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Chapter 1

Basic Concepts in Algorithms
and Complexity Theory

1.1. Algorithmic complexity

In algorithmic theory, a problem is a general question to which we wish to find an
answer. This question usually has parameters or variables the values of which have
yet to be determined. A problem is posed by giving a list of these parameters as well
as the properties to which the answer must conform. An instance of a problem is
obtained by giving explicit values to each of the parameters of the instanced problem.

An algorithm is a sequence of elementary operations (variable affectation, tests,
forks, etc.) that, when given an instance of a problem as input, gives the solution of
this problem as output after execution of the final operation.

The two most important parameters for measuring the quality of an algorithm are:
its execution time and the memory space that it uses. The first parameter is expressed
in terms of the number of instructions necessary to run the algorithm. The use of the
number of instructions as a unit of time is justified by the fact that the same program
will use the same number of instructions on two different machines but the time taken
will vary, depending on the respective speeds of the machines. We generally consider
that an instruction equates to an elementary operation, for example an assignment, a
test, an addition, a multiplication, a trace, etc. What we call the complexity in time or
simply the complexity of an algorithm gives us an indication of the time it will take to
solve a problem of a given size. In reality this is a function that associates an order of
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4 Combinatorial Optimization 1

magnitude! of the number of instructions necessary for the solution of a given problem
with the size of an instance of that problem. The second parameter corresponds to the
number of memory units used by the algorithm to solve a problem. The complexity
in space is a function that associates an order of magnitude of the number of memory
units used for the operations necessary for the solution of a given problem with the
size of an instance of that problem.

There are several sets of hypotheses concerning the “standard configuration” that
we use as a basis for measuring the complexity of an algorithm. The most commonly
used framework is the one known as “worst-case”. Here, the complexity of an algo-
rithm is the number of operations carried out on the instance that represents the worst
configuration, amongst those of a fixed size, for its execution; this is the framework
used in most of this book. However, it is not the only framework for analyzing the
complexity of an algorithm. Another framework often used is “average analysis”.
This kind of analysis consists of finding, for a fixed size (of the instance) n, the aver-
age execution time of an algorithm on all the instances of size n; we assume that for
this analysis the probability of each instance occurring follows a specific distribution
pattern. More often than not, this distribution pattern is considered to be uniform.
There are three main reasons for the worst-case analysis being used more often than
the average analysis. The first is psychological: the worst-case result tells us for cer-
tain that the algorithm being analyzed can never have a level of complexity higher
than that shown by this analysis; in other words, the result we have obtained gives
us an upper bound on the complexity of our algorithm. The second reason is mathe-
matical: results from a worst-case analysis are often easier to obtain than those from
an average analysis, which very often requires mathematical tools and more complex
analysis. The third reason is “analysis portability”: the validity of an average analysis
is limited by the assumptions made about the distribution pattern of the instances; if
the assumptions change, then the original analysis is no longer valid.

1.2. Problem complexity

The definition of the complexity of an algorithm can be easily transposed to prob-
lems. Informally, the complexity of a problem is equal to the complexity of the best
algorithm that solves it (this definition is valid independently of which framework we
use).

Let us take a size n and a function f(n). Thus:

— TIMEf(n) is the class of problems for which the complexity (in time) of an
instance of size n is in O(f(n)).

1. Orders of magnitude are defined as follows: given two functions f and g: f = O(g) if and
only if 3(k, k) € (RT,R) such that f < kg+k'; f = o(g) if and only if lim,,—.oc (f/g) = 0;
f=9Q(g)ifand only if g = o(f); f = ©(g) ifand only if f = O(g) and g = O(f).
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— SPACE(f (n) is the class of problems that can be solved, for an instance of size n,
by using a memory space of O(f(n)).

We can now specify the following general classes of complexity:

— P is the class of all the problems that can be solved in a time that is a polynomial
function of their instance size, thatis P = U,;“;OTIMEnk.

— EXPTIME is the class of problems that can be solved in a time that is an expo-
nential function of their instance size, that is EXPTIME = UEOZOTIMET‘I(.

— PSPACE is the class of all the problems that can be solved using a mem-
ory space that is a polynomial function of their instance size, that is PSPACE =
U ,SPACEnk.

With respect to the classes that we have just defined, we have the following re-
lations: P C PSPACE C EXPTIME and P C EXPTIME. Knowing whether the
inclusions of the first relation are strict or not is still an open problem.

Almost all combinatorial optimization problems can be classified, from an algo-
rithmic complexity point of view, into two large categories. Polynomial problems
can be solved optimally by algorithms of polynomial complexity, that is in O(n*),
where k is a constant independent of n (this is the class P that we have already de-
fined). Non-polynomial problems are those for which the best algorithms (those giving
an optimum solution) are of a “super-polynomial” complexity, that is in O(f(n)9(™)),
where f and g are increasing functions in n and lim,,_,~ g(n) = co. All these prob-
lems contain the class EXPTIME.

The definition of any algorithmic problem (and even more so in the case of any
combinatorial optimization problem) comprises two parts. The first gives the instance
of the problem, that is the type of its variables (a graph, a set, a logical expression,
etc.). The second part gives the type and properties to which the expected solution
must conform. In the complexity theory case, algorithmic problems can be classified
into three categories:

— decision problems;,
— optimum value calculation problems;,

— optimization problems.

Decision problems are questions concerning the existence, for a given instance, of
a configuration such that this configuration itself, or its value, conforms to certain
properties. The solution to a decision problem is an answer to the question associated
with the problem. In other words, this solution can be:

— either “yes, such a configuration does exist”;

— or “no, such a configuration does not exist”.
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Let us consider as an example the conjunctive normal form satisfiability problem,
known in the literature as SAT: “Given a set U of n Boolean variables x4, ..., x, anda
set C of m clauses? C1, . .., C,,, is there a model for the expression ¢ = C1 A. . .ACyy;
i.e. is there an assignment of the values O or 1 to the variables such that ¢ = 17",
For an instance ¢ of this problem, if ¢ allows a model then the solution (the correct
answer) is yes, otherwise the solution is no.

Let us now consider the MIN TSP problem, defined as follows: given a complete
graph K, over n vertices for which each edge e € E(K,) has a value d(e) > 0, we
are looking for a Hamiltonian cycle H C E (a partial closely related graph such that
each vertex is of 2 degrees) that minimizes the quantity ) ., d(e). Let us assume
that for this problem we have, as well as the complete graph K,, and the vector d,
costs on the edges K, of a constant K and that we are looking not to determine the
smallest (in terms of total cost) Hamiltonian cycle, but rather to answer the following
question: “Does there exist a Hamiltonian cycle of total distance less than or equal
to K'7”. Here, once more, the solution is either yes if such a cycle exists, or no if it
does not.

For optimum value calculation problems, we are looking to calculate the value of
the optimum solution (and not the solution itself).

In the case of the MIN TSP for example, the optimum associated value calculation
problem comes down to calculating the cost of the smallest Hamiltonian cycle, and
not the cycle itself.

Optimization problems, which are naturally of interest to us in this book, are those
for which we are looking to establish the best solution amongst those satisfying certain
properties given by the very definition of the problem. An optimization problem may
be seen as a mathematical program of the form:

{ opt v (T)

Te Oy

where 7 is the vector describing the solution3, v(T) is the objective function, Cy is the
problem’s constraint set, set out for the instance I (in other words, C sets out both the
instance and the properties of the solution that we are looking to find for this instance),
and opt € {max, min}. An optimum solution of I is a vector T* € argopt{v(T) :
T € Cr}. The quantity v(Z") is known as the objective value or value of the problem.
A solution T € C7 is known as a feasible solution.

2. We associate two literals = and T with a Boolean variable x, that is the variable itself and its
negation; a clause is a disjunction of the literals.

3. For the combinatorial optimization problems that concern us, we can assume that the com-
ponents of this vector are O or 1 or, if need be, integers.
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Let us consider the problem MIN WEIGHTED VERTEX COVER#. An instance of this
problem (given by the information from the incident matrix A, of dimension m X n,
of a graph G(V, E) of order n with |E| = m and a vector W, of dimension n of the
costs of the edges of V'), can be expressed in terms of a linear program in integers as
follows: )

min wW-T

Az >1

ze{0,1}"
where T is a vector from 0, 1 of dimension n such that x; = 1 if the vertex v; € V
is included in the solution, x; = 0 if it is not included. The block of m constraints
A.T > 1 expresses the fact that for each edge at least one of these extremes must be
included in the solution. The feasible solutions are all the transversals of GG and the
optimum solution is a transversal of G of minimum total weight, that is a transversal
corresponding to a feasible vector consisting of a maximum number of 1.

The solution to an optimization problem includes an evaluation of the optimum
value. Therefore, an optimum value calculation problem can be associated with an
optimization problem. Moreover, optimization problems always have a decisional
variant as shown in the MIN TSP example above.

1.3. The classes P, NP and NPO

Let us consider a decision problem II. If for any instance I of II a solution (that
is a correct answer to the question that states IT) of I can be found algorithmically in
polynomial time, that is in O(|I|*) stages, where || is the size of I, then I is called
a polynomial problem and the algorithm that solves it a polynomial algorithm (let us
remember that polynomial problems make up the P class).

For reasons of simplicity, we will assume in what follows that the solution to a
decision problem is:

— either “yes, such a solution exists, and this is it”;

— or “no, such a solution does not exist”.

In other words, if, to solve a problem, we could consult an “oracle”, it would
provide us with an answer of not just a yes or no but also, in the first case, a certificate

4. Given a graph G(V, E) of order n, in the MIN VERTEX COVER problem we are looking to
find a smallest transversal of G, that is a set V' C V such that for every edge (u,v) € F,
eitheru € V', or v € V' of minimum size; we denote by MIN WEIGHTED VERTEX COVER the
version of MIN VERTEX COVER where a positive weight is associated with each vertex and the
objective is to find a transversal of G that minimizes the sum of the vertex weights.



8  Combinatorial Optimization 1

proving the veracity of the yes. This testimony is simply a solution proposal that the
oracle “asserts” as being the real solution to our problem.

Let us consider the decision problems for which the validity of the certificate can
be verified in polynomial time. These problems form the class NP.

DEFINITION 1.1.— A decision problem 11 is in NP if the validity of all solutions of 11
is verifiable in polynomial time.

For example, the SAT problem belongs to NP. Indeed, given the assignment of the
values 0, 1 to the variables of an instance ¢ of this problem, we can, with at most nm
applications of the connector V, decide whether the proposed assignment is a model
for ¢, that is whether it satisfies all the clauses.

Therefore, we can easily see that the decisional variant of MIN TSP seen previously
also belongs to NP.

Definition 1.1 can be extended to optimization problems. Let us consider an opti-
mization problem II and let us assume that each instance I of II conforms to the three
following properties:

1) The feasibility of a solution can be verified in polynomial time.
2) The value of a feasible solution can be calculated in polynomial time.

3) There is at least one feasible solution that can be calculated in polynomial time.

Thus, IT belongs to the class NPQO. In other words, the class NPO is the class of
optimization problems for which the decisional variant is in NP. We can therefore
define the class PO of optimization problems for which the decisional variant belongs
to the class P. In other words, PO is the class of problems that can be optimally solved
in polynomial time.

We note that the class NP has been defined (see definition 1.1) without explicit
reference to the optimum solution of its problems, but by reference to the verification
of a given solution. Evidently, the condition of belonging to P being stronger than
that of belonging to NP (what can be solved can be verified), we have the obvious
inclusion of : P C NP (Figure 1.1).

“What is the complexity of the problems in NP \ P?”. The best general result on
the complexity of the solution of problems from NP is as follows [GAR 79].

THEOREM 1.1.— For any problem 11 € NP, there is a polynomial pr; such that each
instance I of II can be solved by an algorithm of complexity O(2Pn(11)),

In fact, theorem 1.1 merely gives an upper limit on the complexity of problems
in NP, but no lower limit. The diagram in Figure 1.1 is nothing more than a conjecture,
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¢

Figure 1.1. P and NP (under the assumption P # NP)

NP

and although almost all researchers in complexity are completely convinced of its
veracity, it has still not been proved. The question “Is P equal to or different from
NP?” is the biggest open question in computer science and one of the best known in
mathematics.

1.4. Karp and Turing reductions

As we have seen, problems in NP \ P are considered to be algorithmically more
difficult than problems in P. A large number of problems in NP \ P are very strongly
bound to each other through the concept of polynomial reduction.

The principle of reducing a problem IT to a problem IT’ consists of considering the
problem II as a specific case of II', modulo a slight transformation. If this transfor-
mation is polynomial, and we know that we can solve IT" in polynomial time, we will
also be able to solve II in polynomial time. Reduction is thus a means of transferring
the result of solving one problem to another; in the same way it is a tool for classifying
problems according to the level of difficulty of their solution.

We will start with the classic Karp reduction (for the class NP) [GAR 79, KAR 72].
This links two decision problems by the possibility of their optimum (and simultane-
ous) solution in polynomial time. In the following, given a problem 11, let Z1; be all of
its instances (we assume that each instance I € 7y is identifiable in polynomial time
in |7]). Let Oy be the subset of Zy; for which the solution is yes; Oy is also known as
the set of yes-instances (or positive instances) of II.

DEFINITION 1.2.— Given two decision problems 11, and 1ls, a Karp reduction (or
polynomial transformation) is a function f : Iy, — Zm,, which can be calculated in
polynomial time, such that, given a solution for f(I), we are able to find a solution
for I in polynomial time in |I| (the size of the instance I).
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A Karp reduction of a decision problem II; to a decision problem II5 implies the
existence of an algorithm A; for II; that uses an algorithm A, for Il,. Given any
instance I; € Ty, the algorithm A; constructs an instance I € Zpy,; it executes the
algorithm A,, which calculates a solution on /s, then A; transforms this solution into
a solution for IT; on I;. If A, is polynomial, then 4; is also polynomial.

Following on from this, we can state another reduction, known in the literature
as the Turing reduction, which is better adapted to optimization problems. In what
follows, we define a problem II as a couple (Zi1, Solyy), where Solyy is the set of
solutions for IT (we denote by Soly;(I) the set of solutions for the instance I € Zpy).

DEFINITION 1.3.— A Turing reduction of a problem 11; to a problem 115 is an algo-
rithm Ay that solves 11y by using (possibly several times) an algorithm A, for 115 in
such a way that if Ay is polynomial, then A4 is also polynomial.

The Karp and Turing reductions are transitive: if II; is reduced (by one of these
two reductions) to Il and II, is reduced to Il3, then II; reduces to II3. We can
therefore see that both reductions preserve membership of the class P in the sense that
if IT reduces to I’ and I’ € P, then II € P.

For more details on both the Karp and Turing reductions refer to [AUS 99, GAR 79,
PAS 04]. In Garey and Johnson [GAR 79] (Chapter 5) there is also a very interesting
historical summary of the development of the ideas and terms that have led to the
structure of complexity theory as we know it today.

1.5. NP-completeness

From the definition of the two reductions in the preceding section, if II' reduces
to II, then IT can reasonably be considered as at least as difficult as IT' (regarding
their solution by polynomial algorithms), in the sense that a polynomial algorithm
for IT would have sufficed to solve not only IT itself, but equally IT’. Let us confine
ourselves to the Karp reduction. By using it, we can highlight a problem II* € NP
such that any other problem II € NP reduces to II* [COO 71, GAR 79, FAG 74].
Such a problem is, as we have mentioned, the most difficult problem of the class NP.
Therefore we can show [GAR 79, KAR 72] that there are other problems ITI*' € NP
such that IT* reduces to IT*’. In this way we expose a family of problems such that
any problem in NP reduces (remembering that the Karp reduction is transitive) to one
of its problems. This family has, of course, the following properties:

— It is made up of the most difficult problems of NP.

— A polynomial algorithm for at least one of its problems would have been suffi-
cient to solve, in polynomial time, all the other problems of this family (and indeed
any problem in NP).



Basic Concepts in Algorithms and Complexity Theory 11

The problems from this family are NP-complete problems and the class of these
problems is called the NP-complete class.

DEFINITION 1.4.— A decision problem 11 is NP-complete if, and only if; it fulfills the
following two conditions:

)T ENP;
2)VII" € NP, 1 reduces to 11 by a Karp reduction.

Of course, a notion of NP-completeness very similar to that of definition 1.4 can
also be based on the Turing reduction.

The following application of definition 1.3 is very often used to show the NP-
completeness of a problem. Let IT; = (Zpy,, Solyy, ) and Iy = (Zp1,, Solyy, ) be two
problems, and let (f, g) be a pair of functions, which can be calculated in polynomial
time, where:

— f : 11, — I, is such that for any instance I € Zry,, f(I) € I1,;

—g : I, x Solp, — Soly, is such that for every pair (I,S) € (Zm, x
Solm, (f(1))). g(1, S) € Solm, (I).

Let us assume that there is a polynomial algorithm A for the problem Il5. In this case,
the algorithm f o A o g is a (polynomial) Turing reduction.

A problem that fulfills condition 2 of definition 1.4 (without necessarily checking
condition 1) is called NP-hard>. It follows that a decision problem 11 is NP-complete
if and only if it belongs to NP and it is NP-hard.

With the class NP-complete, we can further refine (Figure 1.2) the world of NP.
Of course, if P = NP, the three classes from Figure 1.2 coincide; moreover, under the
assumption P £ NP, the classes P and NP-complete do not intersect.

Let us denote by NP-intermediate the class NP\ (PUNP — complete). Informally,
this concerns the class of problems of intermediate difficulty, that is problems that are
more difficult than those from P but easier than those from NP-complete. More for-
mally, for two complexity classes C and C’ such that C’ C C, and a reduction R pre-
serving the membership of C’, a problem is C-intermediate if it is neither C-complete
under R, nor belongs to C’. Under the Karp reduction, the class NP-intermediate is
not empty [LAD 75].

Let us note that the idea of NP-completeness goes hand in hand with decision
problems. When dealing with optimization problems, the appropriate term, used in

5. These are the starred problems in the appendices of [GAR 79].
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NP-complete

NP-intermediate

Figure 1.2. P, NP and NP-complete (under the assumption P # NP)

the literature, is NP-hard®. A problem of NPO is NP-hard if and only if its decisional
variant is an NP-complete problem.

The problem SAT was the first problem shown to be NP-complete (the proof of
this important result can be found in [COO 71]). The reduction used (often called
generic reduction) is based on the theory of recursive languages and Turing ma-
chines (see [HOP 79, LEW 81] for more details and depth on the Turing machine
concept; also, language-problem correspondence is very well described in [GAR 79,
LEW 81]). The general idea of generic reduction, also often called the “Cook—Levin
technique (or theory)”, is as follows: For a generic decision (language) problem
belonging to NP, we describe, using a normal conjunctive form, the working of a
non-deterministic algorithm (Turing machine) that solves (decides) this problem (lan-

guage).

The second problem shown to be NP-complete [GAR 79, KAR 72] was the variant
of SAT, written 3SAT, where no clause contains more than three literals. The reduction
here is from SAT [GAR 79, PAP 81]. More generally, for all £ > 3, the kSAT problems
(that is the problems defined on normal conjunctive forms where each clause contains
no more than k literals) are all NP-complete.

It must be noted that the problem 2SAT, where all normal conjunctive form clauses
contain at most two literals, is polynomial [EVE 76]. It should also be noted that
in [KAR 72], where there is a list of the first 21 NP-complete problems, the problem
of linear programming in real numbers was mentioned as a probable problem from the

6. There is a clash with this term when it is used for optimization problems and when it is used
in the sense of property 2 of definition 1.4, where it means that a decision problem II is harder
than any other decision problem IT" € NP.
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class NP-intermediate. It was shown, seven years later ((KHA 79] and also [ASP 80],
an English translation of [KHA 79]), that this problem is in P.

The reference on NP-completeness is the volume by Garey and Johnson [GAR 79].
In the appendix, A list of NP-complete problems, there is a long list of NP-complete
problems with several commentaries for each one and for their limited versions. For
many years, this list has been regularly updated by Johnson in the Journal of Algo-
rithms review. This update, supplemented by numerous commentaries, appears under
the title: The NP-completeness column: an ongoing guide.

“What is the relationship between optimization and decision for NP-complete
problems?”. The following theory [AUS 95, CRE 93, PAZ 81] attempts to give an
answer.

THEOREM 1.2.— Let II be a problem of NPO and let us assume that the decisional
version of 11, written 11,4, is NP-complete. It follows that a polynomial Turing reduc-
tion exists between 11, and 11.

In other words, the decision versions (such as those we have considered in this
chapter) and optimization versions of an NP-complete problem are of equivalent al-
gorithmic difficulty. However, the question of the existence of a problem NPO for
which the optimization version is more difficult to solve than its decisional counter-
part remains open.

1.6. Two examples of NP-complete problems

Given a problem I1, the most conventional way to show its NP-completeness con-
sists of making a Turing or Karp reduction of an NP-complete II’ problem to II. In
practical terms, the proof of NP-completeness for II is divided into three stages:

1) proof of membership of II to NP;
2) choice of IT';

3) building the functions f and g (see definition 1.3) and showing that they can
both be calculated in polynomial time.

In the following, we show that MIN VERTEX COVER(G(V,E),K) and
MAX STABLE(G(V, E), K), the decisional variants of MIN VERTEX COVER and of
MAX STABLE, respectively, are NP-complete. These two problems are defined as fol-
lows. MIN VERTEX COVER(G(V, E), K): given a graph G and a constant K < |V,
does there exist in GG a transversal V' C V less than or equal in size to K? MAX

7. Given a graph G(V, E) of magnitude n, we are trying to find a stable set of maximum size,
that is a set V' C V such that V(u,v) € V' x V', (u,v) ¢ E of maximum size.
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STABLE SET(G(V, E), K): given a graph G and a constant K < |V
in G a stable set V/ C V of greater than or equal in size to K?

, does there exist

1.6.1. MIN VERTEX COVER

The proof of membership of MIN VERTEX COVER(G(V, E), K) to NP is very
simple and so has been omitted here. We will therefore show the completeness of
this problem for NP. We will transform an instance ¢(U,C) from 3SAT, with U =
{z1,...,zp}and C = {C4,...,C}, }, into an instance (G(V, E), K') of MIN VERTEX
COVER.

This graph is made up of two component sets, joined by edges. The first compo-
nent is made up of 2n vertices x1, Z1, ..., &y, T, and n edges (z;,z;), i = 1,...,n,
which join the vertices in pairs. The second is made up of m vertex-disjoint triangles
(that is of m cliques with three vertices). For a clause C;, we denote the three vertices
of the corresponding triangle by ¢;1, ¢;2 and ¢;3. In fact, the first set of components,
for which each vertex corresponds to a literal, serves to define the truth values of the
solution for 3SAT; the second set of components corresponds to the clauses, and each
vertex is associated with a literal of its clause. These triangles are used to verify the
satisfaction of the clauses. To finish, we add 3m “unifying” edges that link each vertex
of each “triangle-clause” to its corresponding “literal-vertex”. Let us note that exactly
three unifying edges go from (the vertices of) each triangle, one per vertex of the trian-
gle. Finally, we state K = n + 2m. It is easy to see that the transformation of ¢(U, C)
to G(V, E) happens in polynomial time in max{m,n} since |V| = 2n + 3m and
|E| = n + 6m.

As an example of the transformation described above, let us consider the instance
¢ = (l‘1 V Zo \/l‘g) A (i‘1 V o \/i‘g) N (332 V3 \/i‘4) N (i‘l V T2 \/l‘4) from 3SAT. The
graph G(V, E) for MIN VERTEX COVER is given in Figure 1.3. In this case, K = 12.

Figure 1.3. The graph associated with the expression
(xl \/ZEQVZBg) A (fl \/ZEQ\/:Eg) A (xg\/xg\/£4) A (fl \/ZEQ\/ZB4)

We will now show that G allows a transversal less than or equal in size to n+ 2m
if and only if the expression ¢ can be satisfied.
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Let us first show that the condition is necessary. Let us assume that there is a
polynomial algorithm A that answers the question “Is there in G a transversal V! C V
of size |V'| < K?7, and, if so, returns V’. Let us execute it with K = n + 2m. If the
answer from A is yes, then the transversal must be of a size equal to n+2m. In fact, any
transversal needs at least n vertices in order to cover the n edges corresponding to the
variables of ¢ (one vertex per edge) and 2m vertices to cover the edges of m triangles
(two vertices per triangle). As a result, if A answers yes, it will have calculated a
transversal of exactly n + 2m vertices.

In the light of the previous observation, given such a transversal VV’, we state that
x; = 1 if the extremity x; of the edge (x;, ;) is taken in V; if the extremity Z; is
included, then we state that z; = 1, that is x; = 0. We claim that this assignment
of the truth values to the variables satisfies ¢. Indeed, since only one extremity of
each edge (z;,Z;) is taken in V', only one literal is set to 1 for each variable and, in
consequence, the assignment in question is coherent (one, and only one, truth value is
assigned to each literal). Moreover, let us consider a triangle 7; of G corresponding to
the clause C}; let us denote its vertices by ¢;1, ¢;2 and ¢;3, and let us assume that the last
two belong to V. Let us also assume that the unifying edge having as an extremity
the vertex ¢;; is the edge (ci1, k), £ being one of the literals associated with the
variable x. Since ¢;; ¢ V', £) belongs to it, that is £, = 1, and the existence of
the edge (c;1, £ ) means that the literal ¢, belongs to the clause C;. This is proved by
setting /j to 1. By iterating this argument for each clause, the need for the condition
is proved. Furthermore, let us note that obtaining the assignment of the truth values to
the variables of ¢ is done in polynomial time.

Let us now show that the condition is also good enough. Given an assignment
of truth values satisfying the expression ¢, let us construct in G a transversal V' of
size n 4+ 2m. To start with, for each variable x;, if ; = 1, then the extremity xz; of
the edge (x;, ;) is put in V’; otherwise, the extremity Z; of the edge (z;, Z;) is put
there. We thereby cover the edges of type (x;,Z;), ¢ = 1,...,n, and one unifying
edge per triangle. Let T; (corresponding to the clause C;), i = 1,...,m, be a triangle
and let (¢, c¢;1) be the unifying edge covered by the setting to 1 of £;. We therefore
put the vertices ¢;5 and ¢;3 in V’; these vertices cover both the edges of T; and the
two unifying edges having as extremities c;2 and c;3, respectively. By iterating this
operation for each triangle, a transversal V' of size n + 2m is eventually constructed
in polynomial time.

1.6.2. MAX STABLE

The proof of membership of MAX STABLE(G(V, E), K) is so simple that it is
omitted here.
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Let us consider a graph G(V, F) of magnitude n having m edges and let us denote
by A its incidence matrix3. Let us also consider the expression of MIN VERTEX COVER
as a linear program in whole numbers and the transformations that follow:

min 1.y min 1.7y
Ag>1 & 21-A-y<1
ye {0,1}" ye {0,1}"
min 1.3 o min 1-(1—7)
. A-(T-79) <1 "&&7 A T<T
7€ {0,1}" 7z € {0,1}"
max 1-T
& A-T<L1
z e {0,1}"

We note that the last program in the series is nothing more than the linear program
(in whole numbers) of MAX STABLE. Furthermore, this series of equivalents indicates
that if a solution vector T for MAX STABLE is given, then the vector y = 1 — T (that
is the vector J where we interchange the “1” and the “0” regarding 7) is a feasible
solution for MIN VERTEX COVER. Furthermore, if = contains at least & “1” (that is
the size of the stable set is at least equal to K), then the solution vector deduced for
MIN VERTEX COVER contains at most n — K “1” (that is the size of the transversal is
at most equal to n — K). Since the function T + 1 — T is polynomial, then so is the
described transformation.

1.7. A few words on strong and weak NP-completeness

Let IT be a problem and I an instance of II of size |I|. We denote by max(I) the
highest number that appears in I. Let us note that max () can be exponential in n. An
algorithm for IT is known as pseudo-polynomial if it is polynomial in |I| and max(I)
(if max(I) is exponential in ||, then this algorithm is exponential for I).

DEFINITION 1.5.— An optimization problem is NP-complete in the strong sense
(strongly NP-complete) if the problem is NP-complete because of its structure and
not because of the size of the numbers that appear in its instances. A problem is NP-
complete in the weak sense (weakly NP-complete) if it is NP-complete because of its
valuations (that is max(I) affects the complexity of the algorithms that solve it).

Let us consider on the one hand the SAT problems, or MIN VERTEX COVER prob-
lems, or even the MAX STABLE problems seen previously, and on the other hand the
KNAPSACK problem for which the decisional variant is defined as: “given a maxi-
mum cost b, n objects {1, ..., n} of respective values a; and respective costs ¢; < b,

8. This matrix is of dimensions m X n.
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i = 1,...,n, and a constant K, is there a subset of objects for which the sum of
the values is at least equal to K without the sum of the costs of these objects ex-
ceeding b?”. This problem is the most well-known weakly NP-complete problem. Its
intrinsic difficulty is not due to its structure, as is the case for the previous three prob-
lems where no large number affects the description of their instances, but rather due
to the values of a; and ¢; that do affect the specification of the instance of KNAPSACK.

In Chapter 4 (see also Volume 2, Chapter 8), we find a dynamic programming
algorithm that solves this problem in linear time for the highest value of a; and in log-
arithmic time for the highest value of ¢;. This means that if this value is a polynomial
of n, then the algorithm is also polynomial, and if the value is exponential in n, the
algorithm itself is of exponential complexity.

The result below [GAR 79, PAS 04] follows the borders between strongly and
weakly NP-complete problems. If a problem 11 is strongly NP-complete, then it can-
not be solved by a pseudo-polynomial algorithm, unless P = NP.

1.8. A few other well-known complexity classes

In this section, we briefly present a few supplementary complexity classes that
we will encounter in the following chapters (for more details, see [BAL 88, GAR 79,
PAP 94]). Introductions to some complexity classes can also be found in [AUS 99,
VAZ 01].

Let us consider a decision problem II and a generic instance [ of II defined on a
data structure S (a graph, for example) and a decision constant K. From the definition
of the class NP, we can deduce that if there is a solution giving the answer yes for I1
on I, and if this solution is submitted for verification, then the answer for any correct
verification algorithm will always be yes. On the other hand, if such a solution does
not exist, then any solution proposal submitted for verification will always bring about
a no answer from any correct verification algorithm.

Let us consider the following decisional variant of MIN TSP, denoted by co-MIN
TSP: “given K, d and K, is it true that there is no Hamiltonian cycle of a total
distance less than or equal to K?”. How can we guarantee that the answer for an
instance of this problem is yes? This questions leads on to that of this problem’s
membership of the class NP. We come across the same situation for a great many
problems in NP \ P (assuming that P # NP).

We denote by Zpy the set of all the instances of a decision problem II € NP and
by Orp the subset of Zy; for which the solution is yes, that is the set of yes-instances
(or positive instances) of II. We denote by II the problem having as yes-instances the
set O = I \ O, that is the set of no-instances of II. All these problems make
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<

co-NP NP

Figure 1.4. P, NP and co-NP (under the conditions P # NP and NP # co-NP)

up the class co-NP. In other words, co-NP = {II : II € NP}. It is surmised that
NP # co-NP. This surmise is considered as being “stronger” than P # NP, in the
sense that it is possible that P # NP, even if NP = co-NP (but if P = NP, then
NP = co-NP).

Obviously, for a decision problem IT € P, the problem II also belongs to P; as a
result, P C NP N co-NP.

A decision problem IT belongs to RP if there is a polynomial p and an algorithm A
such that, for any instance I: if I € O, then the algorithm gives a decision in
polynomial time for at least half of the candidate solutions (certificates) .S, such that
|S] < p(|I]), that are submitted to it for verification of their feasibility; if, on the
other hand, I ¢ Oy (that is if I € Zy1 \ Or), then for any proposed solution S with
|S| < p(|I]), A rejects S in polynomial time. A problem IT € co-RP if and only if
II € RP, where II is defined as before. We have the following relationship between P,
RP and NP: P C RP C NP. For a very simple and intuitive proof of this relationship,
see [VAZ 01].

The class ZPP (an abbreviation of zero-error probabilistic polynomial time) is
the class of decision problems that allow a randomized algorithm (for this subject
see [MOT 95] and Chapter 2) that always ends up giving the correct answer to the
question “I € Op?”, with, on average, a polynomial complexity. A problem II be-
longs to ZPP if and only if II belongs to RP N co-RP. In other words, ZPP =
RP N co-RP.
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