
1

Introduction to Real-time Scheduling

The aim of this chapter is to introduce real-time
scheduling. To do this, after a presentation of the context, we
focus on material and software architectures commonly
employed in the programming of real-time systems. Next,
from a few examples of programs, classical task models are
introduced. The techniques implemented to validate these
models are developed throughout the chapters of this book.

1.1. Real-time systems

Real-time systems are very extensively used: from
wide-consumption technological products (smartphones,
games) to terrestrial transport systems (trains and cars) as
well as aerial (aeroplanes) and spatial (satellites, shuttles
and rockets) transport systems, through non-embedded
critical systems such as power plant control, factory
machinery control, or bank transaction systems. These are
computer programs subject to temporal constraints.
Non-compliance with the temporal constraints can lead to a
discomfort of use for some programs referred to as soft
real-time constraint programs (games, vehicle comfort

Chapter written by Emmanuel GROLLEAU.

CO
PYRIG

HTED
 M

ATERIA
L



2 Real-time Systems Scheduling 1: Fundamentals

functionalities such as air conditioning), or it can have
catastrophic consequences for strict real-time constraint
programs (such as the braking system of a vehicle or the
control functionality of an aeroplane).

A real-time system can be either embedded or not: an
embedded system embeds its own computing hardware and
its own energy source. The energy sources can be electrical
batteries, motors fed by fuel, ambient energy such as solar
power, or even a combination of several sources. Embedded
systems are characterized by low energy consumption
computing capabilities in favor of autonomy, small size
compared to non-embedded computing capabilities in order to
reduce the footprint and the weight of the control system.

In the remainder of the chapter, we will call the global
entity system, for instance, the control system of a vehicle. A
system provides various functionalities, such as, for example
in the case of a vehicle, braking, controlling the on-board
radio, autonomous parking, and so on. The functionalities are
generally ensured, on complex systems, by subsystems, which
can be distributed over several CPUs and networks.

The functionalities and systems can be subject to temporal
constraints. We can distinguish between local constraints and
end-to-end constraints: an end-to-end constraint is typically
derived from high-level requirements on the functionalities.
A requirement describes what a functionality has to perform
(functional requirement), or what properties it has to have
(non-functional requirement). Generally, temporal
constraints are considered non-functional since they
characterize the response time the functionality has to have.
A very widespread requirement in critical systems is
segregation, which enforces two implementations of a same
functionality to use different computing and communication
resources.



Introduction to Real-time Scheduling 3

EXAMPLE 1.1 (Braking and steering control system).– The
following example, taken from a vehicle case study,
illustrates the concepts of system, functionality, subsystem
and requirements.

We consider a subset of the braking and steering
correction functionalities on a passenger vehicle. Figure 1.1
represents different CPUs (called ECU for electronic control
units in this context) as well as the main sensors and
actuators, and the communication bus allowing the
calculators to exchange information. The antilock braking
system (ABS) functionality consists of measuring the speed of
the various wheels and calculating a slip ratio. Above a
certain value, the ABS control unit has to act on the
hydraulic pressure regulating valve in order to reduce the
exerted pressure, thus allowing the skidding wheels to regain
traction, and therefore to reduce the braking distance. A
non-functional requirement concerning this functionality
could be that the maximum delay between the moment when
the wheels skid and the moment when the pressure is
reduced to be lower than 50 ms. In a simplified view, we could
envision that the ABS functionality is performed by the
subsystem that is running on the ABS control unit.

Let us now consider the steering correction functionality.
This has to take into account the driver’s intent (the angle of
the steering wheel), as well as the speed of the vehicle, and
can use gyro meters (measuring the angular speed) or an
inertial unit (measuring the attitude using the measures of
angular speed, heading and acceleration) in order to measure
the rotational speed of the vehicle. Depending on the speed of
the vehicle, the difference between the command attitude
(angle of the steering wheel) and the rotational angle of the
vehicle the extra sensory perception (ESP) control unit is able
to determine whether the vehicle is in oversteer (the vehicle
starts to go into a spin since the rear is drifting) or
understeer (the front has a tendency to skid and the vehicle



4 Real-time Systems Scheduling 1: Fundamentals

continues forward instead of following the curve). The
outputs of the ESP control unit, interpreted by the ABS
control unit, are translated as a braking of the front outside
wheel in order to compensate an oversteer, or the rear inside
wheel for an understeer. We can thus see that the ESP
functionality is distributed over several subsystems, running
on several ECUs. The ESP can also be subject to end-to-end
temporal constraints, which will be translated as local
temporal constraints on the ECUs and communication buses
involved in the functionality.

Figure 1.1. Distributed system ensuring the braking
and steering correction functionalities

Some temporal constraints can be purely local: the pieces of
information circulating in a network are typically cut up into
frames (series of bytes). Embedded CPUs typically do not have
a memory of more than a single received frame. Consequently,
a requirement that we could expect to have would be for a CPU



Introduction to Real-time Scheduling 5

to be able to read and memorize a frame before the reception
of the next frame, under penalty of losing a frame.

On each subsystem running on a CPU, the requirements
are mirrored by temporal constraints. A temporal constraint
is a time frame in which a process must always be executed in
its entirety.

1.2. Material architectures

From example 1.1, we have an overview of the main
material elements composing a real-time system: CPUs,
communication networks, sensors and actuators.

1.2.1. CPUs

In this section, we consider central processing units (CPUs)
based on a Van Neumann or Harvard architecture, in other
words CPUs that separate the memory and calculation units.
Most of the CPUs in use since the invention of computing are
indeed based on one of these architectures.

A CPU is a processor allowing the execution of programs.
A program, while running, has its instructions copied into
memory: it then becomes a process. A process can be
composed of several algorithms that need to be run in
parallel, these are tasks. A task is composed of a series of
instructions to be executed sequentially. An instruction can
be arithmetical and logical, a conditional or unconditional
jump, movements between the memory and the registers,
access to an input/output device, etc.

CPUs can be single- or multi-core: each computing core
allows the execution of a task at a given time. A process is
thus parallelizable since several tasks of the same process
can be run simultaneously, on the other hand we generally



6 Real-time Systems Scheduling 1: Fundamentals

consider tasks not to be parallelizable. This means that a
task cannot simultaneously be run on several cores.

The execution of an instruction consists of loading the
instruction from memory, decoding it and running it. The
time-stepping of the execution of the instructions is ensured
by a clock, used as a time reference called the cycle, in the
cores.

If all these operations were executed sequentially, then the
processor cores would be underutilized. Indeed, the circuits
specialized in the processing of instructions are available
during the loading and decoding of the instruction. Moreover,
the memory could be slower to respond than the execution
time of an instruction. This is called a memory bottleneck,
since the processor can be led to wait several cycles before the
instruction arrives from memory. CPUs can therefore
integrate local optimizations, or have particular architectures
allowing, on average, the acceleration of certain processes.
For instance, cache memory allows the storage of central
memory data in rapid-access memories. These memories are
closer to the processor and faster, but are of smaller size than
the central memory and can therefore only memorize a part
of the data. The working principle is that when the processor
wants to read from an address in memory, the cache, if it has
stored the content of that address, sends the content to the
processor, which then does not have to wait for the central
memory. When the requested address is not present in the
cache, the cache stores it for an ulterior use. If it is full, a
cache-managing strategy has to be used to decide which
content will be replaced. This optimization brings, on the
architectures on which it is employed, very significant
increases in performance. This is due to the locality principle:
a program often contains loops and manipulates the same
data, consequently when the processor has to load an
instruction or a piece of data, it is often to be found in cache
memory. On newer architectures, there are several levels of



Introduction to Real-time Scheduling 7

cache memory depending on the size and the speed.
Moreover, on multi-core architectures, certain levels of cache
memory can be shared by certain cores. In consequence, the
parallel execution by several cores has an effect on the shared
cache memory.

A CPU can be associated with specific circuits (application
specific integrated circuit (ASIC)) allowing it to be relieved
from time-costly functions, such as for example polling the
arriving data on a communication bus, or computing the
attitude (pitch angles, roll and heading) depending on the
sensors of an inertial unit.

When an input/output device needs to communicate an
event to the processor, as, for example, pressing a key on a
keyboard or the arrival of a message on a communication bus,
a hardware interrupt is triggered. After processing each
instruction, a processor has to check whether a hardware
interrupt has occurred. If this is the case, it has to process the
interrupt. It stops the current processing, and executes the
instructions of an interrupt handler routine.

From a real-time point of view, a CPU is thus a computing
resource that runs tasks. The execution of each instruction
takes time, expressed in cycles. Though the execution is
sequential, numerous factors (material optimizations,
interrupts) interfering with the execution of a task complicate
the study of the duration of these processes. The field of study
of the duration of tasks is called timing analysis.

1.2.2. Communication networks

A communication network is a medium allowing CPUs to
communicate by sending each other data. The communication
networks used in critical real-time systems have to be able to
give guarantees regarding maximum delays in the
transmission of messages. We therefore use deterministic



8 Real-time Systems Scheduling 1: Fundamentals

networks, generally with a decentralized arbitration (no CPU
is indispensable for the network to work). This is the case of a
controller area network (CAN), which is a synchronous
deterministic network used mainly in vehicles and
aeroplanes, or a switched Ethernet such as avionics full
duplex (AFDX) employed in civil avionics that enables us to
reach high throughputs.

From a general point of view, CPUs connected by
communication networks transmit, on a physical level,
frames (i.e. a series of bytes). From a real-time point of view,
a transmission medium is seen as a frame-transmitting
resource, the transmission time of a frame is obtained simply
from the throughput and the length of the medium. The main
difficulty, from a message transmission point of view, is to
take into account the utilization of the shared media (see
Chapter 6, Volume 2), or the wait in queues in the case of a
switched network (see Chapter 7, Volume 2). We consider
that the emission of a frame cannot be interrupted.

With the recent emergence of multi-core and manycore
CPUs (we refer to several tens or hundreds of cores as
manycores) a new kind of communication network has
appeared: networks on chip (NoC). These networks connect
computing cores. As it is not physically possible to directly
connect all the cores, we could consider that the cores are the
vertices of a two-dimensional grid, and that communication
media (the NoC) connect a core to its four neighbors. In order
to facilitate the integration on a single chip, this grid can
have more than two dimensions, and constitute a cube or a
hypercube. In this case, the transmitted packets are
relatively small in size in order for them to be easily stored in
the cores, which will then work as routers transferring the
frames from one source core to a destination core.



Introduction to Real-time Scheduling 9

1.2.3. Sensors and actuators

A sensor is a device capable of reading a physical quantity
(temperature, pressure, speed, etc.). There is a very large
variety of sensors, their common feature is that in order to
interface with a computer system, they have to offer at least
a digital or analog interface, or have a communication bus
interface. A digital or analog interface uses an electric
quantity to represent the measured physical quantity. A
communication bus interface allows the sensor to transmit
frames containing measures in a binary format.

An actuator is a device which allows us to control a physical
element (flight control surfaces, solenoid valves, engines, etc.).
Just like a sensor, it has to have a digital or analog interface
or a bus.

It may be noted that digital and analog inputs as well as
buses that can be found on CPUs can be of two types: polling
and interrupt-based. Polling inputs allow a program to read
the binary representation of an electrical signal in input.
Interrupt-based inputs trigger, on certain events, a hardware
interrupt on the CPU, which will then have to execute an
interrupt handler routine.

1.3. Operating systems

To facilitate the exploitation of material resources (CPUs,
networks, memories, etc.) by an application, the operating
system provides services and primitives that ease the
programming. The aim of this section is to present the
general aspects of operating systems and to characterize
what makes an operating system real-time. It also aims to
present the primitives that can be found in real-time
applications.



10 Real-time Systems Scheduling 1: Fundamentals

1.3.1. Generalities

An operating system can be broken down into three layers:

– The kernel manages the memory, the processor and the
hardware interrupts. The time sharing of the cores of a CPU
between the tasks and/or processes is called scheduling.

– The executive is a kernel combined with device drivers,
high-level access functions at the inputs/outputs, and protocol-
related drivers (TCP/IP, CAN, etc.).

– An operating system is an executive that also integrates
an organ of dialog with the system (such as a shell or
a windowing system), diagnostics, surveillance, adjustment,
updates and development, etc.

Since this book deals with real-time scheduling, we will
focus, in the following, on the functioning of the operating
system kernel. A kernel provides the necessary primitives for
the creation of tasks and for communication and
synchronization. If it is a multi-process kernel, it also
provides the corresponding primitives for the processes.
Kernels in embedded systems, which represent a large part of
critical real-time systems deal, for the most, with only one
process, and consequently, we will mainly focus on the
handling of tasks.

1.3.2. Real-time operating systems

Operating systems can be generalist or real-time. A
generalist operating system prioritizes flexibility, ease of use
and average processing speed. It has to be noted that
accelerating the average processing speed using local
optimizations can cause instances of tasks whose processing
time would be longer than without any optimization. For
instance, the principle of instruction preloading will preload
and pre-decode the next instructions during the processing of
an instruction. However, if the next instruction depends on



Introduction to Real-time Scheduling 11

the result of an operation (conditional jump), the next
preloaded instruction could correspond to the wrong
operational branch. In this case, which happens rarely for
well-designed prediction algorithms, the length of the
instructions in time without any optimization could be
shorter than the length of instructions with preloading
optimization. Moreover, the determinism of the processing
time is very much affected by the optimizations. This is the
same for devices that prioritize flexibility (for example virtual
memory, with the exchange mechanism between central
memory and mass storage), or ease of use (for example the
automatic update which will use up resources at moments
difficult or impossible to predict).

The two most widespread generalist operating systems are
Microsoft Windows and Unix. Both of these occupy a large
disk space (around a gigabyte) and have a significant (several
hundreds of megabytes) memory footprint (central memory
usage).

Embedded CPUs, usually having a small amount of
memory (a few kilobytes to a few megabytes of central
memory) and a limited computing power (a few megahertz to
a few hundreds of megahertz), for a mass storage round one
gigabyte, real-time operating systems (RTOS) prioritize
memory footprint and simplicity. Moreover, as we will see
throughout this book, real-time is not fast, it is deterministic.
Indeed, with a few exceptions, the temporal validation
methods are conservative: when the system is validated, it is
validated for the worst case. Indeed, an important metric
characterizing an RTOS is kernel latency: this duration
describes the worst delay in time that can elapse between a
task-release event and when it is effectively being taken into
account by the kernel. The internal architecture of an RTOS
is designed to minimize this delay; to the detriment of the
average processing speed.



12 Real-time Systems Scheduling 1: Fundamentals

There is a very large number of RTOSs and numerous
standards defining RTOSs, implemented in various operating
systems. We can point to the portable operating system
interface (POSIX) standard pthreads 1003.1, which defines
generalist RTOSs, the Ada standard that is very well adapted
to very critical applications such as those which can be found
in military and aerospace avionics, the OSEK standard
developed by a consortium of European vehicle
manufacturers, characterized by a very small memory
footprint and a low increase in cost, and proprietary RTOSs
such as VxWorks of WindRiver, or real-time executive for
multiprocessor systems (RTEMS), which define their own
primitives and provide a POSIX 1003.1-compliant interface.

1.3.3. Primitives provided by the kernel

Regardless of the generalist or real-time operating system,
a certain number of primitives are provided for the
management of parallelism. Since most RTOSs are mono-
process, we will focus on the management of tasks. Figure 1.2
represents the possible states of a task such as they are
perceived by the kernel. Only the ready tasks compete for the
acquisition of computing resources, in other words for a core
of a CPU.

– Task creation/deletion: the creation of a task consists
of an initialization phase, followed by a launch phase.
Initialization consists of designating the entry point of the
task, which is generally a subprogram, attributing a control
block that will serve to memorize the information important
to the kernel in order to manage the task, (identifier, location
to save the context of the task when it is preempted, such
as the core registers of a CPU) and, except for special cases,
allocating a stack for it which it will use to call subprograms
and allocating its local variables. The launch phase consists of
moving the process to the ready state, in other words notifying



Introduction to Real-time Scheduling 13

the scheduling that it is ready to be executed and needs
computing resources.

Figure 1.2. Possible states for a task

– Time management: most operating systems provide wait
primitives either until a given date, or during at least a certain
amount of time. A task running a wait primitive is moved to
the blocked state and no longer competes for the acquisition of
computing resources. At the given date, the operating system
moves the task back into the ready state. Let us note that on
most material architectures, the management of time is based
on programmable clock systems (timers) allowing it to trigger
a hardware interrupt after a required number of clock cycles.
The kernel therefore uses the hardware interrupts generated
by the clock in order to wake up the tasks at the end of their
wait. There is therefore no computing resource usage by a task
during the wait.

– Synchronization: when tasks share critical resources
(same memory zone, material element that cannot be accessed
in a concurrent manner, etc.), it is necessary to protect access
to the critical resources by a synchronization mechanism that



14 Real-time Systems Scheduling 1: Fundamentals

guarantees the mutual exclusion of access. Current operating
systems propose at least the semaphore tool and some, such
as those based on the Ada standard (protected objects) or the
POSIX standard (conditional variables), propose the Hoare
monitor. When a task is blocked during the access to its critical
section, it is moved to the blocked state, in other words it is
the task that will release the critical section which will move
another blocked task to the ready state.

– Message-based communication: most operating systems
propose mailbox mechanisms based on the producer/consumer
paradigm. A producer task generates messages into a buffer
and can possibly move to a blocked state if the buffer is full.
The consumer task can be put to wait for data: it is blocked if
the buffer is empty and is woken up at the arrival of a message
in the buffer.

– Inputs/outputs: when a task needs to perform blocking
input/output, for instance accessing a mass storage unit,
reading input from the keyboard, waiting for a frame on the
network, etc., it starts the input/output, which moves it to the
blocking state. The kernel, following the hardware interrupt
corresponding to the expected answer from the input/output
device moves the task to the ready state.

1.4. Scheduling

Scheduling, given a set of ready tasks, consists of choosing,
on each core, at most one task to run.

1.4.1. Online and offline scheduling

Scheduling is based on a strategy of choice, which can be
static or be based on an algorithm.

In the static case, we use a table in which we have
predefined the allocation times of the tasks to the cores, the
scheduler is then called a sequencer since it merely follows an



Introduction to Real-time Scheduling 15

established sequence; we then refer to offline scheduling.
This type of scheduling is only possible when the times the
tasks will be ready are known beforehand, in other words the
sequence-creation algorithm has to be clairvoyant.

When we use a selection algorithm on the task(s) to be
executed based on the immediate state of the system, we
refer to online scheduling. Online schedulers consider the set
of ready tasks at certain moments of time in order to choose
between them the allocation of the computing resources. No
matter the method used to design the online strategy, it has
to be resource-efficient. Indeed, the time spent by the
computing resources for the scheduler to execute its strategy
is called the processor overhead, since it does not directly
contribute to the execution of the functionalities of the
system. The computational complexity of schedulers must be
linear, or even quadratic, in the worst case, depending on the
number of tasks.

The moments when the scheduler has to make a choice
correspond either to the moments when a task changes state
(wakeup, blocking), in other words when there is a change of
state in a task of the system, or to moments that are fixed by
a time quantum. In the second case, the scheduler is
activated at each time quantum and makes a decision
depending on the immediate state of the tasks.

In RTOSs, most proposed scheduling algorithms are based
on priorities. As we will see later, these priorities can be
fixed-task (assigned to a task once and for all its jobs),
fixed-job (assigned to a job once it is released) or dynamic.

A scheduling sequence can be represented on a Gantt
diagram, such as in Figure 1.3. The time is in abscissa, each
line represents the execution of a task, an ascending arrow
represents the activation of a task whereas a descending
arrow represents a deadline. In this figure, we consider two
tasks τ1 and τ2 executed once on a processor, with respective



16 Real-time Systems Scheduling 1: Fundamentals

durations of 2 and 3 units of time. τ1 is woken up at time 1
and τ2 at time 0. We assume that the strategy of the
scheduler is based on priorities, and that τ1 is of higher
priority than τ2. Thus, at time 0, only τ1 is ready and is given
a processor. When τ1 is woken up, the scheduler preempts τ2,
since the set of ready tasks is {τ1, τ2} with τ1 of higher
priority than τ2. At the termination of τ1, the only ready task
is τ2, it therefore obtains the processor. At time 4, τ2 misses
its deadline.

0 1 2 3 4 5

τ1

τ2

Figure 1.3. Gantt diagram

1.4.2. Task characterization

In a real-time system, most processing is recurrent, or
even periodic. Each recurrent execution is called an instance
or a job. Thus, in example 1.1, the reading of the gyro meter
will presumably be periodic. Ideally, this would happen
continuously, but since we are using a processor, our only
choice is to discretize the process. The same applies to most of
the input rhythms of the system, which are either periodic
when the system needs to scan the state of a sensor, or
triggered by the arrival of a message on the network or by
another external event.

Each job of each task executes instructions, and
consequently, uses up time on the computing resources. A
task is therefore characterized by the duration of its jobs.
Given that there could be loops with a number of iterations
depending on the data, conditional paths, more or less
efficient material optimizations determined by the execution



Introduction to Real-time Scheduling 17

time or the data values, etc., the duration of the jobs of a task
cannot be considered fixed. In a real-time context, it will be
characterized by a worst-case execution time (WCET). The
techniques used to determine the WCET are presented in
Chapter 5.

Compliance with time-related requirements is mirrored on
tasks by deadlines. In most models, each job is given a
deadline that it has to comply with. Since every task can
generate a potentially infinite number of jobs, each with a
deadline, the temporal constraints are generally represented
on a task τi by a relative deadline, often denoted by Di. The
relative deadline represents the size of the temporal window
in which a job has to be executed from its activation.

Following their activation types, we distinguish between
three kinds of tasks:

– Periodic tasks: tasks activated in a strictly periodic
manner. A periodic task τi of period Ti is characterized by an
initial release time, denoted ri (as in release) or Oi (as in offset)
in the literature. The first job starts at time ri1 = ri, and the
task potentially generates an infinity of jobs, τi,k, k ≥ 1. The
kth job τi,k is woken up at time ri,k = ri + (k − 1)Ti, and its
deadline is di,k = ri,k +Di.

– Sporadic tasks: tasks activated by an event, in such a
way that there is a minimal delay between two successive
activations. This delay is seen as a minimal period Ti. In
general the release time ri,1 of the first job of a sporadic task τi
is unknown, the activation time ri,k ≥ rk−1 + Ti, for all k > 1.

– Aperiodic tasks: tasks for which there is no known
minimal delay separating two successive activations. In the
case where an aperiodic task is given a deadline, we generally
retain the right to accept or to refuse processing depending
on whether or not we can guarantee compliance with the
deadline. When it is not given a deadline, our goal will often be



18 Real-time Systems Scheduling 1: Fundamentals

to minimize its response time without affecting the deadline-
compliance of the tasks under temporal constraints.

When an external event is periodic, before declaring a task
triggered by this event as periodic, it has to be ensured that
the timebase (material clock) used by every periodic task of the
system is identical. Indeed, let us assume that a task run by a
CPU is activated by a periodic message coming from another
distant CPU, even if the sending of the message is completely
regular from the point of view of the distant CPU, there is
a drift, even a small one, which undermines the periodicity
hypothesis. Indeed, as we go along, the effective release times
of the task woken up by these messages will be more and more
offset with respect to a periodic release.

The typical implementation of a periodic task on a RTOS
is given in Figure 1.4, and that of a sporadic or aperiodic task
is given in Figure 1.5. In the sporadic or aperiodic case, the
trigger event is typically indicated by the occurrence of a
hardware interrupt, for example, the arrival of a frame on an
input/output bus or on a communication network. The
distinction between sporadic and aperiodic comes from what
characterizes the event expected by the wake-up of the task.
In certain cases, the trigger event is characterized by a
minimal delay between two successive activations. In case
that the minimal delay between two successive activations
cannot be determined, the task is aperiodic.

periodic task τi
release=origin+ri // origin gives the time reference
do

wait for release
// code corresponding to a job of the task
release=release+Ti

while true

Figure 1.4. Typical implementation of a periodic task

In the case of periodic tasks, the initial release time is
usually known, and we then refer to concrete tasks, whereas



Introduction to Real-time Scheduling 19

in the sporadic and aperiodic cases, the trigger event often
being external, it is difficult to know in advance the moment
when the first job is triggered. We then refer to non-concrete
tasks.
sporadic or aperiodic task τi

do
wait for trigger event
// code corresponding to a job of the task

while true

Figure 1.5. Typical implementation of a sporadic task and an
aperiodic task

For periodic or sporadic tasks, the relationship between
period and relative deadline is of great importance in the
temporal study of the systems. We therefore distinguish
between three cases for a task τi:

– Implicit deadline (Di = Ti): this is historically the first
model that has been studied. The deadline of a job corresponds
to the release time of the next job.

– Constrained deadline (∃i,Di < Ti): the deadline of a job
precedes the activation of the next job. In this case and in the
implicit deadline case+, two jobs of the task τi can never be in
competition for the computing resources.

– Arbitrary deadline (∃τi, Di > Ti): jobs of τi can potentially
be in competition for a processor. However, in general, we
consider that a job has to be completely terminated before the
next job can be executed. We refer, in this case, to the non-
reentrance of tasks. Most RTOSs implicitly offer the principle
of non-reentrance. For example, on Figure 1.4, a job, which
corresponds to an iteration of the “While true” loop, cannot
be executed before the end of the preceding job (iteration).

1.4.3. Criticality

In most temporal analyses, tasks are considered to have
strict constraints, in other words in no circumstance can a



20 Real-time Systems Scheduling 1: Fundamentals

deadline be violated. Various studies have, however, been
carried out on systems with fewer constraint tasks. For
instance, the model (m, k) − firm considers that m deadlines
out of k have to be respected. More recently, the
multi-criticality model was inspired by the criticality levels in
civil avionics proposed by the DO178B/C. These levels of
criticality represent the cohabitation of more or less
strict-constraint tasks in a system of tasks.

1.4.4. Metrics related to scheduling

The main problem dealt with in the temporal study of an
application concerns the deadline-compliance of the tasks, but
several other metrics are of interest. In order to illustrate
a few typical metrics used to describe a scheduling process,
Figure 1.6 represents a fixed-task priority scheduling (the
priority is assigned to the tasks, each job of a task is given
the priority of the task). Considering the system of tasks, S,
is composed of three periodic tasks with implicit deadlines
(deadline equal to the period) τ1, τ2, τ3 with respective WCETs
of 3, 3, 3, with respective periods of 6, 9, 18 and with respective
release times of 0, 1, 2. Given a system execution log, which
can be called a scheduling sequence, we could characterize for
example:

– Start time of a job: time at which the job acquires
a computing resource for the first time. For example, in
Figure 1.6, the second job τ2,1 of the task τ1 has a starting
time of 3.

– End time of a job: the job τ1,1 has an end time of 3.

– Response time of a job: corresponds to the difference
between the end time and the release time. The response time
of the job τ2,1 is thus 5. A job complies with its deadline if
and only if its response time is not greater than its relative
deadline.



Introduction to Real-time Scheduling 21

– Response time of a task: corresponds to the maximum
response time among the jobs of the task. Since there is a
potentially infinite number of jobs, we will see in the next
chapters how to determine this response time. In Figure 1.6,
since the state of the system is the same at time 0 and at
time 18 (all the jobs are terminated with the exception of a
job of task τ1 which arrived at that moment), then the infinite
scheduling sequence is given by the infinite repetition of the
sequence obtained in the time interval [0..18[. Consequently,
the response time of the task τ2 is given by the worst response
time of its jobs, in other words 6. For τ1, we can observe a
response time of 3, and for τ3 a response time of 16. Therefore,
since every job complies with its deadline, the scheduling
sequence is valid. We say that the system is schedulable by
the chosen scheduling policy.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

τ1

τ2

τ3

Figure 1.6. Fixed-task priority scheduling of the system S

– Latency of a job: difference between the current time
instant and the deadline of the job. At time 5, the latency of
the job τ2,1 is 5.

– Laxity or slack of a job: given by the difference between
the latency and the remaining processing time to finish the
job. At time 5, the laxity of the job τ2,1 is 4.

– Input/output delay of a job: difference between the start
time and end time. Indeed, we often consider for tasks that



22 Real-time Systems Scheduling 1: Fundamentals

the inputs are performed at the beginning of the task, and the
outputs at the end of the task. The input/output delay of τ2,1 is
3.

– Sampling jitter, response time jitter, input/output jitter:
represents the variation, respectively, of the starting time
(taking input, sampling for an acquisition task), of the
response time of the jobs, and of the input/output delay.
The jitters have an impact mainly on the quality of control
performed by a corrector from the field of automatic control.

1.4.5. Practical factors

Various elements influence the behavior of the tasks,
mainly the mutual exclusion during the access to critical
resources, the synchronous communications between tasks
implying precedences between jobs of different tasks, or the
access to input/output devices which lead to the suspension of
jobs.

1.4.5.1. Preemptibility and mutual exclusion

In real applications, tasks may have to share critical
resources (shared variables, communication networks, a
particular material element, etc.). In this case, as in every
parallel application, the resources are protected in order to
guarantee the mutual exclusion of their access. Typically, we
use mutual exclusion semaphores or Hoare monitors which
encapsulate the access to critical resources. This implies that
parts of tasks cannot be mutually preempted. Figure 1.7
presents a typical task using a critical shared resource
through a semaphore. In this case, we will differentiate
between the duration of the code before, during and after the
critical section.

Let us consider a system S2 of three periodic tasks τ1, τ2, τ3
run in parallel. Their temporal parameters, of the form ri
(release time), WCET (Ci, worst-case execution time), Di



Introduction to Real-time Scheduling 23

(relative deadline) and Ti (period), are given in Table 1.1.
Tasks τ1 and τ3 share a critical resource for their entire
duration. The mutual exclusion can for instance be ensured
by a semaphore s. Thus, the entry into the critical section is
subject to taking the semaphore s, and when a job tries to
take s when it is already taken, it is moved to the blocked
state. At the release of the semaphore, a job waiting for it is
moved to the ready state and is thus put back into
competition for a computing resource.

Figure 1.7. Typical implementation of a task using a critical
resource

ri Ci Di Ti

τ1 0 2 6 8
τ2 0 6 15 16
τ3 0 6 16 16

Table 1.1. S2 system parameters

We assume that the scheduler is fixed-task priority based,
and that the task τ1 has higher priority than τ2 which has
higher priority than τ3. Figure 1.8 represents a scheduling of
the system when every task lasts as long as their WCET. The



24 Real-time Systems Scheduling 1: Fundamentals

dark parts represent the critical sections, which prevent τ1
and τ3 from preempting each other.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ1

τ2

τ3

Figure 1.8. Scheduling of system S2

The scheduling sequence is valid, and the system is in the
same state at time 16 as at time 0. In consequence this
scheduling sequence can be indefinitely repeated. However, if
the system is scheduled online, it would be a serious mistake
to conclude that the system is schedulable, since during the
execution of the system, it is possible, and even very frequent,
that the duration of the tasks is lower than their WCET.
Therefore, if the task τ2 only uses 5 units of time to run, we
obtain the sequence in Figure 1.9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ1

τ2

τ3

Figure 1.9. Scheduling of system S2 with τ2
being shorter than expected

In this sequence, at time 7, τ3,1 is the only active job, it
therefore acquires the processor and begins its critical
section. At time 8, even though τ1,2 is the active job with the
highest priority, it will move into the blocked state since it



Introduction to Real-time Scheduling 25

cannot enter into its critical section. It is only at the end of
τ3,1’s critical section that τ1,2 is woken up and acquires the
processor.

The observed phenomenon is called a scheduling anomaly:
while the tasking system needs less computing resources, the
created scheduling sequence is less favorable, in the sense
that the response time of some tasks increases. When the
scheduling is online, several parameters can vary: the
parameter which can always vary in the online case is the
execution time. When the tasks are sporadic, the period can
also vary. In most realistic systems, tasks are likely to share
critical resources. An online scheduling of tasks which shares
resources can be subject to anomalies when the durations
decrease. We say that it is not C−sustainable: the concept of
sustainability is presented in section 1.5.2. This is the same
for the period: if it increases, some response times might
increase. Consequently, the online scheduling of tasks under
resource constraints is not T−sustainable.
The non-preemptive case can be seen as a specific case of

critical resource sharing: everything happens as if every task
shared the same critical resource, preventing them from being
mutually preempted.

1.4.5.2. Precedence constraints
When tasks communicate by messages, mainly when the

messages are transmitted through mailboxes, also called
message queues, a task waiting for a message has to wait for
the transmission of a message by another task. The receiving
task is thus subject to a precedence constraint. On the
left-hand side of Figure 1.11, a system of four tasks
communicating by messages is presented. The simple
precedence model is such that two tasks subject to a
precedence constraint (predecessor and successor) have the
same period. In every known real-time model, precedence
constraints form an acyclic graph. The typical code of the task
τ1 is given in Figure 1.10.



26 Real-time Systems Scheduling 1: Fundamentals

task τ1
do

// code before transmission of m1

send message m1

// code after transmission
wait for message m2

// code after reception of m2

while true

Figure 1.10. Typical implementation of the task τ1 presented in
Figure 1.11

A reduction to normal form consists, when every task has
the same period, in cutting the tasks around the
synchronization points, in other words putting the
transmission at the end of task and the wait for messages at
the beginning of task. On the right-hand side of Figure 1.11,
the task τ1 is thus cut into three tasks τ1,1, τ1,2 and τ1,3. The
reduction is such that, from a scheduling point of view, the
systems before and after the reduction are equivalent.

When the communicating tasks have different periods, we
refer to multi-periodic precedence constraints. In this case,
the reduction is done on job-level instead of task-level, since
the jobs of a same task are subject to different precedence
constraints.

1.4.5.3. Activation jitter

The activation jitter is a practical factor commonly
employed in cases where the tasks wait for messages coming
from a network, or to model the delay that can be taken up by
the messages in switched networks. The activation jitter
represents the uncertainty regarding the possibility to
execute a task as soon as it is woken up. Usually denoted as
Ji, from a task model point of view, the jitter is such that,
given the release time ri,j of a job of the task τi, it is possible
that it is only able to start its execution at an uncertain
moment of time, between ri,j and ri,j + Ji. For instance, let us
consider a periodic task executed on a distributed system,



Introduction to Real-time Scheduling 27

supposed to be waiting for the message mk with same period
coming from the network. We could pose Ji = response
time(mk) to represent the fact that the arrival delay of the
message mk with respect to the expected release time of the
job can vary between 0 and Ji.

τ1 τ2

τ3

τ4

m1

m2
m4

m3
τ1,1 τ2,1

τ3

τ4

m1

m2
m4

m3

τ1,2

τ1,3

τ2,2

τ2,3

∅ ∅

∅ ∅

Figure 1.11. Reduction to normal form of precedence constraints
when the periods are identical

1.4.5.4. Suspensions

Suspensions are another practical factor considered by
some task models. Indeed, a task performing, for example, an
input/output, is suspended during the operation. For
instance, a task which accesses a file on a mass storage
device first initiates the input/output and is then suspended,
in other words moved to the blocked state, and is reactivated
when the input/output device responds. The task is thus
suspended during the input/output. The duration of
suspension is usually difficult to predict exactly, and is
generally bounded by an upper limit.

1.4.6. Multi-core scheduling

Recent material architectures build on the miniaturization
of transistors in order to integrate several computing cores on
a single chip. We refer in this case to multi-core processors.



28 Real-time Systems Scheduling 1: Fundamentals

These architectures are already present in non-critical fields,
from personal computers to smartphones. They are also to be
generalized in critical systems, since from a technological
point of view, the miniaturization of transistors approaching
the size of an atom, the propagation speed of electric current
in the circuits for a reasonable energy and therefore the
computing frequency of the processors will soon reach a limit.
Since 2005, the increase in processor computing power is
therefore mainly ensured by the increase of the number of
computing cores and no longer by the increase of computing
frequency as before.

Multi-core architectures are more and more complex, and
with the increase in the number of cores, the passage of data
between the cores is becoming a real problem and can even
become a bottleneck. In real-time scheduling, we are
therefore not only interested in the scheduling of processes in
the cores, but also in the internal network traffic of the
processors, which is called network-on-chip or NoC. Finally,
let us note that numerous multi-core architectures use
hierarchical cache memories, which complicates the
computing of the WCET.

Figure 1.12 presents these three views: in part (a), a
completely abstract architecture, assuming uniform access to
memory, is used by the task-scheduling analysis on the
processors. In this architecture, we generally ignore the data
transmission delays between the cores as well as the
migration delays. The migration of a task consists of starting
it on one core and continuing on another core. In the
mono-core case, the preemption delay is usually assumed to
be included in the WCET of the tasks. However, the
architecture presented in part (c) shows that this hypothesis
is very restrictive, since in the case that a task migrates from
core 1 to core 2, only the data from the task present in level 1
cache has to be synchronized, whereas if a task migrates from
core 1 to core 3, the data in the level 1 and 2 caches has to be



Introduction to Real-time Scheduling 29

synchronized, which would take more time. In case (c), the
data will have a different path to travel depending on the
original core and the destination core, which would take a
different amount of time. It is therefore important to consider
the effective hypotheses after reading the results presented
in the multi-processor chapter.

Figure 1.12. Three multi-core views: (1) simplified view of
scheduling in the cores, (2) NoC and (3) cache hierarchy and WCET

One way to reduce the impact of the restrictive material
architecture-accounting hypotheses is to limit, or even to
remove, migrations. In the multi-processor case, we therefore
consider several hypotheses of migration:

– Total: every job can migrate at any given moment in time.

– Task-level: a job can not migrate, but a task can migrate
between its jobs.

– None: tasks are assigned to a single core.

These hypotheses result in three types of multiprocessor
schedulers:

– Global scheduling: there is a single scheduler for all cores,
and a single set of ready tasks. For m cores, the scheduler
chooses, at every moment in time, up to m ready jobs to be
assigned to a computing core.



30 Real-time Systems Scheduling 1: Fundamentals

– Partitioned scheduling: there is a scheduler for each core.
Tasks are assigned to a single core which is then managed as
a uniprocessor core. The issue of scheduling is in this case an
issue of assignment, which is a knapsack-type of problem.

– Semi-partitioned scheduling: only certain jobs are allowed
to migrate, in such a way as to increase scheduling
performance with respect to partitioned scheduling, while
limiting the impact of migration cost.

We usually consider, even in the multi-core case, that the
tasks and the jobs are not parallelizable. However, in some
cases, parts of jobs can be simultaneously executed on several
cores. For example, we may find directed acyclic graph (DAG)
task models or parallelizable tasks. In the case of DAG tasks,
each graph node is a part of a task which can be parallelized
with relation to the other parts of tasks while respecting the
precedence constraints between parts of tasks.

1.5. Real-time application modeling and analysis

1.5.1. Modeling

This section summarizes the different parameters and
practical factors commonly employed in temporal analysis.
These elements are based on the way tasks work in reality.

– BCET, WCET Ci: best and worst execution time of each
job of a task, also used to represent the transmission time of
messages on a communication medium.

– ri: release time of the first job of a task, only known when
the task is concrete.

– Di: relative deadline of a task. We distinguish between
constrained deadlines, implicit deadlines and arbitrary
deadlines.



Introduction to Real-time Scheduling 31

– Ti: period of a task, minimum delay between the
activation of two successive jobs of a sporadic task.

– Ji: release jitter of a task.

– Critical resources: represents mutual exclusion.

– Precedence constraints: expressed as a DAG, these
constraints represent the precedence, often linked to the
data, between jobs. Simple precedences link tasks with same
periods, while multi-periodic precedences link tasks with
different periods.

– Suspensions: represent the suspension time linked to
input/output accesses.

Various models have been proposed to closely represent
the relationships between the tasks. Thus, for instance, for
some sporadic tasks, even if we do not know the activation
time of a task in advance, we know the activation scheme of
some tasks if we know the activation of the first. Let us
assume, for example, that a task is activated by the arrival of
a frame on the network, and that this frame is always
followed, after a certain delay, by a second frame activating a
second task. The activation of the second task is therefore
conditional to the activation of the first.

1.5.2. Analysis

We can break down the view of a real-time system into
three parts:

– Computational resources: processors, networks, or
switches, these resources allow the execution of jobs or the
transmission of messages.

– Scheduling or arbitration: technique implemented to
rationally distribute the resources to the jobs or messages.



32 Real-time Systems Scheduling 1: Fundamentals

– Jobs or messages: of recurrent nature, jobs or messages
represent the need in computational resources of the
application. If the application is real-time, these elements are
subject to temporal constraints represented by deadlines.

We will call configuration the set of computational
resources, scheduling policies (or arbitration), and jobs or
messages together with their constraints.

The temporal analysis of the system can be broken down
into several problems:

1) Scheduling: consists of ensuring that for a given
configuration, the temporal constraints of the jobs or messages
are always respected.

2) Sensitivity analysis: based on a configuration in which
certain parameters of jobs or messages are ignored, consists
of establishing a domain for these parameters such that
the configuration obtained for any value of the domain is
schedulable.

3) Dimensioning: based on a configuration in which the
computational resources are unknown or partially known,
consists of choosing the minimum number of resources such
that the configuration is schedulable.

4) Choice of policy: consists of choosing a scheduling policy
such that the configuration obtained is schedulable.

5) Architecture exploration: given computational resources,
find a task assignment, and communication mapping into
messages, mapped into networks, such that the temporal
constraints are met.

Every problem is based on the scheduling problem, which
is therefore of central importance in this book. The standard
definitions related to this problem are as follows:



Introduction to Real-time Scheduling 33

DEFINITION 1.1 (Schedulability).– A system of tasks is
schedulable by a scheduling algorithm if every job created will
meet its deadline.

DEFINITION 1.2 (Feasibility).– A system of tasks is feasible if
it is schedulable by at least one scheduling algorithm.

DEFINITION 1.3 (Schedulability test).– A schedulability test
is a binary test returning yes or no depending on whether the
configuration is schedulable, or whether the system is feasible.

Schedulability tests are usually conservative, and we then
refer to sufficient tests: if the answer is yes, the configuration
is schedulable, but if the answer is no, then it is possible that
the configuration is schedulable but the test cannot prove it.
In some simple academic cases, accurate tests are available,
in other words tests that are necessary and sufficient.

We have seen that in certain cases, such as in the presence
of critical resources, scheduling anomalies may occur. In
consequence, the sustainability of schedulability tests should
be defined.

DEFINITION 1.4 (Sustainability).– A schedulability test is
C−sustainable (T−, D−, J− sustainable, respectively) if, in
the case that the answer is yes, the configuration remains
schedulable if we reduce the execution times (increase the
periods or relative deadlines, reduce jitter, respectively).

The concept of sustainability, mainly C−sustainability, is
paramount for every online scheduler. A schedulability test
has to be C−sustainable in order to be used online. In the
case that a test is not C−sustainable, for example a
simulation for a system sharing resources, then it can only be
used offline. Indeed, the scheduling sequence in Figure 1.8
remains valid if it is indefinitely played offline by a sequencer.



34 Real-time Systems Scheduling 1: Fundamentals

1.6. System architecture and schedulability

The challenges of temporal analysis are strongly linked to
the real-time systems design engineer whose role, during the
design of the system, is to fashion the CPUs and the networks
and to assign the functionalities of a system to the tasks. This
section therefore creates the link between the choice of
assigning two communicating functions on tasks, CPUs,
networks and the worst-case delay between the beginning of
the first function and the end of the second function,
assuming, for the sake of simplicity, that the tasks will have
an implicit deadline. To simplify things, let us consider two
functions A and B running periodically with same period T ,
represented at the center of Figure 1.13. Function A precedes
function B. For each choice of architecture, we compute the
worst-case end-to-end delay D, in other words the worst-case
delay between the release of A and the end of B.

In case (a), the resulting architecture is the sequence in
the same task. The task having an implicit deadline and the
system deemed schedulable, the worst-case response time of
the task is less than or equal to the period, the worst-case
end-to-end delay is therefore less than or equal to the period
of the task: D ≤ T .

In case (b), the function A is executed in a periodic task τA
with period T , which precedes the task τB executing B, with
the same period. The end of execution of τA triggers task τB.
There are several possible models to represent the two tasks:
the first will presumably be modeled by a periodic task with
period T . If the system is strictly periodic, the task τB may be
modeled by a task whose release time is offset, for example
by T with respect to τA. In this case, the worst-case execution
time is D ≤ 2T since each task has to execute in its window of
size T and that the two windows are offset one after the other.



Introduction to Real-time Scheduling 35

F
ig

ur
e

1.
13

.V
ar

io
us

ar
ch

it
ec
tu
re
s
fo
r
tw

o
co
m
m
un

ic
at
in
g

fu
nc

ti
on

al
it
ie
s



36 Real-time Systems Scheduling 1: Fundamentals

In case (c), the communication of m is carried out in an
asynchronous fashion by a shared variable v. Assuming that
the two tasks are periodic with period m, the release case
that is the most unfavorable for the end-to-end delay occurs
when the task τA which runs A terminates the latest, in other
words the variable v is modified T units of time after the
release of τA. Moreover, we consider that τB has started the
earliest possible and read the variable v just before its
modification by τA. The variable v will be read, at the latest,
at the end of the newt period of τB, in other words 2T later. In
consequence, the worst-case delay is D ≤ 3T .

In case (d), the tasks are placed on two different CPUs,
and the message m is transmitted through a communication
network. We assume that the message, with period m, has a
transmission delay less than or equal to T (this will be proven
by the schedulability analysis of the network). In the worst
case, from the point of view of the processor running the task
τA, the maximum delay between the release of τA and the
transmission of the message on the network is assumed to be
T (the system is deemed schedulable), and afterward the
transmission delay on the network is at most T . At most 2T
after the release of τA, the message arrives on the second
processor. Depending on the type of implementation of the
task τB running B, we could use here several models for this
task. If the task is triggered by the arrival of the message,
then there has to be T between the moment the message
arrives and the moment where τB terminates, which gives
D ≤ 3T . If the task τB is time-triggered, in other words it is
executed periodically and at each release it considers the last
arrived message, then we are in the case of an asynchronous
communication between the arrival of the message on the
CPU and its taking into account by the task τB, as in case (c),
this asynchronism costs at most 2T , in this case, the
end-to-end delay is therefore D ≤ 4T .



Introduction to Real-time Scheduling 37

We can thus see that the choice of the software
implementation (tasks) and material implementation
(allocation to processors and networks) has a very large
impact on the end-to-end response time, ranging here from T
to 4T depending on the choice of architecture. A close analysis
of schedulability can strongly help in reducing this delay, for
instance by tuning the relative deadlines, it is possible to
reduce the windows in which the tasks are executed.


