
Chapter 1

Parametric Sensitivity of Damped Systems

Changes of the eigenvalues and eigenvectors of a linear vibrating system due to
changes in system parameters are of wide practical interest. Motivation for this kind
of study arises, on the one hand, from the need to come up with effective structural
designs without performing repeated dynamic analysis, and, on the other hand, from
the desire to visualize the changes in the dynamic response with respect to system
parameters. Furthermore, this kind of sensitivity analysis of eigenvalues and
eigenvectors has an important role to play in the area of fault detection of structures
and modal updating methods. Sensitivity of eigenvalues and eigenvectors is useful in
the study of bladed disks of turbomachinery where blade masses and stiffness are
nearly the same, or deliberately somewhat altered (mistuned), and one investigates
the modal sensitivities due to this slight alteration. Eigensolution derivatives also
constitute a central role in the analysis of stochastically perturbed dynamical
systems. Possibly, the earliest work on the sensitivity of the eigenvalues was carried
out by Rayleigh [RAY 77]. In his classic monograph, he derived the changes in
natural frequencies due to small changes in system parameters. Fox and Kapoor
[FOX 68] have given exact expressions for the sensitivity of eigenvalues and
eigenvectors with respect to any design variables. Their results were obtained in
terms of changes in the system property matrices and the eigensolutions of the
structure in its current state, and have been used extensively in a wide range of
application areas of structural dynamics. Nelson [NEL 76] proposed an efficient
method to calculate an eigenvector derivative, which requires only the eigenvalue and
eigenvector under consideration. A comprehensive review of research on this kind of
sensitivity analysis can be obtained in Adelman and Haftka [ADE 86]. A brief review
of some of the existing methods for calculating sensitivity of the eigenvalues and
eigenvectors is given in section 1.6 (Chapter 1, [ADH 14]).
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The aim of this chapter is to consider parametric sensitivity of the eigensolutions
of damped systems. We first start with undamped systems in section 1.1. Parametric
sensitivity of viscously damped systems is discussed in section 1.2. In section 1.3, we
discuss the sensitivity of eigensolutions of general non-viscously damped systems. In
section 1.4, a summary of the techniques introduced in this chapter is provided.

1.1. Parametric sensitivity of undamped systems

The eigenvalue problem of undamped or proportionally damped systems can be
expressed by

K(p)xj = λjM(p)xj [1.1]

where λj and xj are the eigenvalues and the eigenvectors of the dynamic system.
M(p) : Rm �→ RN×N and K(p) : Rm �→ RN×N , the mass and stiffness matrices,
are assumed to be smooth, continuous and differentiable functions of a parameter
vector p ∈ Rm. Note that λj = ω2

j where ωj is the jth undamped natural frequency.
The vector p may consist of material properties, e.g. mass density, Poisson’s ratio
and Young’s modulus; or geometric properties, e.g. length, thickness and boundary
conditions. The eigenvalues and eigenvectors are smooth differentiable functions of
the parameter vector p.

1.1.1. Sensitivity of the eigenvalues

We rewrite the eigenvalue equation as

[K − λjM] xj = 0 [1.2]

or xTj [K − λjM] . [1.3]

The functional dependence of p is removed for notational convenience.
Differentiating the eigenvalue equation [1.2] with respect to the element p of the
parameter vector we have�

∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

�
xj + [K − λjM]

∂xj

∂p
= 0. [1.4]

Premultiplying by xTj , we have

xTj

�
∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

�
xj + xTj [K − λjM]

∂xj
∂p

= 0. [1.5]



Parametric Sensitivity of Damped Systems 3

Using the identity in [1.3], we have

xTj

�
∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

�
xj = 0 [1.6]

or
∂λj

∂p
=

xT
j

�
∂K
∂p

− λj
∂M
∂p

�
xj

xTj Mxj
. [1.7]

Note that when the modes are mass normalized, xT
j Mxj = 1. Equation [1.7] shows

that the derivative of a given eigenvalue depends only on eigensolutions corresponding
to that particular eigenvalue. Next, we show that this fact is not true when we consider
the derivative of the eigenvectors.

1.1.2. Sensitivity of the eigenvectors

Different methods have been developed to calculate the derivatives of the
eigenvectors. One way to express the derivative of an eigenvector is by a linear
combination of all the eigenvectors

∂xj
∂p

=

N/
r=1

αjrxr. [1.8]

This can always be done as xr, r = 1, 2, · · · , N forms a complete basis. It is
necessary to find expressions for the constant αjr for all r = 1, 2, · · ·N . Substituting
this in equation [1.4], we have

�
∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

�
xj +

N/
r=1

[K − λjM]αjrxr = 0. [1.9]

Premultiplying by xTk , we have

xTk

�
∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

�
xj +

N/
r=1

xTk [K − λjM]αjrxr = 0 [1.10]

We consider r = k and the orthogonality of the eigenvectors

xTk Kxr = λkδkr and xTk Mxr = δkr. [1.11]
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Using these, we have

xTk

�
∂K
∂p

− λj
∂M
∂p

�
xj + (λk − λj)αjik = 0. [1.12]

From this, we obtain

αjik = −
xT
k

�
∂K
∂p

− λj
∂M
∂p

�
xj

λk − λj
, ∀ k �= j. [1.13]

To obtain the jth term αjj , we differentiate the mass orthogonality relationship in
[1.11] as

∂(xT
j Mxj)

∂p
= 0 or

∂xTj
∂p

Mxj + xTj
∂M
∂p

xj + xT
j M

∂xj
∂p

= 0. [1.14]

Considering the symmetry of the mass matrix and using the expansion of the
eigenvector derivative, we have

xTj
∂M
∂p

xj + 2xTj M
∂xj
∂p

= 0 or
N/
r=1

2xTj Mαjrxr = −xTj
∂M
∂p

xj . [1.15]

Utilizing the othonormality of the mode shapes, we have

αjj = −1

2
xT
j

∂M
∂p

xj . [1.16]

The complete eigenvector derivative is therefore given by

∂xj

∂p
= −1

2

$
xTj

∂M
∂p

xj

(
xj +

N/
k=1	=j

xTk

�
∂K
∂p

− λj
∂M
∂p

�
xj

λj − λk
xk. [1.17]

From equation [1.17], it can be observed that when two eigenvalues are close,
the modal sensitivity will be higher as the denominator of the right-hand term will
be very small. Unlike the derivative of the eigenvalues given in [1.7], the derivative
of an eigenvector requires all the other eigensolutions. This can be computationally
demanding for large systems. The method proposed by Nelson [NEL 76] can address
this problem. We will discuss Nelson’s method in the context of damped systems in
the following sections.
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1.2. Parametric sensitivity of viscously damped systems

The analytical method in the preceding section is for undamped systems. For
damped systems, unless the system is proportionally damped (see section 2.4,
Chapter 2 of [ADH 14]), the mode shapes of the system will not coincide with the
undamped mode shapes. In the presence of general non-proportional viscous
damping, the equation of motion in the modal coordinates will be coupled through
the off-diagonal terms of the modal damping matrix, and the mode shapes and
natural frequencies of the structure will, in general, be complex. The solution
procedures for such non-proportionally damped systems follow mainly two routes:
the state-space method and approximate methods in the configuration space, as
discussed in Chapters 2 and 3 [ADH 14]. The state-space method (see
[NEW 89, GÉR 97], for example) although exact in nature, requires significant
numerical effort for obtaining the eigensolutions as the size of the problem doubles.
Moreover, this method also lacks some of the intuitive simplicity of traditional modal
analysis. For these reasons, there has been considerable research effort in analyzing
non-proportionally damped structures in the configuration space. Most of these
methods either seek an optimal decoupling of the equation of motion or simply
neglect the off-diagonal terms of the modal damping matrix. It may be noted that
following such methodologies, the mode shapes of the structure will still be real. The
accuracy of these methods, other than the light damping assumption, depends upon
various factors, for example frequency separation between the modes and driving
frequency (see [PAR 92a, GAW 97] and the references therein for discussions on
these topics). A convenient way to avoid the problems that arise due to the use of real
normal modes is to incorporate complex modes in the analysis. Apart from the
mathematical consistency, by conducting experimental modal analysis, we also often
identify complex modes: as Sestieri and Ibrahim [SES 94] have put it “... it is ironic
that the real modes are in fact not real at all, in that in practice they do not exist,
while complex modes are those practically identifiable from experimental tests. This
implies that real modes are pure abstraction, in contrast with complex modes that are,
therefore, the only reality!” But surprisingly, most of the current application areas of
structural dynamics, which utilize the eigensolution derivatives, e.g. modal updating,
damage detection, design optimization and stochastic finite element methods, do not
use complex modes in the analysis but rely on the real undamped modes only. This is
partly because of the problem of considering an appropriate damping model in the
structure and partly because of the unavailability of complex eigensolution
sensitivities. Although, there have been considerable research efforts toward damping
models, sensitivity of complex eigenvalues and eigenvectors with respect to system
parameters appears to have received less attention.

In this section, we determine the sensitivity of complex natural frequencies and
mode shapes with respect to some set of design variables in non-proportionally
damped discrete linear systems. It is assumed that the system does not possess
repeated eigenvalues. In section 2.5 (Chapter 2, [ADH 14]), the mathematical
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background on linear multiple-degree-of-freedom discrete systems needed for further
derivations has already been discussed. Sensitivity of complex eigenvalues is derived
in section 1.2.1 in terms of complex modes, natural frequencies and changes in the
system property matrices. The approach taken here avoids the use of state-space
formulation. In section 1.2.2, sensitivity of complex eigenvectors is derived. The
derivation method uses state-space representation of equation of motion for
intermediate calculations and then relates the eigenvector sensitivities to the complex
eigenvectors of the second-order system and to the changes in the system property
matrices. In section 1.2.2.3, a two degree-of-freedom system that shows the
“curve-veering” phenomenon has been considered to illustrate the application of the
expression for rates of changes of complex eigenvalues and eigenvectors. The results
are carefully analyzed and compared with presently available sensitivity expressions
of undamped real modes.

1.2.1. Sensitivity of the eigenvalues

The equation of motion for free vibration of a linear damped discrete system with
N degrees of freedom can be written as

Mq̈(t) + Cq̇(t) + Kq(t) = 0 [1.18]

where M, C and K ∈ RN×N are mass, damping and stiffness matrices, q(t) ∈ RN

is the vector of the generalized coordinates and t ∈ R+ denotes time. The eigenvalue
problem associated with equation [1.18] is given by

s2jMzj + sjCzj + Kzj = 0, ∀ j = 1, 2, · · · 2N [1.19]

where zj are the mode shapes and the natural frequencies sj are defined by sj = iλj .
Unless system [1.18] is proportionally damped, i.e. C is simultaneously
diagonalizable with M and K (conditions were derived by Caughey and O’Kelly
[CAU 65]), in general, sj and zj will be complex in nature. The calculation of
complex modes and natural frequencies is discussed in detail in Chapters 2 and 6
[ADH 14].

Complex modes and frequencies can be exactly obtained by the state-space (first-
order) formalisms. Transforming equation [1.18] into state-space form, we obtain

u̇(t) = Au(t) [1.20]

where A ∈ R2N×2N is the system matrix and u(t) ∈ R2N is the response vector in
the state space given by

A =

�
O I

−M−1K −M−1C

�
; u(t) =

�
q(t)
q̇(t)

�
. [1.21]
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In the above equation, O ∈ RN×N is the null matrix and I ∈ RN×N is the identity
matrix. The eigenvalue problem associated with the above equation is now in terms of
an asymmetric matrix and can be expressed as

Aφj = sjφj , ∀j = 1, · · · , 2N [1.22]

where sj is the jth eigenvalue and φj ∈ C2N is the jth right eigenvector that is related
to the eigenvector of the second-order system as

φj =

�
zj
sjzj

�
. [1.23]

The left eigenvector ψj ∈ C2N associated with sj is defined by the equation

ψT
j A = sjψ

T
j [1.24]

where (•)T denotes matrix transpose. For distinct eigenvalues, it is easy to show that
the right and left eigenvectors satisfy an orthogonality relationship, that is

ψT
j φk = 0; ∀j �= k [1.25]

and we may also normalize the eigenvectors so that

ψT
j φj = 1. [1.26]

The above two equations imply that the dynamic system defined by equation [1.20]
possesses a set of biorthonormal eigenvectors. As a special case, when all eigenvalues
are distinct, this set forms a complete set. Henceforth in our discussion, it will be
assumed that all the system eigenvalues are distinct.

Suppose the structural system matrices appearing in [1.18] is a function of a
parameter p. This parameter can be an element of a larger parameter vector. This can
denote a material property (such as Young’s modulus) or a geometric parameter (such
as thickness). We wish to find the sensitivity of the eigenvalues and eigenvectors with
respect to this general parameter. We aim to derive expressions of derivative of
eigenvalues and eigenvectors with respect to p without going into the state space.

For the jth set, equation [1.19] can be rewritten as

Fjzj = 0 [1.27]
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where the regular matrix pencil is

Fj = s2jM + sjC + K. [1.28]

Note that complex frequencies can be obtained by substituting sj = iλj .
Premultiplication of equation [1.27] by zTj yields

zTj Fjzj = 0. [1.29]

Differentiating the above equation with respect to pj , we obtain

∂zj
∂p

T

Fjzj + zTj
∂Fj

∂p
zj + zTj Fj

∂zj
∂p

= 0 [1.30]

where ∂Fj

∂p stands for ∂Fj

∂pj
, and can be obtained by differentiating equation [1.28] as

∂Fj

∂p
=

�
∂sj
∂p

(2sjM + C) + s2j
∂M
∂p

+ sj
∂C
∂p

+
∂K
∂p

�
. [1.31]

Now taking the transpose of equation [1.27] and using the symmetry property of
Fj , it can shown that the first and third terms of the equation [1.30] are zero. Therefore,
we have

zTj
∂Fj

∂p
zj = 0. [1.32]

Substituting ∂Fj

∂p from equation [1.31] into the above equation, we obtain

−∂sj
∂p

zTj (2sjM + C) zj = zTj

�
s2j

∂M
∂p

+ sj
∂C
∂p

+
∂K
∂p

�
zj . [1.33]

From this, we have

∂sj
∂p

= −
zTj

�
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

�
zj

zTj (2sjM + C) zj
[1.34]

which is the derivative of the jth complex eigenvalue. For the undamped case, when
C = 0, sj → iωj and zj → xj (ωj and xj are undamped natural frequencies and
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modes satisfying Kxj = ω2
jMxj), with usual mass normalization, the denominator

→ 2iωj , and we obtain

−i
∂ωj

∂p
=

xT
j

�
∂K
∂p − ω2

j
∂M
∂p

�
xj

2iωj
or

∂ω2
j

∂p
= xT

j

�
∂K
∂p

− ω2
j

∂M
∂p

�
xj . [1.35]

This is exactly the well-known relationship derived by Fox and Kapoor [FOX 68]
for the undamped eigenvalue problem. Thus, equation [1.34] can be viewed as a
generalization of the familiar expression of the sensitivity of undamped eigenvalues
to the damped case. Following observations may be noted from this result:

– The derivative of a given eigenvalue requires the knowledge of only the
corresponding eigenvalue and eigenvector under consideration, and thus a complete
solution of the eigenproblem, or from the experimental point of view, eigensolution
determination for all the modes is not required.

– Changes in mass and/or stiffness introduce more change in the real part of the
eigenvalues whereas changes in the damping introduce more change in the imaginary
part.

Since ∂sj
∂p is complex in equation [1.34], it can be effectively used to determine the

sensitivity of the modal damping factors with respect to the system parameters. For
small damping, the modal damping factor for the jth mode can be expressed in terms
of complex frequencies as ζj = �(λj)/�(λj), with �(•) and �(•) denoting real and
imaginary parts, respectively. As a result, the derivative can be evaluated from

∂ζj
∂p

=
∂�(λj)/�(λj)

∂p
=

��(∂λj

∂p )�(λj)−�(λj)�(∂λj

∂p )

�(λj)2

�
. [1.36]

This expression may turn out to be useful since we often directly measure the
damping factors from experiment.

1.2.2. Sensitivity of the eigenvectors

1.2.2.1. Modal approach

We use the state-space eigenvectors to calculate the derivative of the eigenvectors
in the configuration space. Since zj is the first N rows of φj (see equation [1.23]), we

first try to derive
∂φj

∂p and subsequently obtain ∂zj

∂p using their relationships.
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Differentiating [1.22] with respect to pj , we obtain

(A − sj)
∂φj

∂p
= −

$
∂A
∂p

− ∂sj
∂p

(
φj . [1.37]

Since it has been assumed that A has distinct eigenvalues, the right eigenvectors,

φj , form a complete set of vectors. Therefore, we can expand
∂φj

∂p as

∂φj

∂p
=

2N/
l=1

ajlφl [1.38]

where ajl, ∀l = 1, · · · 2N are set of complex constants to be determined. Substituting
∂φj

∂p in equation [1.37] and premultiplying by the left eigenvector ψT
k , we obtain the

scalar equation

2N/
l=1

(ψT
k Aφl − sjψ

T
kφl) ajl = −ψT

k

∂A
∂p

φj +
∂sj
∂p

ψT
kφj . [1.39]

Using the orthogonality relationship of left and right eigenvectors from the above
equation, we obtain

ajk =
ψT

k
∂A
∂p φj

sj − sk
; ∀k = 1, · · · , 2N ; �= j. [1.40]

The ajk as expressed above is not very useful since it is in terms of the left and
right eigenvectors of the first-order system. In order to obtain a relationship with the
eigenvectors of second-order system, we assume

ψj =

�
ψ1j

ψ2j

�
[1.41]

where ψ1j ,ψ2j ∈ CN . Substituting ψj in equation [1.24] and taking transpose, we
obtain

sjψ1j = −KM−1ψ2j

sjψ2j = ψ1j − CM−1ψ2j

or ψ1j =
�
sjI + CM−1

�
ψ2j .

[1.42]
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Elimination of ψ1j from the above two equation yields

sj

!
sjψ2j + CM−1ψ2j

%
= −KM−1ψ2j

or
�
s2jM + sjC + K

� !
M−1ψ2j

%
= 0.

[1.43]

By comparison of this equation with equation [1.19], it can be seen that the vector
M−1ψ2j is parallel to zj ; that is, there exists a non-zero βj ∈ C such that

M−1ψ2j = βjzj or ψ2j = βjMzj . [1.44]

Now substituting ψ1j , ψ2j and using the definition of φj from equation [1.23]
into the normalization condition [1.26], the scalar constant βj can be obtained as

βj =
1

zTj [2sjM + C] zj
. [1.45]

Using ψ2j from equation [1.44] into the second equation of [1.42], we obtain

ψj = βjPjφj ; where Pj =

�
sjM+C O

O M
sj

�
∈ C2N×2N . [1.46]

The above equation along with the definition of φj in [1.23] completely relates the
left and right eigenvectors of the first-order system to the eigenvectors of the second-
order system.

The derivative of the system matrix A can be expressed as

∂A
∂p

=

⎡⎣ O O
∂M−1K

∂p

∂M−1C
∂p

⎤⎦
=

⎡⎣ O O

−M−2 ∂M
∂p

K + M−1 ∂K
∂p

−M−2 ∂M
∂p

C + M−1 ∂C
∂p

⎤⎦ [1.47]

from which after some simplifications, the numerator of the right-hand side of
equation [1.40] can be obtained as

ψT
k

∂A
∂p

φj = −βkzTk

�
−M−1 ∂M

∂p
[K + sjC] +

∂C
∂p

+
∂K
∂p

�
zj . [1.48]
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Since I = MM−1, ∂I
∂p = ∂M

∂p M−1 + M
�
−M−2 ∂M

∂p

�
= O or ∂M

∂p M−1 =

M−1 ∂M
∂p , that is M−1 and ∂M

∂p commute in product. Using this property and also
from [1.19] noting that s2jzj = −M−1 [sjC+K] zj , we finally obtain

ajk = −βk

zk
�
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

�
zj

sj − sk
; ∀k = 1, · · · , 2N ; �= j. [1.49]

This equation relates the ajk with the complex modes of the second-order system.

To obtain ajj , we begin with differentiation of the normalization condition [1.26]
with respect to p and obtain the relationship

∂ψj

∂p

T

φj +ψT
j

∂φj

∂p
= 0. [1.50]

Substitution of ψj from equation [1.46] further leads to

βj

�
∂φj

∂p

T

PT
j φj + φT

j

∂Pj

∂p

T

φj + φT
j PT

j

∂φj

∂p



= 0 [1.51]

where ∂Pj

∂p can be derived from equation [1.46] as

∂Pj

∂p
=

⎡⎢⎢⎢⎣
∂sj
∂p

M + sj
∂M
∂p

+
∂C
∂p

O

O −M
s2j

∂sj
∂p

+

∂M
∂p

sj

⎤⎥⎥⎥⎦ . [1.52]

Since Pj is a symmetric matrix, equation [1.51] can be rearranged as

2
!
βjφ

T
j Pj

% ∂φj

∂p
= −βjφ

T
j

∂Pj

∂p
φj . [1.53]

Note that the term within the bracket is ψT
j (see equation [1.46]). Using the

assumed expansion of
∂φj

∂p from [1.40], this equation reads

2ψT
j

2N/
l=1

ajlφl = −βjφ
T
j

∂Pj

∂p
φj . [1.54]
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The left-hand side of the above equation can be further simplified

φT
j

∂Pj

∂p
φj = zTj

�
∂sj
∂p

M + sj
∂M
∂p

+
∂C
∂p

�
zj+

zTj sj

⎡⎣−M
s2j

∂sj
∂p

+

∂M
∂p

sj

⎤⎦ sjzj = zTj

�
2sj

∂M
∂p

+
∂C
∂p

�
zj .

[1.55]

Finally, using the orthogonality property of left and right eigenvectors, from
equation [1.54], we obtain

ajj = −1

2

zTj
�
2sj

∂M
∂p + ∂C

∂p

�
zj

zTj [2sjM + C] zj
. [1.56]

In the above equation, ajj is expressed in terms of the complex modes of the
second-order system. Now recalling the definition of φj in [1.23], from the first N
rows of equation [1.38], we can write

∂zj
∂p

= ajjzj +
2N/
k 	=j

ajkzk = −1

2

zTj
�
2sj

∂M
∂p + ∂C

∂p

�
zj

zTj [2sjM + C] zj
zj

−
2N/
k 	=j

βk

zk
�
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

�
zj

sj − sk
zk.

[1.57]

We know that for any real symmetric system, first-order eigenvalues and
eigenvectors appear in complex conjugate pairs. Using usual definition of natural
frequency, that is sk = iλk and consequently s∗k = −iλ∗

k, where (•)∗ denotes
complex conjugate, the above equation can be rewritten in a more convenient form as

∂zj
∂p

= −1

2

zTj
�
∂M
∂p − i∂C

∂p /2λj

�
zj

zTj [M − iC/2λj ] zj
zj

+
N/

k 	=j

⎡⎣αk(zTk
∂
˜F

∂p zj)zk
λj − λk

−
α∗
k(z∗

T

k
∂
˜F

∂p

∗
z∗j )z∗k

λj + λ∗
k

⎤⎦
[1.58]
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where

∂F̃
∂p

=

�
∂K
∂p

− λ2
j

∂M
∂p

+ iλj
∂C
∂p

�
and αk = iβk =

1

zTk [2λkM − iC] zk
.

This result is a generalization of the known expression of the sensitivity of real
undamped eigenvectors to complex eigenvectors. The following observations can be
made from this result:

– Unlike the eigenvalue derivative, the derivative of a given complex eigenvector
requires the knowledge of all the other complex eigenvalues and eigenvectors.

– The sensitivity depends very much on the modes whose frequency is close to
that of the considered mode.

– Like eigenvalue derivative, changes in mass and/or stiffness introduce more
changes in the real part of the eigenvector whereas changes in damping introduce
more changes in the imaginary part.

From equation [1.58], it is easy to see that in the undamped limit C → 0, and

consequently λk, λ
∗
k → ωk; zk, z∗k → xk; ∂

˜F
∂p ,

∂
˜F

∂p

∗
→

�
∂K
∂p − ω2

j
∂M
∂p

�
and also

with usual mass normalization of the undamped modes αk, α
∗
k → 1

2ωk
reduces the

above equation exactly to the corresponding well-known expression derived by Fox
and Kapoor [FOX 68] for derivative of undamped modes.

1.2.2.2. Nelson’s method

The method outlined in the previous section obtained the eigenvector derivative
as a linear combination of all the eigenvectors. For large-scale structures, with many
degrees of freedom, obtaining all the eigenvectors is a computationally expensive task.
Nelson [NEL 76] introduced the approach, extended here, where only the eigenvector
of interest was required. Lee et al. [LEE 99a] calculated the eigenvector derivatives of
self-adjoint systems using a similar approach to Nelson. This section extends Nelson’s
method to non-proportionally damped systems with complex modes. This method has
the great advantage that only the eigenvector of interest is required.

The eigenvectors are not unique, in the sense that any scalar (complex) multiple
of an eigenvector is also an eigenvector. As a result, their derivatives are also not
unique. It is necessary to normalize the eigenvector for further mathematical
derivations. There are numerous ways of introducing a normalization to ensure
uniqueness. For undamped systems, mass normalization is the most common. A
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useful normalization for damped systems that follows from equation [2.211]
(Chapter 2, [ADH 14]) is

zTj [sjM + (1/sj)K] zj = zTj [2sjM + C] zj = 1. [1.59]

Differentiating the equation governing the eigenvalues [1.19] with respect to the
parameter p, gives

�
s2j

∂M
∂p

+ sj
∂C
∂p

+
∂K
∂p

�
uj + [2sjM + C] uj

∂sj
∂p

+
�
s2j M + sj C + K

� ∂uj

∂p
= 0.

[1.60]

Rewriting this, we see that the eigenvector derivative satisfies

�
s2j M + sj C + K

� ∂uj

∂p
= hj [1.61]

where the vector hj consists of the first two terms in equation [1.60], and all these
quantities are now known. Equation [1.61] cannot be solved to obtain the eigenvector
derivative because the matrix is singular. For distinct eigenvalues, this matrix has a
null space of dimension 1. Following Nelson’s approach, the eigenvector derivative is
written as

∂uj

∂p
= vj + djuj [1.62]

where vj and dj have to be determined. These quantities are not unique since any
multiple of the eigenvector may be added to vj . A convenient choice is to identify
the element of maximum magnitude in uj and make the corresponding element in
vj equal to zero. Although other elements of vj could be set to zero, this choice is
most likely to produce a numerically well-conditioned problem. Substituting equation
[1.62] into equation [1.61], gives�

s2j M + sj C + K
�

vj = Fj vj = hj . [1.63]

This may be solved, including the constraint on the zero element of vj , by solving
the equivalent problem,⎡⎣ Fj11 0 Fj13

0 1 0
Fj31 0 Fj33

⎤⎦⎧⎨⎩ vj1

xj2 (= 0)
vj3

⎫⎬⎭ =

⎧⎨⎩ hj1

0
hj3

⎫⎬⎭ . [1.64]
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where the Fj is defined in equation [1.63], and has the row and column corresponding
to the zeroed element of vj replaced with the corresponding row and column of the
identity matrix. This approach maintains the banded nature of the structural matrices,
and hence is computationally efficient.

It only remains to compute the scalar constant dj to obtain the eigenvector
derivative. For this, the normalization equation must be used. Differentiating
equation [1.59], substituting equation [1.62] and rearranging produces

dj = −uT
j [2sjM + C] vj − 1

2
uT
j

�
2M

∂sj
∂p

+ 2sj
∂M
∂p

+
∂C
∂p

�
uj . [1.65]

1.2.2.3. Example: two degree-of-freedom system

Sensitivity of complex frequencies

A two degree-of-freedom system has been considered to illustrate a possible use
of the expressions developed so far. Figure 1.1 shows the example taken together with
the numerical values. When eigenvalues are plotted against a system parameter, they
create a family of “root loci”. When two loci approach together, they may cross or
rapidly diverge. The latter case is called “curve veering”. The veering of the real part
of the complex frequencies for the system considered is shown in Figure 1.2. During
veering, rapid changes take place in the eigensolutions, as Leissa [LEI 74] pointed
out “... the (eigenfunctions) must undergo violent change − figuratively speaking, a
dragonfly one instant, a butterfly the next, and something indescribable in between”.
Thus, this is an interesting problem for applying the general results derived in this
section.

Figure 1.1. Two degree-of-freedom system shows veering, m = 1 kg,
k1 = 1,000 N/m, c = 4.0 Ns/m
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Figure 1.2. Real part of the complex frequencies of the two modes as a function of
k2 showing the veering phenomenon

Figure 1.3 shows the imaginary part (normalized by dividing with
*
k1/m) of

the derivative of first natural frequency with respect to the damping parameter “c”
over a parameter variation of k2 and s. This plot was obtained by programming of
equation [1.34] in Matlab™, substituting sj = iλj . The imaginary part has been
chosen to be plotted here because a change in damping is expected to contribute a
significant change in the imaginary part. The sharp rise of the rate in the low-value
region of k2 and s could be intuitively guessed because there the damper becomes the
only “connecting element” between the two masses and so any change made there is
expected to have a strong effect. As we move near to the veering range (k2 ≈ k1 and
s ≈ 0), the story becomes quite different. In the first mode, the two masses move in the
same direction, in fact in the limit the motion approaches a “rigid body mode”. Here,
the change no longer remains sensitive to the changes in connecting the element (i.e.
only the damper since s ≈ 0) as hardly any force transmission takes place between the
two masses. For this reason, we expect a sharp fall in the derivative as can be noted
along the s ≈ 0 region of the figure. For the region when s is large, we also observe
a lower value of derivative, but the reason there is different. The stiffness element
“s” shares most of the force being transmitted between the two masses and hence
does not depend much on the change of the value of the damper. A similar plot has
been shown in Figure 1.4 for the second natural frequency. Unlike the previous case,
here the derivative increases in the veering range. For the second mode, the masses
move in the opposite direction and in the veering range the difference between them
becomes maximal. Since s ≈ 0, only the damper is being stretched and as a result of
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this, a small change there produces a large effect. Thus, the use of equation [1.34] can
provide good physical insight into the problem and can effectively be used in modal
updating, damage detection and for design purposes by taking the damping matrix
together with the mass and stiffness matrices, improving the current practice of using
the mass and stiffness matrices only.
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Figure 1.3. Imaginary part of the derivative of the first natural frequency, λ1,
with respect to the damping parameter, c
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Figure 1.4. Imaginary part of the derivative of the second natural frequency, λ2,
with respect to the damping parameter, c
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Figure 1.5. Real part of the derivative of the first eigenvector
with respect to the stiffness parameter k2

Sensitivity of eigenvectors

Sensitivity of eigenvectors for the problem shown in Figure 1.1 can be directly
obtained from equation [1.58]. Here, we have focused on the calculation of the
sensitivity of eigenvectors with respect to the parameter k2. Figure 1.5 shows the real
part of the sensitivity of the first eigenvector normalized by its L2 norm (that is
�
�

dz1

dk2

	
/ � z1 �) plotted over a variation of k2/k1 from 0 to 3 for both the

coordinates. The value of the spring constant for the connecting spring is kept fixed
at s = 100 N/m. The real part of the sensitivity of complex eigenvectors has been
chosen mainly for two reasons: (1) any change in stiffness is expected to have made
more changes in the real part; and (2) to compare it with the corresponding changes
of the real undamped modes. Derivative of the first eigenvector (normalized by its L2

norm) with respect to k2 corresponding to the undamped system (i.e. removing the
damper) is also shown in the same figure (see the figure legend for details). This is
calculated from the expression derived by Fox and Kapoor [FOX 68]. Similar plots
for the second eigenvector are shown in Figure 1.6. Both of these figures reveal a
common feature: around the veering range, i.e. 0.5 < k2/k1 < 1.5, the damped and
the undamped sensitivities show considerable differences while outside this region
they almost trace each other. A physical explanation of this phenomenon can be
given. For the problem considered here, the damper acts as an additional “connecting
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element” between the two masses together with the spring “s”. As a result, it
“prevents” the system from being closed to show a “strong” veering effect (i.e. when
k2 = k1 and the force transmission between the masses is close to zero) and thus
reduces the sensitivity of both the modes. However, for the first mode, both masses
move in the same direction and the damper has less effect compared to the second
mode where the masses move in the opposite directions and have much greater effect
on the sensitivities.
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Figure 1.6. Real part of the derivative of the second eigenvector
with respect to the stiffness parameter k2

To analyze the results from a quantitative point of view, at this point it is interesting
to look at the variation of the modal damping factors shown in Figure 1.7. For the first
mode, the damping factor is quite low (in the order of ≈ 10−4 near the veering range)
but still the sensitivities of the undamped mode and that of the the real part of the
complex mode for both coordinates are quite different. Again, away from the veering
range, k2/k1 > 2, the damping factor is high but the sensitivities of the undamped
mode and that of real part of the complex mode are quite similar. This is the opposite to
what we normally expect, as the common belief is that, when the damping factors are
low, the undamped modes and the real part of complex modes should behave similarly
and vice versa. For the second mode, the damping factor does not change very much
due to a variation of k2 except that it becomes slightly higher in the vicinity of the
veering range. But the difference between the sensitivities of the undamped mode and
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that of the real part of the complex mode for both coordinates changes much more
significantly than the damping factor. This demonstrates that even when the damping
factors are similar, the sensitivity of the undamped modes and that of the real part of
the complex modes can be significantly different. Thus, the use of the expression for
the derivatives of undamped mode shapes can lead to a significant error even when the
damping is very low. The expressions derived in this section should be used for any
kind of study involving such a sensitivity analysis.
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Figure 1.7. Modal damping factors for both the modes

Since the expression in equations [1.34] and [1.58] has been derived exactly, the
numerical results obtained here are also exact within the precision of the arithmetic
used for the calculations. The only instance for arriving at an approximate result is
when approximate complex frequencies and modes are used in the analysis. However,
for this example, it was verified that the use of approximate methods to obtain complex
eigensolutions in the configuration space discussed in Chapter 2 of [ADH 14] and
the exact eigensolutions obtained from the state-space method produces negligible
discrepancy. Since in most engineering applications we normally do not encounter
very high value of damping, we can use approximate methods to obtain eigensolusions
in the configuration space in conjunction with the sensitivity expressions derived here.
This will allow the analyst to study the sensitivity of eigenvalues and eigenvectors of
non-classically damped systems in a similar way to those of undamped systems.
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1.3. Parametric sensitivity of non-viscously damped systems

The studies so far have only considered viscous damping models. However, it is
well known that the viscous damping is not the only damping model within the scope
of linear analysis, examples are: damping in composite materials [BAB 94], energy
dissipation in structural joints [EAR 66, BEA 77], damping mechanism in composite
beams [BAN 91], to mention only a few. We consider a class of non-viscous damping
models in which the damping forces depend on the past history of motion via
convolution integrals over some kernel functions (see Chapters 4 and 5 of
[ADH 14]). The equation of motion describing free vibration of an N
degree-of-freedom linear system with such damping can be expressed by

Mq̈(t) +
� t

−∞
G(t− τ) q̇(τ) dτ + Kq(t) = 0 [1.66]

where M and K ∈ RN×N are the mass and stiffness matrices, G(t) ∈ RN×N is the
matrix of kernel functions and 0 is an N × 1 vector of zeros. In the special case when
G(t − τ) = C δ(t − τ), equation [1.66] reduces to the case of viscously damped
systems. The damping model of this kind is a further generalization of the familiar
viscous damping. The central aim of this section is to extend the eigensensitivity
analysis to non-viscously damped systems of the form [1.66]. In the subsequent
sections, the derivative of eigenvalues and eigenvectors is derived. Unlike viscously
damped systems, the conversion of equation [1.66] into the state-space form may not
be advantageous because the eigenvalue problem in the state space cannot be
presented in the form of the conventional matrix eigenvalue problem involving
constant matrices. For this reason, the approach adopted here does not employ the
state-space formulation of the equation of motion. An application of the derived
expressions for the derivative of eigensolutions is illustrated by considering a two
degree-of-freedom system with nonviscous damping.

The determination of eigenvalues and eigenvectors of general non-viscously
damped systems was discussed in Chapter 5 of [ADH 14]. Taking the Laplace
transform of equation [1.66], we have

s2Mq̄(s) + sG(s)q̄(s) + Kq̄(s) = 0 or D(s)q̄(s) = 0 [1.67]

where the dynamic stiffness matrix is

D(s) = s2M + sG(s) + K ∈ CN×N [1.68]

where q̄(s) = L [q(t)] ∈ CN , G(s) = L [G(t)] ∈ CN×N and L [•] denotes the
Laplace transform. In the context of structural dynamics, s = iω, where ω ∈ R+
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denotes the frequency. We consider the damping to be “non-proportional”
(conditions for proportionality of non-viscous damping were derived in section 5.1,
Chapter 5, [ADH 14]), that is, the mass and stiffness matrices as well as the matrix of
kernel functions cannot be simultaneously diagonalized by any linear transformation.
However, it is assumed that M−1 exists and G(s) is such that the motion is
dissipative. Conditions that G(s) must satisfy in order to produce dissipative motion
were given by Golla and Hughes [GOL 85].

The eigenvalue problem associated with equation [1.66] can be defined from [1.67]
as �

s2jM + sj G(sj) + K
�

zj = 0 or D(sj)zj = 0, ∀j = 1, · · · ,m [1.69]

where zj ∈ CN is the jth eigenvector. The eigenvalues, sj , are roots of the
characteristic equation

det
�
s2M + sG(s) + K

�
= 0. [1.70]

We consider that the order of the characteristic equation is m. Following Chapter 5
of [ADH 14], we may group the eigenvectors as (1) elastic modes (corresponding to N
complex conjugate pairs of eigenvalues), and (2) non-viscous modes (corresponding to
the “additional” m− 2N eigenvalues). The elastic modes are related to the N modes
of vibration of structural systems. We assume that all m eigenvalues are distinct.
Following section 5.6.2 (Chapter 5, [ADH 14]), the eigenvectors can be normalized as

zTj
∂D(s)

∂s
|s=sj zj = γj

or zTj

�
2sjM + G(sj) + sj

∂G(s)

∂s
|s=sj

�
zj = γj , ∀j = 1, · · · ,m

[1.71]

where γj ∈ C is some non-zero constant. Note that equation [1.71] reduces to the
corresponding normalization relationship for viscously damped systems (see [VIG 86,
SES 94], for example) when G(s) is constant with respect to s. Numerical values of
γj can be selected in various ways, see the discussion in section 5.6.2 (Chapter 5,
[ADH 14]).

1.3.1. Sensitivity of the eigenvalues

Suppose the system matrices in equation [1.66] are functions of some design
parameter p. In this section, we intend to obtain an expression of the derivative of the
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jth eigenvalue with respect to the design parameter p. Differentiating equation [1.69]
with respect to p, we obtain�

2sj
∂sj
∂p

M + s2j
∂M
∂p

+
∂sj
∂p

G(sj) + sj
∂ [G(sj)]

∂p
+

∂K
∂p

�
zj

+
�
s2jM + sj G(sj) + K

� ∂zj
∂p

= 0.

[1.72]

The term
∂[G(sj)]

∂p appearing in the above equation can be expressed as

∂ [G(sj)]

∂p
=

∂sj
∂p

∂G(s)

∂s
|s=sj +

∂G(s)

∂p
|s=sj . [1.73]

Premultiplying equation [1.72] by zTj and using the symmetry property of the
system matrices, it may be observed that the second term of the equation becomes
zero due to [1.69]. Substituting [1.73] into equation [1.72], we obtain

zTj

�
s2j

∂M
∂p

+ sj
∂G(s)

∂p
|s=sj +

∂K
∂p

�
zj+

zTj

�
2sj

∂sj
∂p

M ++
∂sj
∂p

G(sj) + sj
∂sj
∂p

∂G(s)

∂s
|s=sj

�
zj = 0.

[1.74]

Rearranging the preceding equation, the derivative of eigenvalues can be obtained
as

∂sj
∂p

= −
zTj

�
s2j

∂M
∂p + sj

∂G(s)
∂p |s=sj +

∂K
∂p

�
zj

zTj
�
2sjM + G(sj) + sj

∂G(s)
∂s |s=sj

�
zj
. [1.75]

Note that the denominator of equation [1.75] is exactly the normalization
relationship given by equation [1.71]. In view of this, equation [1.75] can be
expressed in a concise form as

∂sj
∂p

= −
zTj

∂D(s)
∂p |s=sj zj

zTj
∂D(s)
∂s |s=sj zj

or
∂sj
∂p

= − 1

γj

$
zTj

∂D(s)

∂p
|s=sj zj

(
.

[1.76]
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This is the most general expression for the derivative of eigenvalues of linear
dynamic systems. Equation [1.76] can be used to derive the derivative of eigenvalues
for various special cases:

1) Undamped systems (section 1.1): In this case, G(s) = 0 results

D(s) = s2M + K

and γj = 2sjzTj Mzj .
[1.77]

Assuming sj = iωj where ωj ∈ R is the jth undamped natural frequency from
equation [1.76], we obtain

−2iωj i
∂ωj

∂p
=

∂ω2
j

∂p
=

zTj
�
∂K
∂p − ω2

j
∂M
∂p

�
zj

zTj Mzj
[1.78]

which is a well-known result.

2) Viscously damped systems (section 1.2): in this case, G(s) = C, a constant
matrix with respect to, results

D(s) = s2M + sC + K

and γj = zTj [2sjM + C] zj .
[1.79]

Using these, from equation [1.76], we obtain

∂sj
∂p

= −
zTj

�
s2j

∂M
∂p + sj

∂C
∂p + ∂K

∂p

�
zj

zTj [2sjM + C] zj
. [1.80]

Thus, the result obtained in equation [1.76] generalizes earlier expressions of the
derivative of eigenvalues. The derivative of associated eigenvectors is considered in
the next section.

1.3.2. Sensitivity of the eigenvectors

1.3.2.1. Modal approach

The various methods of calculating the derivative of eigenvectors can be divided
into three main categories [MUR 88]: (1) adjoint method or modal method, (2) direct
method and (3) iterative method. We adopt the modal method where the derivative of
each eigenvector is expanded in the space of the complete set of eigenvectors. The
main difficulty in applying available methodologies for the modal method to
non-viscously damped systems is that the eigenvectors do not satisfy any familiar
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orthogonality relationship. We propose an approach to calculate the derivative of
eigenvector without using the orthogonality relationship.

It turns out that the eigenvalue problem of the dynamic stiffness matrix (given by
equation [1.68]) plays an important role. For any given s ∈ C, the eigenvalue
problem associated with the dynamic stiffness matrix can be expressed by equation
[5.53] (Chapter 5, [ADH 14]). The eigenvalues and eigenvectors of the dynamic
stiffness matrix are given by νk(s) and ϕk(s), respectively. It is assumed that all the
eigenvalues are distinct for any fixed value of s. The symbols νk(s) and ϕk(s)
indicate functional dependence of these quantities on the complex parameter s. Such
a continuous dependence is expected whenever D(s) is a sufficiently smooth matrix
function of s. It should be noted that because D(s) is an N × N complex matrix for
a fixed s, the number of eigenvalues (and consequently the eigenvectors) must be N .
Further, it can be shown that, for distinct eigenvalues, ϕk(s) also satisfies an
orthogonality relationship although zk does not enjoy any such simple relationship.
We normalize ϕk(s) as in equation [5.53] (Chapter 5, [ADH 14]).

It is possible to establish the relationships between the original eigenvalue
problem of the system defined by equation [1.69] and that by equation [5.53]
(Chapter 5, [ADH 14]). Consider the case when the parameter s approaches any one
of the system eigenvalues, say sj . Since all the νk(s) are assumed to be distinct, for
non-trivial eigenvectors, comparing equations [1.69] and [5.53] (Chapter 5, [ADH
14]), we can conclude that one and only one of the νk(s) must be zero when s → sj .
Further discussion is given in section 5.3.1 (Chapter 5, [ADH 14]). Considering the
rth set, equation [5.53] (Chapter 5, [ADH 14]) can be rewritten as

Zr(s)ϕr(s) = 0 [1.81]

where

Zr(s) = D(s)− νr(s)I ∈ CN×N . [1.82]

In view of [5.60] (Chapter 5, [ADH 14]), from the preceding equation, it is clear
that

lim
s→sj

Zr(s) = D(s)|s=sj . [1.83]

From this equation, together with [5.53] (Chapter 5, [ADH 14]), we conclude that
in the limit s → sj , the eigenvalue problem given by equation [1.81] approaches to
the original eigenvalue problem given by [1.69].
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Differentiating [1.81] with respect to the design parameter p, we have

∂Zr(s)

∂p
ϕr(s) + Zr(s)

∂ϕr(s)

∂p
= 0

or Zr(s)
∂ϕr(s)

∂p
= −∂Zr(s)

∂p
ϕr(s).

[1.84]

Premultiplying the preceding equation by D−1(s) and using [1.82], we have

�
I − D−1(s)νr(s)

� ∂ϕr(s)

∂p
= −D−1(s)

∂Zr(s)

∂p
ϕr(s). [1.85]

The derivative of eigenvector of the original system with respect to the design
parameter p, that is ∂zj

∂p , should be obtained from equation [1.85] by taking the limit
s → sj . Because lims→sj D(s) is at most of rank (N − 1), it is not possible to obtain
∂zj

∂p directly from equation [1.85]. We avoid this difficulty by expanding D−1(s) in
terms of the poles and their associated residues. From equation [5.63] given in Chapter
5 of [ADH 14], the inverse of the dynamic stiffness matrix can be expressed as

D−1(s) =
m/
j=1

Rj

s− sj
[1.86]

where

Rj =
zjzTj
γj

. [1.87]

Substituting D−1(s) from equation [1.86] into equation [1.85], using [5.60], [ADH
14] and [1.87], and taking the limit as s → sj , we obtain

∂zj
∂p

= − lim
s→sj

m/
k=1

zkzTk
γj(s− sk)

∂Zr(s)

∂p
ϕr(s)

= ajjzj −
m/

k=1
k �=j

zTk
∂D(s)
∂p |s=sj zj

γk(sj − sk)
zk

[1.88]

where

ajj = − lim
s→sj

zTj
∂Zr(s)

∂p ϕr(s)

γj(s− sj)
. [1.89]
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In deriving equation [1.88], we have also made use of the relationships [5.61], of
[ADH 14] and [1.83]. Note that the limiting value of ajj , the coefficient associated
with zj , cannot be obtained from [1.89] because the denominator approaches zero in
the limit. A different approach is presented below to overcome this difficulty.

For a fixed value of s, ϕk(s), ∀ k = 1, · · · , N form a complete basis. For this
reason, ∂ϕr(s)

∂p ∈ CN can be expanded uniquely in terms of all ϕk(s), that is we can
write

∂ϕr(s)

∂p
=

N/
k=1

α
(r)
k (s)ϕk(s) [1.90]

where α
(r)
k (s) ∈ C are non-zero constants. The normalization relationship for the rth

mode can be expressed from equation [5.56] given in Chapter 5 of [ADH 14] as

ϕT
r (s)D(s)ϕr(s) = νr(s). [1.91]

Differentiating this equation with respect to the design parameter p, we obtain

∂ϕT
r (s)

∂p
D(s)ϕr(s) +ϕT

r (s)
∂D(s)

∂p
ϕr(s)

+ϕT
r (s)D(s)

∂ϕr(s)

∂p
=

∂νr(s)

∂p
.

[1.92]

Using the symmetry property of D(s) and [1.82], the above equation can be
rearranged as

2ϕT
r (s)D(s)

∂ϕr(s)

∂p
= −ϕT

r (s)
∂Zr(s)

∂p
ϕr(s). [1.93]

Substituting ∂ϕr(s)

∂p from equation [1.90] and using the orthogonality relationship
given by [5.56] of [ADH 14], from the above equation we obtain

α(r)
r (s) = −

ϕT
r (s)

∂Zr(s)
∂p ϕr(s)

2νr(s)
. [1.94]
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Now, taking the limit s → sj on equation [1.90] and using [5.61] of [ADH 14],
we have

lim
s→sj

∂ϕr(s)

∂p
= lim

s→sj

N/
k=1

α
(r)
k (s)ϕk(s)

or
∂zj
∂p

=

$
lim
s→sj

α(r)
r (s)

(
zj + lim

s→sj

N/
k=1
k �=r

α
(r)
k (s)ϕk(s).

[1.95]

Because it is assumed that all the eigenvalues are distinct, the associated
eigenvectors are also distinct. Thus, lims→sj ϕk(s) �= zj , ∀k = 1, · · · , N ; �= r. So,
comparing the coefficient of zj in equations [1.88] and [1.95], it is clear that

ajj = lim
s→sj

α(r)
r (s)

= − lim
s→sj

ϕT
r (s)

∂Zr(s)
∂p ϕr(s)

2νr(s)
(from [1.94]).

[1.96]

The above limit cannot be evaluated directly because from [5.60] Chapter 5 of
[ADH 14], lims→sj νr(s) = 0. Now, differentiate equation [1.81] with respect to p to
obtain

∂Zr(s)

∂p
ϕr(s) + Zr(s)

∂ϕr(s)

∂p
= 0. [1.97]

Premultiplying the above equation by ϕT
r (s), we obtain

ϕT
r (s)

∂Zr(s)

∂p
ϕr(s) +ϕT

r (s)Zr(s)
∂ϕr(s)

∂p
= 0. [1.98]

Taking transpose of equation [1.81] and considering the symmetry property of
Zr(s), it follows that the second term of the left-hand side of the above equation is
zero. Thus, equation [1.98] reduces to

ϕT
r (s)

∂Zr(s)

∂p
ϕr(s) = 0. [1.99]
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The above equation shows that in the limit the left-hand side of equation [1.96]
has a “0 by 0” form. So, applying l’Hôspital’s rule, using [1.83], [5.61] and [5.68] in
Chapter 5 of [ADH 14], from equation [1.96], we obtain

ajj = −
zTj

∂2[D(s)]
∂s ∂p |s=sj zj

2∂νr(s)
∂s |s=sj

= −
zTj

∂2[D(s)]
∂s ∂p |s=sj zj

2
!

zTj
∂D(s)
∂s |s=sj zj

% . [1.100]

This expression can now be used to obtain the derivative of zj in equation [1.88].

The denominator in the above equation can be related to the normalization constant
γj given by equation [1.71]. The term ∂2[D(s)]

∂s ∂p |s=sj appearing in the numerator may
be obtained by differentiating equation [1.68] as

∂2[D(s)]

∂s ∂p
|s=sj = 2sj

∂M
∂p

+
∂G(s)

∂p
|s=sj + sj

∂2[G(s)]

∂s ∂p
|s=sj . [1.101]

From equations [1.88] and [1.101], the derivative of zj is obtained as

∂zj
∂p

= − 1

2γj

$
zTj

∂2[D(s)]

∂s ∂p
|s=sj zj

(
zj −

m/
k=1
k �=j

zTk
∂D(s)
∂p |s=sj zj

γk(sj − sk)
zk. [1.102]

This is the most general expression for the derivative of eigenvectors of linear
dynamic systems. Equation [1.102] can be applied directly to derive the derivative of
eigenvectors for various special cases:

1) Undamped systems (section 1.1): in this case, G(s) = 0 results in the order of
the characteristic polynomial m = 2N ; sj is purely imaginary so that sj = iωj . Using
[1.77], equation [1.101] results

∂2[D(s)]

∂s ∂p
|s=sj = 2sj

∂M
∂p

. [1.103]

Recalling that the eigenvalues appear in complex conjugate pairs and all zj are
real, from [1.102], we obtain

∂zj
∂p

= −1

2

!
2iωjzTj

∂M
∂p zj

%
2iωj

#
zTj Mzj

' zj

−
N/

k=1
k �=j

zTk
�
∂K
∂p − ω2

j
∂M
∂p

�
zj

2iωk

#
zTk Mzk

' �
1

iωj − iωk
− 1

iωj + iωk

�
zk.

[1.104]
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Considering the unity mass normalization, that is zTk Mzk = 1, ∀k = 1, · · · , N ,
the preceding equation can be rewritten as

∂zj
∂p

= −1

2

$
zTj

∂M
∂p

zj
(

zj +
N/

k=1
k �=j

zTk
�
∂K
∂p − ω2

j
∂M
∂p

�
zj

(ω2
j − ω2

k)
zk [1.105]

which is a well-known result.

2) Viscously damped systems (section 1.2): in this case, G(s) = C, a constant
matrix with respect to s and m = 2N . Using [1.79], equation [1.101] results

∂2[D(s)]

∂s ∂p
|s=sj = 2sj

∂M
∂p

+
∂C
∂p

. [1.106]

Recalling that the eigenvalues and eigenvectors appear in complex conjugate pairs,
from [1.102], we obtain

∂zj
∂p

= − 1

2γj

$
zTj

�
2sj

∂M
∂p

+
∂C
∂p

�
zj
(

zj

− 1

γ∗
j 2i�(sj)

$
z∗

T

j

∂D(s)

∂p
|s=sj zj

(
z∗j

−
N/

k=1
k �=j

⎡⎣zTk
∂D(s)
∂p |s=sj zj

γk (sj − sk)
zk +

z∗
T

k
∂D(s)
∂p |s=sj zj

γ∗
k (sj − s∗k)

z∗k

⎤⎦ .

[1.107]

Thus, the result obtained in equation [1.102] generalizes earlier expressions of the
derivative of eigenvectors.

1.3.2.2. Numerical example: a two degree-of-freedom system

We consider a two degree-of-freedom system shown in Figure 1.8 to illustrate a
possible use of the expressions derived so far. The system considered here is similar
to the system used in section 1.2.2.3 except that the dissipative element connected
between the two masses is not a simple viscous dashpot but a non-viscous damper.
The equation of motion describing the free vibration of the system can be expressed
by [1.66], with

M =

�
m 0
0 m

�
, K =

�
k1 + k3 −k3
−k3 k2 + k3

�
[1.108]

and

G(t) = g(t)Î, where Î =
�

1 −1
−1 1

�
. [1.109]
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Figure 1.8. A two degree-of-freedom spring-mass system with non-viscous damping, m = 1
Kg, k1 = 1,000 N/m, k3 = 100 N/m, g(t) = c

�
μ1e

−μ1t + μ2e
−μ2t

�
, c = 4.0 Ns/m,

μ1 = 10.0 s−1, μ2 = 2.0 s−1

The damping function g(t) is assumed to be the Golla–Hughes–McTavish (GHM)
model [GOL 85, MCT 93] so that

g(t) = c
#
μ1e

−μ1t + μ2e
−μ2t

'
; c, μ1, μ2 ≥ 0, [1.110]

where c is a constant and μ1 and μ2 are known as the relaxation parameters. In
equation [1.110], if the function associated with c was a delta function, c would
serve the purpose of the familiar viscous damping constant. Taking the Laplace
transform of [1.109], we obtain

G(s) = G(s)Î

where G(s) = L [g(t)] = c

$
μ1

s+ μ1
+

μ2

s+ μ2

(
.

[1.111]

Substituting [1.108] and [1.111] in equation [1.70], it may be shown that the
system has six eigenvalues – four of which correspond to the two elastic modes
(together with corresponding complex conjugate pairs) and the remaining two
correspond to two non-viscous modes. For convenience, arrange the eigenvalues as

se1 , se2 , s
∗
e1 , s

∗
e2 , snv1 , snv1 [1.112]

where (•)e denotes elastic modes and (•)nv denotes non-viscous modes.

We consider the derivative of eigenvalues with respect to the relaxation parameter
μ1. The derivative of the system matrices with respect to this parameter may be
obtained as

∂M
∂μ1

= O,
∂G(s)

∂μ1
= Î

c s

(s+ μ1)
2 and

∂K
∂μ1

= O. [1.113]
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Further, from equation [1.111], we also obtain

∂G(s)

∂s
= −Îc

�
μ1

(s+ μ1)
2 +

μ2

(s+ μ2)
2



∂2[G(s)]

∂s ∂μ1
= −Îc

s− μ1

(s+ μ1)
3 .

[1.114]

Using equations [1.113] and [1.114], the terms γj , ∂D(s)
∂p and ∂2[D(s)]

∂s ∂μ1
appearing

in equations [1.76] and [1.102] can be evaluated.

Figure 1.9. Real part of the derivative of the first eigenvalue
with respect to the relaxation parameter μ1

Figures 1.9 and 1.10 show the real part of the derivative of first and second
eigenvalues with respect to μ1 over a parameter variation of k2 and k3. These results
are obtained by direct application of equation [1.76]. The system considered here
shows the so-called “veering” [DU 11, BOI 09] when the eigenvalues are plotted
against a system parameter. In the veering range (that is when k2 ≈ k1 and k3 ≈ 0),
rapid changes take place in the eigensolutions. From Figures 1.9 and 1.10, it may be
noted that around the veering range the first eigenvalue is not very sensitive to μ1

while the second eigenvalue is very sensitive in this region. In the first mode, both the
blocks move in the same direction and consequently the damper is not stretched,
resulting in insensitiveness to the relaxation parameter μ1. In the second mode, the
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blocks move away from each other. This results in stretching of the damping block
and increases sensitiveness to the relaxation parameter μ1.

Figure 1.10. Real part of the derivative of the second eigenvalue
with respect to the relaxation parameter μ1

It is useful to understand the effect of different parameters on the eigenvalues.
Figures 1.11 and 1.12 show the imaginary part of the derivative of first and second
eigenvalues with respect to the damping parameters c, μ1 and μ2 over a parameter
variation of k2. The value of k3 is fixed at k3 = 100. These plots show that the
damping parameters not only affect the real part of the eigenvalues but also affect
the imaginary part. Again, observe that in the veering range, the first eigenvalue is
insensitive to the damping parameters while the second eigenvalue is sensitive to them.

Now, we turn our attention to the derivative of eigenvectors. Figures 1.13 and 1.14
show the real part of the derivative of first and second eigenvectors with respect to
k2 over a parameter variation of k2. It is useful to compare these results with the
corresponding results by considering the damping mechanism to be viscous, i.e. when
g(t) given by equation [1.110] has the form g(t) = cδ(t). In Figures 1.13 and 1.14, the
derivative of both eigenvectors for the corresponding viscously damped system is also
plotted. Observe that around the veering range, the derivatives of both eigenvectors
are different for viscously and non-viscously damped systems. This illustrates that the
nature of damping affects the parameter sensitivity of the real part of complex modes.
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Figure 1.11. Imaginary part of the derivative of the first eigenvalue with respect to the
damping parameters c, μ1 and μ2
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Figure 1.12. Imaginary part of the derivative of the second eigenvalue with respect to the
damping parameters c, μ1 and μ2
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Figure 1.13. Real part of the derivative of the first eigenvector with respect to k2
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1.3.2.3. Nelson’s method

For large-scale structures with non-viscous damping, obtaining all of the
eigenvectors is a computationally expensive task because the number of eigenvectors
of a non-viscously damped system is much larger, in general, than the number for a
viscously damped system. This motivates the extension of Nelson’s method to
calculate the derivatives of eigenvectors of non-viscously damped systems.

Differentiating equation [1.69] with respect to the design parameter p, we have

D(sj)
∂zj
∂p

= hj [1.115]

where

hj = −∂D(sj)

∂p
zj = −

�
2sj

∂sj
∂p

M + s2j
∂M
∂p

+
∂sj
∂p

G(sj) + sj
∂ [G(sj)]

∂p
+

∂K
∂p

�
zj

[1.116]

is known. For unique results, we need to normalize the eigenvectors. There are many
approaches to the normalization of the eigenvectors. A convenient approach (see
section 5.6.2 of [ADH 14]) is to normalize zj such that

zTj
∂D(s)

∂s
|s=sj zj = γj [1.117]

or zTj D

(sj)zj = γj , ∀j = 1, · · · ,m [1.118]

where

D
(s) =
∂D(s)

∂s
= [2sM + G(s) + sG
(s)] ∈ CN×N [1.119]

and γj ∈ C is some non-zero constant.

Equation [1.115] cannot be solved to obtain the eigenvector derivative because the
matrix is singular. For distinct eigenvalues, this matrix has a null space of dimension
1. Following Nelson’s approach, the eigenvector derivative is written as

∂zj
∂p

= vj + djzj [1.120]

where vj and dj have to be determined. These quantities are not unique since any
multiple of the eigenvector may be added to vj . A convenient choice is to identify
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the element of maximum magnitude in zj and make the corresponding element in vj
equal to zero. Although other elements of vj could be set to zero, this choice is most
likely to produce a numerically well-conditioned problem. Because D(sj)zj = 0 due
to equation [1.69], substituting equation [1.120] into equation [1.115], gives

Djvj = hj [1.121]

where

Dj = D(sj) =
�
s2jM + sj G(sj) + K

� ∈ CN×N . [1.122]

This may be solved, including the constraint on the zero element of vj , by solving
the equivalent problem⎡⎣Dj11 0 Dj31

0 1 0
Dj31 0 Dj33

⎤⎦⎧⎨⎩ vj1
xj2 (= 0)

vj3

⎫⎬⎭ =

⎧⎨⎩hj1

0
hj3

⎫⎬⎭ [1.123]

where the Dj is defined in equation [1.122], and has the row and column
corresponding to the zeroed element of vj replaced with the corresponding row and
column of the identity matrix. This approach maintains the banded nature of the
structural matrices, and hence is computationally efficient.

It only remains to compute the scalar constant, dj , to obtain the eigenvector
derivative. For this, the normalization equation [1.118] must be used. Differentiating
equation [1.118] and using the symmetry property of D
(s), we have

zTj
∂D
(sj)

∂p
zj + 2zTj D


(sj)
∂zj
∂p

= 0. [1.124]

Substituting ∂zj

∂p from equation [1.120], we have

1

2
zTj

∂D
(sj)
∂p

zj + vTj D

(sj)zj + djzTj D


(sj)zj = 0. [1.125]

Noting that the coefficient associated with dj is the normalization constant given
by equation [1.118], we have

dj = − 1

γj

�
1

2
zTj

∂D
(sj)
∂p

zj + zTj D

(sj)vj

�
. [1.126]
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The first term on the right-hand side can be obtained by substituting s = sj into
equation [1.119] and differentiating

∂D
(sj)
∂p

= 2
∂sj
∂p

M + 2sj
∂M
∂p

+
∂ [G(sj)]

∂p
+

∂sj
∂p

G
(sj) + sj
∂ [G
(sj)]

∂p
[1.127]

where
∂[G(sj)]

∂p is given in equation [1.73] and

∂ [G
(sj)]
∂p

=
∂sj
∂p

∂G
(s)
∂s

|s=sj +
∂G
(s)
∂p

|s=sj

=
∂sj
∂p

∂2G(s)

∂s2
|s=sj +

∂2G(s)

∂p ∂s
|s=sj .

[1.128]

Equation [1.120], combined with vj obtained by solving equation [1.123] and dj
obtained from equation [1.126], completely defines the derivative of the eigenvectors.

1.3.2.4. Numerical example

We consider a two degree-of-freedom system shown in Figure 1.8 to illustrate the
use of the expressions derived here. Here, the dissipative element connected between
the two masses is not a simple viscous dashpot but a non-viscous damper. The equation
of motion describing the free vibration of the system can be expressed by equation
[1.66], with

M =

�
m 0
0 m

�
, K =

�
k1 + k3 −k3
−k3 k2 + k3

�
[1.129]

and

G(t) = g(t)Î, where Î =
�

1 −1
−1 1

�
. [1.130]

The damping function g(t) is assumed to be a “double exponential model”, with

g(t) = c
#
μ1e

−μ1t + μ2e
−μ2t

'
; c, μ1, μ2 ≥ 0 [1.131]

where c is a constant, and μ1 and μ2 are known as the relaxation parameters. In
equation [1.131], if the function associated with c was a delta function, c would
be the familiar viscous damping constant. Taking the Laplace transform of equation
[1.130], we obtain

G(s) = cÎ
�
(1 + s/μ1)

−1
+ (1 + s/μ2)

−1
	
. [1.132]
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Substituting equations [1.129] and [1.132] into equation [1.70] shows that the
system has six eigenvalues – four of which occur in complex conjugate pairs and
correspond to the two elastic modes. The other two eigenvalues are real and negative
and they correspond to the two non-viscous modes. The eigenvalues and the
eigenvectors of the system are shown in Table 1.1. The normalization constants γj
are selected such that γj = 2sj for the elastic modes and γj = 1 for the non-viscous
modes.

Elastic Elastic Non-viscous Non-viscousQuantity mode 1 mode 2 mode 1 mode 2

sj −0.0387± 38.3232i −1.5450± 97.5639i −2.8403 −5.9923

zj
�−0.7500± 0.0043i
−0.6616∓ 0.0041i

� �
0.6622∓ 0.0035i
−0.7501± 0.0075i

� �−0.0165
0.0083

� �
0.0055
−0.0028

�
Table 1.1. Eigenvalues and eigenvectors for the example

We consider the derivative of eigenvalues with respect to the stiffness parameter k1
and the relaxation parameter μ1. The derivative of the relevant system matrices with
respect to k1 may be obtained as

∂M
∂k1

= O,
∂G(s)

∂k1
|s=sj = O,

∂K
∂k1

=

�
1 0
0 0

�
[1.133]

∂ [D(sj)]

∂k1
=

!
2sjM + G(sj)− csj Î

�
μ−1
1 (1 + sj/μ1)

−2
+ μ−1

2 (1 + sj/μ2)
−2

	%
× ∂sj
∂k1

+
∂K
∂k1

[1.134]

and

∂ [D
(sj)]
∂k1

=
!
2M − 2cÎ

�
μ−1
1 (1 + sj/μ1)

−3
+ μ−1

2 (1 + sj/μ2)
−3

	% ∂sj
∂k1

.[1.135]

Using these expressions, the derivative of the eigenvalues is eigenvectors is
obtained from equations [1.80] and [1.120] shown in Table 1.2.

The derivatives of the eigensolutions with respect to the relaxation parameter μ1

may be obtained using similar manner. The derivative of the relevant system matrices
with respect to μ1 may be obtained as

∂M
∂μ1

= O,
∂K
∂μ1

= O,
∂G(s)

∂μ1
|s=sj = cÎ sjμ−2

1 (1 + sj/μ1)
−2

, [1.136]
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∂ [D(sj)]

∂μ1
=

!
2sjM + G(sj)− csj Î

�
μ−1
1 (1 + sj/μ1)

−2
+ μ−1

2 (1 + sj/μ2)
−2

	%
× ∂sj
∂μ1

+ cÎs2jμ
−2
1 (1 + sj/μ1)

−2 [1.137]

and

∂ [D
(sj)]
∂μ1

=
!
2M − 2cÎ

�
μ−1
1 (1 + sj/μ1)

−3
+ μ−1

2 (1 + sj/μ2)
−3

	% ∂sj
∂μ1

+ 2cÎ sjμ−2
1 (1 + sj/μ1)

−3
. [1.138]

Elastic Elastic Non-viscous Non-viscousQuantity mode 1 mode 2 mode 1 mode 2
∂sj
∂k1

0.0001± 0.0073i 0.0001± 0.0022i −2.7106× 10−4 −2.9837× 10−5

∂zj
∂k1

× 103
�
0.1130∓ 0.0066i
0.0169± 0.0041i

� �
0.0385∓ 0.0015i
0.0494∓ 0.0026i

� �
0.0072
0.0046

� �−0.0018
−0.0018

�
Table 1.2. Derivative of eigenvalues and eigenvectors with respect to the

stiffness parameter k1

Using these expressions, the derivative of the eigenvalues and eigenvectors is
obtained from equations [1.80] and [1.120] shown in Table 1.3.

Elastic Elastic Non-viscous Non-viscousQuantity mode 1 mode 2 mode 1 mode 2
∂sj
∂μ1

−0.0034± 0.0196i −0.2279± 2.0255i −0.0570 −0.4804

∂zj
∂μ1

× 103
�

0.0022± 0.0004i
−0.0021∓ 0.0003i

� �−0.0045∓ 0.0012i
0.0098± 0.0015i

� �−0.0002
0.0001

� �
0.0022
−0.0011

�
Table 1.3. Derivative of eigenvalues and eigenvectors with respect to the

relaxation parameter μ1

1.4. Summary

Sensitivity of the eigenvalues and eigenvectors of linear damped discrete systems
with respect to the system parameters has been derived. In the presence of general
non-proportional viscous damping, the eigenvalues and eigenvectors of the system
become complex. The results are presented in terms of changes in the mass,
damping, stiffness matrices and complex eigensolutions of the second-order system
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so that the state-space representation of the equation of motion can be avoided. The
expressions derived hereby generalize earlier results on derivatives of eigenvalues
and eigenvectors of undamped systems to the damped systems. It was shown through
an example problem that the use of the expression for the derivative of undamped
modes can give rise to incorrect results even when the modal damping is quite low.
For non-classically damped systems, the expressions for the sensitivity of
eigenvalues and eigenvectors developed in this chapter should be used. These
complex eigensolution derivatives can be useful in various application areas, for
example finite element model updating, damage detection, design optimization and
system stochasticity analysis, relaxing the present restriction to use the real
undamped modes only.

In general, structural systems are expected to be non-viscously damped. The
derivative of eigenvalues and eigenvectors of non-viscously damped discrete linear
systems has been derived. The assumed non-viscous damping forces depend on the
past history of velocities via convolution integrals over suitable kernel functions. The
familiar viscous damping model is a special case corresponding to a “memory-less”
kernel. It has been assumed that, in general, the mass and the stiffness matrices as
well as the matrix of the kernel functions cannot be simultaneously diagonalized by
any linear transformation. The analysis is, however, restricted to systems with
non-repetitive eigenvalues and non-singular mass matrices. Eigenvectors of linear
dynamic systems with general non-viscous damping do not satisfy any kind of
orthogonality relationship (not even in the usual state space). For this reason, none of
the established methodologies for determination of the derivative of eigenvectors are
applicable to non-viscously damped systems. An approach is shown that utilizes the
eigenvalue problem of the associated complex dynamic stiffness matrix. The original
eigenvalue problem is a limiting case of this eigenvalue problem. The expressions
derived for the derivative of eigenvalues and eigenvectors (equations [1.76] and
[1.102]) are very general and also valid for undamped and viscously damped
systems. This analysis opens up the possibility of extending the conventional modal
updating and parameter estimation techniques to non-viscously damped systems.

So far, in this book, we have discussed dynamics of damped systems with known
parameters. In the next two chapters, we will show how the damping parameters can
be identified from structural dynamic experiments.


