density of the medium is preserved:

w
(
ε∼
)
= w

(
ε∼
†
)
. [1.41]

In components, [1.41] is equivalent to:

1

2
Cijmnεijεmn =

1

2
Cijmnε

†
ijε

†
mn

for all ε∼ and ε∼
† related by [1.40]. So, we have:

Cklopεklεop = Cijmnε
†
ijε

†
mn = Cijmn (OikOjlεkl) (OmoOnpεop)

= (OikOjlOmoOnpCijmn) εklεop.

for all ε∼. Consequently, [1.41] is equivalent to:

Cklop = OikOjlOmoOnpCijmn. [1.42]

Notice that any elastic medium is invariant with respect to identity O∼ = δ∼
and central symmetry O∼ = −δ∼.
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Due to the Legendre–Fenchel duality property [1.16] an equivalent stress
version of the invariance property [1.41] can be derived. Let

σ∼
† = O∼ · σ∼ · TO∼ [1.43]

be the image of σ∼ by the orthogonal transformation O∼ . In components, the
previous equation can be written as:

σ†
ij = OikOjlσkl

Note that the contraction of a stress tensor with a strain tensor is a scalar,
and hence it is invariant by orthogonal transformation:

σ∼
† : ε∼

† = σ†
ijε

†
ij = (OikOjlσkl) (OimOjnεmn) = σklεkl = σ∼ : ε∼

for all ε∼ since OikOim = δkm and OjlOjn = δnl.

So, using [1.16], the previous relation and [1.41], we obtain:

w∗
(
σ∼
)
= sup

ε∼

{
σ∼ : ε∼ − w

(
ε∼
)}

= sup
ε∼

{
σ∼
† : ε∼

† − w
(
ε∼
†
)}

, [1.44]

where ε∼
† is given by [1.39] in terms of ε∼. For ε∼ spaning the space of symmetric

second-order tensors, ε∼
† spans also the same space. Therefore,

w∗
(
σ∼
)
= sup

ε∼†

{
σ∼
† : ε∼

† − w
(
ε∼
†
)}

= w∗
(
σ∼
†
)
. [1.45]

So, if the orthogonal transformation O∼ is a material symmetry, then for all
σ∼, the stress elastic energy density is preserved by this transformation:

w∗
(
σ∼
)
= w∗

(
σ∼
†
)
. [1.46]

In components, [1.46] is equivalent to:

Sklop = OikOjlOmoOnpSijmn. [1.47]

Using the second duality property in [1.16] which express w
(
ε∼
)

as a

function of w∗
(
σ∼
)

, we establish the reverse implication so that [1.41] and
[1.46] are actually equivalent.
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1.8.3. Orthotropy

We say that the medium is monoclinic if it is invariant with respect to a
plane-symmetry. For instance, if the plane (1,2) is a material symmetry plane,
then we will have:

[
C∼∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 0 0
√
2C1112

C2222 C2233 0 0
√
2C2212

C3333 0 0
√
2C3312

2C2323 2C2331 0
SYM 2C3131 0

2C1212

⎤
⎥⎥⎥⎥⎥⎥⎦

Indeed, in this case:

O∼ =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ and ε∼

† =

⎛
⎝ ε11 ε12 −ε13

ε12 ε22 −ε23
−ε13 −ε23 ε33

⎞
⎠ .

Property [1.41], and its equivalent version [1.42], imply that all the coupling
components between ε13 and ε23 on the one hand, and the other components of
ε∼, in the other hand, are null. So, a linear elastic monoclinic medium possesses
13 independent elastic constants.

We say that the medium is orthotropic when it is invariant by symmetry
with respect to three orthogonal planes (1,2), (2,3) and (3,1). Then, in this
case, the Voigt matrix representation of C∼∼ is:

[
C∼∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 0 0 0
C2222 C2233 0 0 0

C3333 0 0 0
2C2323 0 0

SYM 2C3131 0
2C1212

⎤
⎥⎥⎥⎥⎥⎥⎦
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and

[
S∼∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
2μ23

0 0

0 0 0 0 1
2μ31

0

0 0 0 0 1
2μ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

with

ν12
E1

=
ν21
E2

,
ν13
E1

=
ν31
E3

,
ν23
E2

=
ν32
E3

because of the symmetry of matrix
[
S∼∼
]
.

An orthotropic medium posseses nine independent elastic constants. The
shear modulus μij is often denoted by Gij . Ei is the Young’s modulus in
direction i and νij is the Poisson’s ratio in direction j under uniaxial
traction/compression along direction i. For instance, the application of an
uniaxial stress along direction 1:

σ∼ =

⎛
⎝σ11 0 0

0 0 0
0 0 0

⎞
⎠

produces the strain

ε∼ =

⎛
⎝ σ11

E1
0 0

0 −ν12
σ11
E1

0

0 0 −ν13
σ11
E1

⎞
⎠

The necessary and sufficient conditions for the definite positiveness of
matrix

[
C∼∼
]

are obtained thanks to the Sylvestre’s criteria which stipulates
that a symmetric n × n-matrix (Mij) i, j = 1, ..., n is definite positive, if, and
only if, for all k going from 1 to n, the determinant of the matrix (Mij)
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i, j = 1, ..., k is strictly positive. So, applying this criteria gives the following
necessary and sufficient conditions:

E1 > 0,
1 − ν12ν21

E1E2
> 0,

1 − ν12ν21 − ν23ν32 − ν13ν31 − ν12ν23ν31 − ν13ν32ν21
E1E2E3

> 0, μij > 0.

By circular permutation of the basis-vectors, we have also the necessary
conditions:

Ei > 0, μij > 0,
1 − ν12ν21 > 0, 1 − ν13ν31 > 0, 1 − ν23ν32 > 0,
1 − ν12ν21 − ν23ν32 − ν13ν31 − ν12ν23ν31 − ν13ν32ν21 > 0.

[1.48]

1.8.4. Transverse isotropy

A transverse isotropic medium of axis 3 is an orthotropic medium which
is in addition invariant with respect to any rotation around axis 3. In this case,
the directions in the (1,2)-plane are all indistinguishable. By considering the
π/2-rotation around axis 3, the following relations are derived:

C2222 = C1111, C1133 = C2233, C2323 = C3131

and

E1 = E2, ν12 = ν21, ν13 = ν23, ν31 = ν32.

Moreover, considering the rotations of form

O∼ =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠

and by writing [1.42] and [1.47] for k = 1, l = 2, o = 1, p = 2, we can obtain
the following relations:

C1212 =
C1111 − C1122

2
and

1

4μ12
= S1212 =

S1111 − S1122

2
=

1 + ν12
2E1

.
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So, a transverse isotropic medium possess five independent elastic
constants.

Hexagonal material symmetry means that the medium is orthotropic and
invariant with respect to rotations around axis 3 of angles ±2π/3. It turns out
that in this case, the components of C∼∼ and S∼∼ comply with the same relations
as for transverse isotropy. It should be emphasized that the coincidence of
hexagonal symmetry and transverse isotropy is very specific to linear
elasticity. This remarkable property does not hold for other constitutive laws
(nonlinear elasticity, plasticity, etc).

1.8.5. Isotropy

An isotropic medium is invariant with respect to any orthogonal
transformation. Therefore, it is transverse isotropic in any basis.
Consequently, C∼∼ has the following form:

[
C∼∼
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ+ 2μ λ λ 0 0 0
λ+ 2μ λ 0 0 0

λ+ 2μ 0 0 0
2μ 0 0

SYM 2μ 0
2μ

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Young’s modulus Ei in all directions are identical (E), all νij are identical
(ν) and we have:

λ =
ν

(1 + ν) (1 − 2ν)
E, μ =

E

2 (1 + ν)
.

The definite positiveness conditions reduce to:

E > 0 and − 1 < ν <
1

2

which are equivalent to

K = λ+
2

3
μ > 0 and μ > 0.
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The constants (λ, μ) are the Lamé constants. K is the bulk modulus.

Hence, the constitutive law for an isotropic linear elastic medium can be
written as:

σ∼ = λtr
(
ε∼
)
δ∼ + 2με∼ ⇐⇒ ε∼ =

1 + ν

E
σ∼ − ν

E
tr
(
σ∼
)
δ∼,

where

tr
(
ε∼
)
= εii = ε11 + ε22 + ε33

is the trace of ε∼ and δ∼ is the unit second-order tensor.

It is convenient to introduce the fourth-order tensors J∼∼ and K∼∼ , which have
the same minor and major symmetries as an elasticity tensor: for all symmetric
second-order tensor ε∼:

J∼∼ : ε∼ =
1

3
tr
(
ε∼
)
δ∼,

K∼∼ : ε∼ = ε∼ − 1

3
tr
(
ε∼
)
δ∼ = ε∼

dev,

where ε∼
dev is the deviatoric part ε∼.

The above relations write in components:

Jijkl : εlk =
1

3
εmmδij

and

Kijkl : εlk = εij − 1

3
εmmδij = εdev

ij .

So, we have:

I∼∼ = J∼∼ +K∼∼ ,
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where I∼∼ is the identity fourth-order tensor operating on symmetric second-
order tensors. Its components are given by:

Iijkl =
1

2
(δikδjl + δilδjk) .

The isotropic linear elastic constitutive law can be written equivalently
under the following form:

σ∼ = C∼∼ : ε∼ = Ktr
(
ε∼
)
δ∼ + 2με∼

dev =
(
3KJ∼∼ + 2μK∼∼

)
: ε∼.

Hence,

C∼∼ = 3KJ∼∼ + 2μK∼∼

can simply be denoted by C∼∼ = {3K, 2μ}. Tensors J∼∼ and K∼∼ correspond to
orthogonal projections on spherical and deviatoric symmetric second-order
tensors, respectively. They have the following remarkable properties which
are easy to establish:

J∼∼ : J∼∼ = J∼∼, K∼∼ : K∼∼ = K∼∼ , J∼∼ : K∼∼ = K∼∼ : J∼∼ = 0.

So, these properties enable useful simplifications in the algebraic
operations on isotropic fourth-order tensors which reduce to operations on
their components according to J∼∼ and K∼∼ . For instance, for any C∼∼ = {a, b}
and C′

∼∼ = {a′, b′},

C∼∼ +C′
∼∼ =

{
a+ a′, b+ b′

}
, C∼∼ : C′

∼∼ =
{
aa′, bb′

}
, and

C∼∼
−1 =

{
a−1, b−1

}
if ab �= 0.

In the isotropic case, the strain and stress elastic energy densities are
quadratic functions of the two first invariants of ε∼ and σ∼, respectively. We
have:

w
(
ε∼
)
=

1

2
λtr2

(
ε∼
)
+ μtr

(
ε∼
2
)
=

1

2
Ktr2

(
ε∼
)
+ μtr

((
ε∼

dev
)2)

[1.49]
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and

w∗
(
σ∼
)
=

1 + ν

2E
tr
(
σ∼
2
)

− ν

2E
tr2

(
σ∼
)

=
1

18K
tr2

(
σ∼
)
+

1

4μ
tr

((
σ∼

dev
)2)

,

where

tr
(
ε∼
2
)
= ε∼ : ε∼ = εikεkjδij

and

tr
(
σ∼
2
)
= σ∼ : σ∼ = σikσkjδij

are the sum of the square of the components of ε∼ and σ∼, respectively.


