Chapter 1

Airline Crew Pairing Optimization

1.1. Introduction

In the airline industry, optimizing and automating the building of crew pairings
is a major financial and organizational issue. The problem consists of covering all
the company’s flights, programmed in a given time window, with teams made up of
cockpit personnel (pilots, copilots) and of cabin personnel (stewardesses, stewards) at
a minimum cost. With a frequency of several days (in the order of a week), each crew
leaves from the base to which it is assigned, carries out a certain number of flights, and
comes back to the base. This sequence of flights with a return to the base is called a ro-
tation, or pairing . Drawing up the pairings of an airline company is highly constrained
by international, national and internal work regulations, and by the limited availability
of resources. These constraints make the problem particularly hard to solve. Besides
the gains in terms of organization, security and calculation time, the use of optimiza-
tion programs and models for this problem allows big companies to make substantial
financial gains. It is not unusual for a reduction of 1% in the total cost of the rosters
to result in savings of several tens of millions of dollars for big companies [DES 97],
which is one reason for the abundant fundamental and applied research on this subject.
The general crew pairing problem with resource constraints problem (CPP-RC) can
be formulated as a minimum cost multicommodity flow problem with additional vari-
ables and resource constraints. Even though in most applications the cost of a rotation
is non-linear [DES 97, LAV 88], in this chapter we will restrict ourselves to the case
where the cost function is a linear approximation. The ways of constructing a network
of feasible pairings, and calculating the cost of the rosters, along with the associated
mathematical program, are presented in section 1.2. Section 1.3 gives an overview of
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classical solution techniques, with a focus on the column generation method, whose
associated subproblem is studied in section 1.4. Section 1.5 concludes the chapter.

1.2. Definition of the problem

The set of flights to be covered by the crews is denoted by V = {1,...,n}. The
flight program and the associated timetables are established more or less exactly for
the considered period, in the order of a month or a week depending on the size of the
company. The term flight associated with each element ¢ € V is abusive in some cases,
insofar as ¢ may in reality represent a sequence of aggregated and indivisible flights,
that is a series of flights that can only be covered by the same crew. Also, the task to
be covered by a crew is often not only a flight, but rather a flight service that may start
before and end after the actual flight, to account for the time needed for preparing the
plane and for accompanying passengers, for example. However, we will maintain this
Slight terminology, to help readability. For each flight 7 € V we know:

i) the departure time ¢~ (1);
ii) the arrival time ¢ ™ (4);
iii) the departure airport a” (1);

: S ~
iv) the destination airport a = (7).

A rotation must start and end at one of the company’s bases. The set B of bases is
generally made up of large interconnection platforms called hubs. The CPP often has
resource constraints on the pairings. In order to take the pairing validity constraints
into account, a classical modeling associates a subnetwork, constructed in the follow-
ing way, with each crew.

1.2.1. Constructing subnetworks

The set of crews that may be used to cover the company’s flights is indexed by
ke K={1,...,K}. Fork € K, b* € B refers to the departure and arrival bases
for crew k. A graph G* = (X%, A¥) is then associated with crew k € K, where X'*
refers to the set of the network nodes and A” to the set of arcs. The set X'* is divided
into three subsets:

Xk = {o*}uvku{d*}

where, for k € K:

— the origin o (or the destination d* respectively) refers to the source (or the sink
respectively) of network G*;

—VE C VY refers to the set of flights programmed by the company that can be
covered by crew k.
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The arc set A” is

AP = oVF uvVF U VDF U {(o", d")}

where
OVF = {(o",i):ieVF a (i) =0b"}
VWE CUR = {(i,5) e VEx VE1a (i) = a” (),
t\ (j) 2 t/ ('L) + tmin(ivj)}
VDF = {(i,d"):ie V¥ a (i) =b"}

Passing through arc (o*, d*) will denote that crew k will not be used. U* is the set
of pairs of flights (4, ) that satisfy the following necessary conditions for making the
sequence of flights (I, j) possible for the same crew:

i) the arrival airport of flight ¢ is the departure airport of flight j;

ii) the departure time of flight j is later than the arrival time of flight ¢, with a
gap greater than or equal to a value ¢,,,;,(¢, j) fixed by the company or by the transit
constraints of the airport.

Generally, AV £ U because the work regulations of the company impose a certain
number of additional constraints (meal slots, breaks, overnight stops) that restrict the
connection possibilities between flights. Furthermore, global constraints, which vary
from one company to another, are generally associated with each rotation. Let us cite
the following possible constraints:

— lower and/or upper bound on the total duration of the rotation;

— lower and/or upper bound on the total work time (total work time = total flight
time + transfers + legal breaks);

— lower bound on the number of rest days;
— lower bound on the number of rest hours daily;
— upper bound on the number of flights;

— upper bound on the number of consecutive working hours.

These constraints can be modeled by the following parameters:
—aset @ ={1,...,Q} of resources;

. k . . ..
— resource consumptions t; j?q associated with each arc (i,j) € AF and each re-
source ¢ € Q;
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— of minimum threshold af’q and maximum threshold bf’q for the consumption of
resource ¢ € Q, to be satisfied for each crew k € K in each node i of the network;
if the resource constraints relate to the whole rotation, that is only to the destination
node d and not to the intermediate nodes, then af’q = 0 and bf ! = oo for every node

i # d.

1.2.2. Pairing costs

The calculation of the cost of a pairing is generally complex and varies depending
on the company. This cost may be a non-linear function of several parameters such
as resource consumption, total duration, and total flight time of the rotation [DES 97,
LAV 88]. In order to establish a generic model for this chapter, we consider that the
cost function is a linear approximation and can be decomposed by crew k =1, ..., K
and by arcs (i, j) € A¥. The cost of the pairing made by crew k € K will therefore be
the sum of the costs cfj associated with the arcs (i, j) € A* that make up this rotation.

1.2.3. Model

The crew pairing problem with resource constraints (CPP-RC) can be modeled,
if the cost function is linear, using mixed integer linear programming (MILP). We
have a minimum cost multicommodity flow problem, with binary flow variables and
continuous resource variables (RP-RC):

K
Min YooY el [1.1]
k=1 (i,j)eA*
K
s.C. ooy ah=>1 ieV={1l,...,n} [1.2]
k=1 j:(i,5)€ Ak
ak, =1 kek [1.3]
iz(ok,i)e A*
ak =1 kek [1.4]
(i, dk)e Ak
>ooakh= X ek jeVt [1.5]

i:(4,5) € AR ’ 1:(j,) e Ak
TP+t — TP < M(1—ak) (i,j) e A keK,qge Q [1.6]

ab? < TR PP ieVEkeK,qgek [1.7]

(3 7

zk € {0,1}, T/ >0 [1.8]

7
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The binary variables xfj indicate whether the pairing uses arc (i, j) € A" (and there-

fore performs the sequence of flights ¢ and j if (¢,7) € VV*), while variables Tik 4
indicate the cumulative consumption of each resource ¢ at each node i of network G*.
Objective [1.1] minimizes the total cost of the pairings. Constraints [1.2] express the
covering of each flight by at least one crew; if only one crew is allowed per flight,
the constraint is set to equality. Constraints [1.3]-[1.5] define a path structure in the
subnetwork G*: the passage of a flow of one unit [1.3] or [1.4], and flow conservation
at vertices [1.5]. Constraints [1.6]-[1.7] are the resource constraints associated with
each rotation. Constraint [1.6], in which M > 0 is a very large parameter, can also be
found in the following non-linear form:

af (TP + 457 = T59) <0 for (i,j) € AF ke K,q € Q [1.9]
The inequality in [1.6] or [1.9] stipulates that waiting is allowed for the crew; in the
opposite case, the constraint is written as an equality. This constraint allows us to
obtain the cumulated resource consumption g at the node j, since we have:

Tf’q = max(a?’q, TF + t%q)

Constraints [1.7] are bound constraints on the nodes of the network (time windows
for example). Note that constraints [1.3]-[1.7] are local constraints only valid for
subnetwork G*. Only the covering constraints [1.2] are global constraints that link
the K subnetworks. Relaxing these linking constraints and decomposing the initial
problem by subnetworks will therefore be an interesting solution option. Let us lastly
note that the resource constraints [1.6]-[1.7] make the (CPP-RC) problem NP-hard.
Even the associated feasibility problem is NP-complete.

1.2.4. Case without resource constraints

When the problem has no resource constraints [1.6]-[1.7], if all crews have the
same valid pairings then we have a flow structure in a single network G = (X, A),
where X = {0} UV U {d}, and A is the set of the possible connections between the
nodes of the network. The model becomes:

Min Z CijTij [110]
(i,5)€A
s.C. >oooxp =1 forjeV={1,...,n} [1.11]
i:(i,7)€A
(CPP) S wy;= N x; forjeV [1.12]
i:(i,j)EA i:(5,))e A

zi; €{0,1} for (i,j) € A [1.13]
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Flight | Departure Arrival | Departure|  Arrival

n° airport (a/) airport (a\) time (t/) time (t\)

AF456| Paris CDG London 8:25 9:22
AF132| Paris CDG| Frankfurt 8:01 8:55
AF330| Paris CDG Zurich 8:10 9:17
AF254|  Frankfurt Zurich 11:57 12:42
AF402| Frankfurt London 12:00 13:18
AF370 Zurich|  Frankfurt 13:50 14:35
AF411 London| Paris CDG 17:10 18:05
AF245|  Frankfurt| Paris CDG 19:38 20:30
AF111 Zurich| Paris CDG 17:00 18:12

Table 1.1. Data set example

The parameter c;; is the cost associated with taking arc (¢, j) € A. The (CPP) problem
can be solved using a classical minimum cost maximum flow algorithm [FOR 62].

Example of network construction

We consider a simple example of the (RP) problem without resource constraints.
The parameters are presented in Table 1.1.

In the graph in Figure 1.1 associated with the above parameters, we consider that
the cost on an arc (i, j) € Ais equal to the time t” (j) — ¢ (i) spent between the two
flights, and the objective function is to minimize the total time not spent working on
flights over the set of crews. The optimal solution for the covering problem consists
of employing four crews that make the following rotations:

1) AF456 + AF411;

2) AF132 + AFAF402 + AF411;

3) AF132 + AF254 + AF370 + AF245;
4) AF330 + AF111

for a total cost of 33 hours 38 minutes spent outside the planes. Of course, this fic-
titious example does not take into account either the resource constraints and time
windows inherent in real applications, or the fact that a crew does not generally work
only for the duration of the flight.

To conclude this section, let us note that studying the literature on the crew pairing
problem allows us to identify several interesting variants or extensions of the problem.
One of them proposes to establish in detail the composition of each crew (number of
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AF411

AF456

Roissy

Figure 1.1. A simple network example

copilots, cabin chiefs, stewards, etc.) according to the needs expressed by the person-
nel category for each flight [YAN 02]. Another extension of the problem [COR 00]
consists of globally and simultaneously processing the plane scheduling problem and
the crew pairing problem, which are usually processed sequentially. Thus, in the
classical approach, the plane scheduling problem is first solved in such a way as to
establish which type of plane will cover each flight ¢ € V, which allows us to deduce
the set of crews k that can cover the flight, that is if i € V* or i ¢ V*. This sequential
approach is clearly suboptimal with regard to a global approach, but is less complex
to process.

1.3. Solution approaches
1.3.1. Decomposition principles

We distinguish two types of constraints in system [1.2]-[1.7]:
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i) so-called linking or global covering constraints [1.2], which link the set of crews
k=1,..,K;

ii) constraints [1.3]-[1.7] specific to each crew k € {1,..., K} that define a legal
itinerary for a pairing.

Since the matrix associated with constraints [1.3]-[1.7] is block diagonal, and objec-
tive [1.1] is separable (because it is linear), solving the continuous relaxation of this
model can be based on Dantzig—Wolfe’s decomposition. In this type of decomposi-
tion, constraints [1.3]-[1.7] define K independent subproblems and global constraints
[1.2] are conserved in the master problem. In a scheme of the column generation type,
we must alternately solve the master problem and the K subproblems. To obtain an
integer solution, this scheme can be applied at each node of the search tree. The princi-
pal difficulty lies in solving the subproblems whose state spaces can increase exponen-
tially with the number of resources (), which makes the use of heuristics unavoidable.
Furthermore, because the convergence of the column generation scheme is affected by
the quality of the solutions provided by solving its subproblems, effectively solving
real instances that come from industry requires finding a good compromise between
the quality of the solutions and the solution time of the subproblems. In what follows,
we give the details of the general principle of column generation for the (CPP-RC)
problem.

1.3.2. Column generation, master problem and subproblem

Column generation methods (see Volume 1, Chapter 8)have been successfully ap-
plied to crew pairing problems [CRA 87, LAV 88]. In this approach, the problem
is reformulated as a set covering problem (SCP) (or set partitioning problem if the
covering constraint of the flights is an equality:)

Min > eray [1.14]
rerR
sc. Y. apr,=21 forieV={1,...,n} [1.15]
reR
(SCP)  x,€{0,1} forreR [1.16]

where R refers to the set of admissible pairings that satisfy the resource and flight
sequence constraints, ¢, represents the cost of pairing r € R, a;» = 1 if and only if
pairing r covers the flight ¢, and the binary variable x, indicates whether pairing r is
chosen or not in the solution.

We denote by (SCP) the continuous relaxation of the (SCP) problem where in-
tegrity constraints [1.16] are replaced by z,. > 0 for r € R. Since the total number of
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admissible rotations | R| is generally an exponential function of the number n = |V| of
flights to be covered, exhaustive enumeration of R is to be avoided. Despite this, it is
possible to find, in a reasonable time, an optimal solution of (SC'P) by only generating
a limited subset of rotations (that is of columns of the constraint matrix). The princi-
ple is as follows. Let R° be a feasible solution for (SCP), which includes a restricted
number of rotations from R, generated by any heuristic. We can solve, using linear

programming (for example using the simplex algorithm) the program (@O), which
is the restriction of (C'P) to the subset of rotations R°. This solution also provides a
multiplier or dual variable vector:

(67,83, .-, dp)

associated with the n flights to be covered. The optimality criterion according to which
all pairings have positive reduced cost at optimality leads us to look for the rotation of
smallest reduced negative cost, that is:

n
' =arg 1Trré17rz1 (cr — Z&?a@) [1.17]

i=1

If this pairing 7° can be found in a reasonable time, we can then restart solving the
covering program (SC'P) on the set R' = R® U {r"}, adding the column a,. to the

. . . . ——t
constraint matrix. In general, at each iteration ¢ we solve the master problem (SCP"):

Min > ermy [1.18]
reRrRt
s.C. > agxr =1 forieV={L1,...,n} [1.19]
reRrRt
(SCP") 2y >0 forr € R [1.20]

such that:
Rt _ Rtfl U {T,tfl}

where, if 6'~! refers to the multiplier vector associated with the n flights in solving

S C’Ptil, the pairing 7/ ~1 of negative reduced smallest cost is defined by:

t—1 _ : _ t—1 .
r 7arg£rél71z1 (cr ZéZ aw> [1.21]

i=1

The term column generation comes from adding column a,.¢ to the constraints matrix
of the master problem at each iteration ¢. This process of iteratively solving the mas-
ter problem [1.18]—[1.20] and subproblem [1.21] is stopped when all pairings are of
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positive reduced cost in solving the subproblem — a sign that the continuous optimum
has been reached — that is at the iteration s such that:

mm (c, 2(5 a,,) >0

A variant of this method, which allows us to accelerate the process [LAV 88], consists
of adding, at each iteration, a subset of rotations of negative reduced cost instead of the
single best rotation of subproblem [1.21]. The maximum size of this subset of entering
columns can be configured in such a way as to evolve during the algorithm. The global
complexity of the method strongly depends on the complexity of the subproblem,
which the resource constraints make NP-hard. It is often possible, however, to solve it
in a reasonable time, thanks to an implicit enumeration of R, by exploiting the graph
structure of the subproblem and applying variants of shortest path algorithms. This
will be explained in detail in section 1.4.

1.3.3. Branching methods for finding integer solutions

In section 1.3.2, the optimal solution of the covering problem (SCP) found at the
end of the column generation procedure generally has a large proportion of integer
components (see [LAV 88] for numerical results), but can be fractional. An initial
approach for obtaining an integer solution consists of solving the (SCP) problem in
integer variables with the set R° of columns generated during the process. Of course,
this approach does not give any theoretical guarantee of optimality but is found to be
nearly optimal in practice [LAV 88].

Another tree approach of the branch and bound type consists of branching on
the variables acw of LP [1.2]-[1.7] and evaluating each node of the tree using the
continuous relaxation of the LP. Since the number of variables and constraints is very
high in the explicit model [1.2]-[1.7], the bound is generally calculated using the
column generation method seen in section 1.3.2. This tree method based on column
generation, commonly known as branch and price, proves to be more effective than
the branch and bound method where the lower bound would be calculated by the
continuous relaxation of the initial problem [1.2]-[1.7]. Another advantage of this
approach is that column generation allows us to obtain a large subset of rotations
that satisfy the resource constraints, whose associated variables are equal to 1 at the
optimum of (SCP). The number of branchings necessary to end up with the integer
solution of the problem can therefore be limited for problems of medium size.

An alternative approach, known as branch and cut, consists of iteratively gener-
ating valid polyhedral cuts, that is cuts that only exclude fractional solutions of the
problem, until the solution found is integer or it is no longer possible to add any cuts.
This approach is described by Hoffman and Padberg [HOF 93]. In section 1.4, we
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give details on solving the associated subproblem [1.21] for methods based on col-
umn generation.

1.4. Solving the subproblem for column generation

1.4.1. Mathematical formulation

In the case of several subnetworks £ = 1, ..., K, since solving subproblem [1.21]

can be decomposed to subnetworks, we will omit index k£ and the graph of the sub-
problem will be denoted by G = ({o} UV U {d}, A).

The shortest path problem with resource constraints (SP-RC), is formulated as
follows:

min Z CijTij [122]
(i,5)€A
-1 ifj=o0
se. Y wg— Y my = 0 ifjev [1.23]
i:(i,j) €A L(jleA 1 ifj=d
xi; 2z 0 V(i,j) €A [1.24]
zij (T +tf; = Tf) < 0 V(i,j)eA geQ [1.25]

q
Tj

m

@l b1] VjeX, qeQ [1.26]

VAR

where variables are defined as in section 1.2.3 with exponent k removed.

1.4.2. General principle of effective label generation

For some air transport problems where resource constraints relate to the duration
of the crew pairings, Lavoie et al. [LAV 88] showed that is was possible to solve
subproblem [1.21] in polynomial time using a shortest path algorithm in a graph G
where the valuation of each arc (4, j) € A is modified in ¢, (4, j) = c(4,j) — 5;‘1.

However, in the general resource constraints case, verifying that resource thresh-
olds are satisfied for the set of paths associated with the pairings is of exponential or
pseudo-polynomial complexity. The objective therefore is to take advantage of the
acyclic structure of the graph associated with the subproblem by employing dynamic
programming techniques to limit enumeration of paths.

DEFINITION 1.1.— We associate, with each path from the origin o to node j, a label
(T;,C5) = (le, sz, e TjQ7 C};) that represents the state of its resources and its cost.
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The set of labels associated with the feasible paths from o to j (that is which satisfy
the bound constraints) is denoted by £;. We denote by £ = Ujcyuiay€; the set of
labels of the feasible paths from o to every node j.

DEFINITION 1.2.— Let (T}, C;) and (T}, C%) be two labels of &;. (T}, C;) dominates
(T}, C}), and we state (Tj, C;) = (T}, C}), if and only if:

(T3,C)) # (T},C)),  C; <O and T < T, VgeQ

DEFINITION 1.3.— A label (T;,C;) € &, is said to be efficient if it is minimal in the
sense of the order relation =, that is:

AT}, Cj) € & : (T}, C) = (Ty,Cy)

A path is said to be efficient if it is associated with an efficient label. The set of efficient
labels is denoted by £°17.

The general principle of dynamic programming, which allows us to generate the
set of efficient labels, first proposed in [DES 88], is as follows. In each node, the
algorithm generates labels by extending the paths that correspond to the efficient labels
present at the predecessor nodes. An extension is validated if it provides a legal path,
otherwise it is removed. The dominance rule is then applied in order to eliminate all
paths that correspond to non-efficient labels.

This algorithm therefore proceeds in two main stages. In each node 5 € V), it car-
ries out the following operations:

1) extension of the paths (label generation and feasibility test);

2) dominance (elimination of the non-efficient labels).

Formally, for a given node j € V U {d}, labels are created by extending those present
in nodes ¢ such that (7, j) € A. A new label (T}, C;) given by:

g _ a a9 49
T = Inax{aj,Ti —i—tij}, ge{l,---,Q}
C; = Ci+cy

is created at node j if 7} +¢§; < 0%, Vg € {1,---,Q}.

By considering that all predecessors of node j € V U {d} have already been pro-
cessed, the dominance at node j can be interpreted as establishing the Pareto optima
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of the multicriteria problem with (@ + 1) functions:

min; C; + ¢ij, minimax{a;?, (Tiq+tgj)},q: 1,...,Q
(i,7) € A (i,j) € A [1.27]
Ty +ti; <bj T +ti; <bj

Since the dominance relation < is a partial order relation, the number of efficient labels
to be processed increases exponentially according to the number of resources, which
makes the extension procedure potentially intractable. In what follows, we describe
two heuristics that allow us to accelerate the efficient label generation process:

i) in the case of one single resource, the bucket-based labeling method of
Desrochers and Soumis [DES 88];

ii) in the case of numerous resources, the resource space reduction method of Nagih
and Soumis [NAG 06].

1.4.3. Case of one single resource: the bucket method

This method was developed in [DES 88] for the case with time windows (single
resource, () = 1). For each flight ¢ € V, we therefore have time windows [a;, b;].
Desrochers and Soumis propose inspecting the labels associated with the paths in a
defined order, calculated in the following way. Let us state:

L
t*,c*) = min {(t;;,ci; 1.28
(") = min {(t7,c57)) [1.25]
that is:
t* = min tij
(4,7)€A
¢ = min{e;: (i,7) € Aty =t}

We also denote by <” the lexicographical order relation on the labels, thatis (T}, C;) <*
(Tj, C]) if and only if T; < Tj or (T; = T]‘ and C; < C])

The set of labels is decomposed into a number H of distinct and ordered subsets
Sh, h = 1,..., H, called buckets, of equal depth (t*, ¢*). The buckets are ordered in
the sense that a label belongs to one and only one bucket S" and:

Vh = 1,... 7]{ -1, V((Ti,Ci), (Tj,Cj)) € Sh X S}H_l, (TZ,CZ) <L (Tj,Cj)

The bucket S" from stage h is generated in the following way. We denote by £° = ()

and
gh—1 _ hCJlSl

=1
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the set of buckets of labels generated up until stage i — 1. Let us also state:

L
th, hy — : T;,C: 129
( ‘ ) (ijca‘r)nelg\c‘:hfl{ J 3)} [ ]

At stage h = 1, we therefore have (t", ch) = (t*,¢*). At stage h, bucket S" is then
defined by:

Sh = {(Ty,C5) e EN\EM (" M <P (T, 09)
<L (@h My + (¢, e} [1.30]

The set of efficient labels created at stage h according to the extension-dominance pro-
cess described in section 1.4.2 is denoted by £¢7/". Let us take the network example
in Figure 1.2 to illustrate bucket construction. We voluntarily omit the time windows
in order to concentrate on the stages of the bucket construction.

6
4.1
! 6,5
o 8oy

8 /
$ 63

Figure 1.2. Example of a graph to illustrate the bucket method
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— Stage 1
(tla cl) = (2,1) (= (t*vc*))
Bucket interval = [(2,1), (4,2)[
St = (2,1)s, (37 1)a, (37 2)1}
ESI = ST U{(5,4)5,(7,2)7, (8,4)4}
Labels (6, 5)s5, (7,5)7 and (8,5)4, dominated by (5,4)s, (7,2)7 and (8, 4)4, respec-
tively, are eliminated.

— Stage 2
(t2,c%) = (5,4)
Bucket interval = [(5,4), (7,5)[
§? = {(5,4)5, (7,2)7}

£112 = {(8,7)s, (9,8)6, (13,7)a}
Label (7,6)7, dominated by( ,2)7, is eliminated.
— Stage 3

(t3,¢%) == (8,4)

Bucket interval = [(8,4), (10,5)[

§% = {(8,4)4}

I3 = {(11,6)6} — Stage 4

(t*,c) = (8,7)s

Bucket interval = [(8,7), (10,8)[

St = {(83 7)Sv (9’ 8)6}

Eef4 = {(11,10)4} Label (13,9)4, dominated by (13,7)g, is eliminated.

The last stage with S5 = {(11,6)g, (11,10)4, (13,7)4} generates only dominated
labels. In total, therefore, we have generated the following set of efficient labels:

N = {(2,1)3,(3,1)2,(3,2)1,(5,4)5, (7,2)7, (8,4)4, (8, 7)s, (9, 8)6.
(11,6)6, (11,10)4, (13,7)a}

Moreover, we can show that labels from the same bucket S" can be processed in any
order conserving optimality of the algorithm, thanks to the following proposition.

PROPOSITION 1.1.— [DES 88] No label from bucket S is dominated by the extension
of another label from S", that is:

Y(T},C) € 8", ATy, C;) € S = (T3, Cy) + tij = (T,C))
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Proof: Let (T},C;) € S" N &; and (T}, C;) € S" N &;. If the extension of (T3, C;)
allowed us to eliminate (T, C;), we would have:

(T3, Cs) = (15,C5) — (tijs cij)
T}, Cj) — (tij, cij)
+(t%,¢") = (tij,ciy)  because (T5,C5) € S

because (t*,c*) <* (tij, cij)

which contradicts [1.30].

This bucket method can be generalized to several resources. However, its com-
plexity is only pseudo-polynomial and increases exponentially with the number of re-
sources [DES 88]. When this number becomes relatively large, one possible heuristic
consists of reducing the resource space.

1.4.4. Case of many resources: reduction of the resource space

1.4.4.1. Reduction principle

When solving the subproblem, the size of the search space can be reduced by
strengthening the elimination of the dominance procedure. This can be done, for
example, by projecting the label vectors of dimension ) 4 1 onto a space of smaller
dimension, then by applying the dominance rules in this space of reduced dimension
to define the efficient labels. More exactly, let IT = (7]) be a real matrix P x (Q +1),

with P < Q; the new resource vector T is defined as follows:

T 00 + 7Tt + ... 4+ 72T@

[1.31]

TP = 790+ abT" + ...+ 79719

Selecting efficient labels based on the P-vector of the resources 7" actually allows us
to reduce the number of labels processed in each node. However, depending on the
projection matrix used, we may eliminate optimal paths in this process. An initial
improvement consists of defining, for each node j, a local projection matrix II; =
(md)j, which depends on the node processed, instead of a single global projection
matrix. A second improvement can be made by considering a projection matrix II;;
whose coefficients depend on the arcs (4, j) that arrive at the processed node j. In other
words, it depends on the processed node and its predecessors [NAG 06]. However, the
number of coefficients to be adjusted will be greater.
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COMMENT 1.1.— In order to avoid problems of resource symmetry in the new domi-
nance space, we restrict ourselves to block diagonal form projection matrices, that is
for each ¢ € Q = {0, ..., Q}, there exists at most one p € P = {1, ..., P} such that
the coefficient 7} is non-zero. This projection thus consists of establishing a partition
of the resources before combining them.

COMMENT 1.2.— The matrix II is only defined for the elements of ) since there is no
path to process at the origin node, and at the destination node d we select the label of
minimal cost.

By considering that all the predecessor nodes of node j € V U {d} have been
processed, dominance in the projected space comes down to replacing the solving of
[1.27] with that of the multicriteria problem with P functions (P < Q):

min; {772 x (Ci + ¢ij) + Zqul 7l X max {()L;J.7 (Tiq + tgj)}}

(i&j) qu, , [1.32]
TO+ 10 <V g ef{l,...,Q)

p= 1a e 7P

The objective is to minimize cost Cy(II) at the terminal node d, which is the value
of subproblem [1.22]-[1.26] where we substituted the new resource space P for the
initial resource space Q. The best approximation of the optimal value of (SP-RC)
provided by dominating in the projected space (that is with regard to the resource
vector T' = II(T, C)), is obtained by solving:

minn Cd(H)
[1.33]
s.t. >0 Vge{l,...,Q} pe{l,..., P}

which consists of establishing the best projection matrix II. Now, function IT —
C4(1I) is neither monotonic nor convex (see [NAG 06]), which makes solving this
problem very hard.

The non-monotonic and non-convex behavior of the function Cy(II) is essen-
tially due to the resource constraints. With resource windows, the constrained short-
est path problem can have a non-zero duality jump, but without these windows the
problem has the integrality property. In order to get round this hardness, Nagih and
Soumis [NAG 06] propose two approaches based on the Lagrangian and surrogate
relaxations of the (SP-RC) problem, where dominance is carried out in a projected
space, in order to obtain lower and upper bounds and a feasible solution of the prob-
lem.
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1.4.4.2. Approach based on the Lagrangian relaxation

Before dualizing the upper bound constraints in [1.26] on the resource consump-
tions:

IT) = max{a], T} + 7/} <03, V(i,j) € Aqge{l,...,Q} [1.34]

we propose rewriting them in an equivalent form which allows us to express dom-
inance in an analogous form to that in equation [1.32]. On the one hand, this new
formulation must link the resource-consumption variable, the flow variable, and the
dual variable associated with the upper bound constraint on the resource consumption.
On the other hand, it must end up with dual variables by nodes and not by arcs.

Knowing that the bound constraints are only pertinent to the nodes j that belong to
an optimal path, we obtain an equivalent formulation by multiplying constraints [1.34]
by xi;, (¢,7) € A. This new constraint remains unchanged when summing over all
predecessors ¢ of j because the flow is borne by at most one arc.

In this way, the shortest path problem with resource constraints (SP-RC) can be
rewritten in the following equivalent form:

min Z Cijl‘ij [135]
(i,j)eA
-1 ifj=o0
s.c. Z Tij — Z T = 0 ifjeV [1.36]
i:(i,j) €A L:(j,1)eA 1 ifj=d
wij (T +t, =T)) < 0 V(z J) eAqgeQ  [138]
T > af VjeV,qeQ [1.39]

J

Z zij (max{ad, T + t{,} — b9)
i:(,7)€EA

/N
o

VieVu{d},ge Q [1.40]
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By dualizing a subset Q; C Q@ of constraints [1.40], we obtain the following
Lagrange function:

Llu) = > (o
[1.36]—([1. 40] Wlth Q\Ql)( NeA
+ Z O (max{af", T/ + 111} = b5") | @ [1.41]
q1€Q1

where u?l > 0,5 € VU{d}, ¢1 € Qy are the associated Lagrange multipliers.

The Lagrangian dual is:

max,  L(u)
(LD) [1.42]
s.t. uf >0, VjieVu{d}, Vg € Q

By using formulation [1.35]-[1.40] and proceeding in the same way as in section 1.4.2,
the dominance in each node j then corresponds to establishing the Pareto optima of
the multicriteria problem:

r min; {C + ¢ij +Zq1€Ql (max{a'h " _|_tq1} b;ll) |
(4,7) € A, TiQ2 +tgz < b]-Qz}
[1.43]
min; {max {af*, (T/* +t7)} |
(i) € A, T2 +12 <02} gy € Q2 = Q\Qs

COMMENT 1.3.— Calculating the Lagrangian relaxation from formulation [1.35]-[1.40],
unlike [1.22]-[1.26], allows us to express the dominance in the relaxed space as a La-
grangian relaxation of [1.27].

COMMENT 1.4.— Contrary to the approach described in section 1.4.2, solving the
(LD) problem can provide non-feasible solutions, and its value v(LD) is a lower
bound on the optimal value v* of the (SP-RC) problem.

To establish a feasible solution we proceed as follows: a) calculate a lower bound
by solving (SP-RC) by dominating over the Lagrangian cost and a subset of resource
set Qo, and by relaxing the upper bound constraints on the resources
Q1 = Q\Qq; b) calculate Lagrange multipliers associated with Q;; and c) calcu-
late an upper bound and a feasible solution, solving (SP-RC) by dominating over the
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Lagrangian cost and the resources Qo, and by validating the resource windows in the
original space Q.

In this way we deduce an approach for solving the (SP-RC) problem, based on
Lagrangian relaxation, where the dominance is carried out in a projected space in
order to obtain lower and upper bounds as well as a feasible solution. The Lagrange
multipliers associated with the dualized constraints are used to adjust the projection
matrix. The numerical results concerning this approach can be found in [NAG 06].

1.4.4.3. Approach based on the surrogate relaxation

Let Qp,p = 1,--- ,P (P < Q = |Q|) be a partition of resource set Q into P
subsets. Let us consider the surrogate relaxation of the (SP-RC) problem obtained by
aggregating, for each subset Q,, constraints [1.25] and bound constraints [1.26] in or-
der to obtain one single resource per subset. Following the example in section 1.4.4.2,
in order to obtain dual variables by nodes, we aggregate constraints [1.25] after having
summed over the index ¢ of the predecessor nodes of node j. We obtain the (SP-RC)
problem with the new resource space 0:

min Z Cijxij [144]
(i,j)eA
s.c. Z Tij — Z Tj = € VjieyV [1.45]
i:(i,j)EA l:(4,)e A
S (Tf+ggj_ff) < 0 VieV,peQ [1.47]
i:(,7)€EA
D P 7P . S
17 € [a j,bj] VieV,peQ [1.48]

ith TP — 5P — 9,9 [P _ apq o
with TP = 3° o ijj, a5 = Yge0, Wiaj, b5 =30 wib] and i =
> gcQ, W; tw ,» Where w] is the multiplier of the surrogate relaxation. The associated

dual is expressed by:

(SD) [1.49]
s.t. wi>0, VjeN,VqgeQ

where

o(w) = CijTi [1.50]
[145 148 Zz]: v
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By using formulation [1.44]-[1.48], and by proceeding in the same way as in sec-
tion 1.4.4.2, the dominance in each node j corresponds to establishing the Pareto
optima of the multicriteria problem:

min; C; +¢;;, min; max {&;, (TZI +51.>}, ey
()eA  Gjea
T2 413 < b5

Q , 79 7
2 T2 +12 <D

[1.51]
min; max {dQ (TQ +t~9)}
(i,j) € A

T2 +12 < b2

ey

COMMENT 1.5.— Solving the (SD) problem provides, in general, non-feasible solu-
tions, and its value v(SD) is a lower bound on the optimal value v* of the (SP-RC)
problem.

The projection matrix associated with the surrogate approach will be calculated
as follows: a) solve (SP-RC) with the set of resources 0, b) deduce from this set
the multipliers of the surrogate associated with the various resources; and then c)
solve (SP-RC) by dominating over the cost and the resources Q, and by validating the
resource windows in the original space Q.

1.5. Conclusion

In this chapter devoted to solving the crew pairing problem with resource con-
straints (CPP-RP), we have mainly developed column generation and
master/subproblem decomposition approaches. Since the difficulty of solving the sub-
problem is directly linked to the number of resources, we have especially studied the
techniques for reducing the resource space, this notion of reduction being a key ele-
ment in the efficiency of the global solving of the problem. Indeed, while in a strategic
planning context the calculation time can prove to be less critical than the global cost
of the rotations schedule, in an operational context, the gain in time for solving the
subproblem becomes a major stake. There are many research prospects on this prob-
lem, for example problems of reconstructing a robust solution following a disruption
of the initially constructed schedule by some unforeseen event. These re-optimization
problems are arousing increasing interest in engineers responsible for scheduling in
large transportation companies, and open particularly interesting and promising re-
search paths.
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