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Truss Layout Optimization

This chapter presents the general problem of truss layout optimization. After a brief

introduction to the standard theory of mathematical programming in section 1.1, section

1.2 derives the governing equations of truss structures. Then, section 1.3 states the

basic problem of topology optimization. The equivalence between volume and

compliance minimization problems is also studied by means of the necessary conditions

of optimality. On this basis, section 1.4 progressively builds up a general formulation by

adding different design settings. At each step, the numerical difficulties associated with

these building blocks are explained. Finally, the optimization of nodal positions is

considered in section 1.5, leading to the general design problem of truss geometry and

topology optimization, which remains unsolved in the literature.

1.1. Standard theory of mathematical programming

Consider a general nonlinear optimization problem
consisting of the minimization of an objective function subject
to inequality and equality constraints [MOR 03]:

min
z∈RNz

f (z) [1.1a]

subject to: gi (z) ≤ 0, ∀i = 1, . . . , Ng, [1.1b]

hj (z) = 0, ∀j = 1, . . . , Nh, [1.1c]
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where f : RNz → R, g : RNz → RNg , h : RNz → RNh are
smooth functions and z ∈ RNz is a vector of continuous
variables. Smoothness of the objective function and the
constraints is important to allow for a good prediction of the
search direction by optimization algorithms. The feasible set
of the optimization problem [1.1] is defined as:

Z :=
�
z ∈ RNz

!! gi (z) ≤ 0, hj (z) = 0, ∀i = 1, . . . , Ng,

∀j = 1, . . . , Nh} . [1.2]

In the feasible region, the inequality constraint gi (z) ≤ 0 is
said to be active if gi (z) = 0 and inactive if gi (z) < 0. To solve
problem [1.1], we first transform it into an unconstrained
optimization problem by introducing Lagrange multipliers
λg ∈ RNg

+ and λh ∈ RNh such that:

L (z,λg,λh) := f (z) +

Ng�
i=1

λg,igi (z) +

Nh�
j=1

λh,jhj (z). [1.3]

Thus, solving problem [1.1] amounts now to finding a
stationary point to [1.3]. If gi (z) is active, we ensure that the
search direction points toward the feasible region by
enforcing the dual feasibility λg,i ≥ 0. If gi is inactive, we can
remove the constraint by setting the complementary
slackness λg,igi (z) = 0. These additional constraints are parts
of the Karush–Kuhn–Tucker (KKT) optimality conditions
[MOR 03]. Let z∗ be a local minimizer of problem [1.1].
Provided that some regularity conditions hold, then there
exists λg,i and λh,j such that the first-order necessary
conditions of optimality, or KKT conditions, are satisfied:

∇f (z∗) +
Ng�
i=1

λg,i∇gi (z
∗) +

Nh�
j=1

λh,j∇hj (z
∗) = 0, [1.4a]

hj (z
∗) = 0, ∀j = 1, . . . , Nh, [1.4b]

λg,i ≥ 0, gi (z
∗) ≤ 0, λg,igi (z

∗) = 0, ∀i = 1, . . . , Ng. [1.4c]



Truss Layout Optimization 3

The regularity conditions or constraint qualifications
of problem [1.1] are necessary conditions that enable a
numerical treatment by standard algorithms of mathematical
programming. There are many constraint qualifications in
the literature (see [PET 73] for a comprehensive survey).
Hereafter, the following three prominent conditions are listed:

– the linear constraint qualification implies that if gi
and hj are affine functions, then all subsequent constraint
qualifications are satisfied;

– the linear-independence constraint qualification holds if
the gradients of active inequality constraints ∇gi (z

∗) and
equality constraints ∇hj (z

∗) are linearly independent at z∗;

– the Mangasarian–Fromovitz constraint qualification
holds if the gradients of active inequality constraints ∇gi (z

∗)
and equality constraints ∇hj (z

∗) are positive linearly
independent at z∗.

For the remainder, the special case of linear programming
should be mentioned. Such an optimization problem
minimizes a linear objective function subject to linear
equality and inequality constraints with non-negative
variables. The convexity of the problem implies that a local
optimum is also a global optimum and authorizes an efficient
treatment by optimization algorithms [ALE 01]. We will see
in section 1.3 that, very often, it is possible to reformulate
topology optimization problems so that linear programming
applies.

1.2. Governing equations of truss structures

Before stating the structural optimization problem, let us
start with some basic notations for a linear elastic truss
structure as depicted in Figure 1.1. Using standard finite
element concepts, we consider a pin-jointed structure
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composed of Nn nodes interconnected by truss elements
e ∈ {1, . . . , Nb}. With d ∈ {2, 3} being the spatial dimension
and Ns being the number of support reactions, the number of
degrees of freedom is Nd = d.Nn − Ns. The vector of nodal
coordinates is denoted by x ∈ Rd.Nn , the vector of nodal
displacements is denoted by u ∈ RNd and the vector of
external forces is denoted by f ∈ RNd (excluding support
reactions). The member force is te ∈ R. The design
parameters associated with every truss element are the
length le ∈ R+ and the cross-sectional area ae ∈ R+, which,
together, give the member volume ve = aele ∈ R+. Using these
notations, the static equilibrium equations between the
internal forces and the external loading are written into an
expanded form as [PET 01]:

Nb�
e=1

teγe = f , [1.5]

or more compactly

Bt = f [1.6]

where, for all member e = 1, . . . , Nb, γe ∈ RNd represents the
vector collecting the direction cosines, and B ∈ RNd×Nb is the
so-called equilibrium matrix concatenating the vector of
directions cosines, i.e. B =


γ1 . . . γe . . . γNb

�
. Assuming

small deformations, the linear compatibility condition
between the nodal displacements u ∈ RNd and the element
elongation � ∈ RNb is [PET 01]:

γ�
e u = �e, ∀e = 1, . . . , Nb, [1.7]

or using the compact notation of the equilibrium matrix:

B�u = �. [1.8]
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Figure 1.1. Notation for a truss element belonging, for instance,
to a prestressed cable-net structure

Then, for an elastic material of Young’s modulus Ee ∈ R+,
Hooke’s law stating the relation between the axial stress σe :=
te/ae ∈ R and strains εe ∈ R of the eth element is simply:

te
ae

= Eeεe, ∀e = 1, . . . , Nb, [1.9]

where the axial strain is given by the ratio of the elongation �e
on the length, i.e.

εe =
�e
le
, ∀e = 1, . . . , Nb. [1.10]

The solution to equations [1.5], [1.7] and [1.9] requires a
thorough study of the statical and kinematical determinacies
of the structural system. Pellegrino [PEL 86, PEL 93]
identified four classes of truss structural assembly, as
presented in Table 1.1. It is important to note that
lightweight structures may belong to any of these classes.
This will have serious consequences on the structural
optimization process.

Frequently, the equilibrium equations for classical truss
structures are formulated in terms of displacements by
combining equations [1.5]–[1.9], leading to the following
equality:

Ku = f , [1.11]
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where, by definition of the reduced stiffness matrix,

K :=

Nb�
e=1

Eeae
le

γeγ
�
e ∈ RNd×Nd . [1.12]

In the absence of mechanisms in the structural assembly
(i.e. for assembly classes I and III), the stiffness matrix is
symmetric positive definite and there exists a unique solution
u to linear system [1.11]. In section 1.3, we will see that the
treatment of equilibrium equations is a central issue in
structural optimization and depends on whether the optimal
structure might contain indeterminacy.

Class Properties Existence of solution Example

I Nss = 0
Nm = 0

[1.5] has a unique solution for
any loads.
[1.7] has a unique solution for
any elongations.

II Nss = 0
Nm > 0

[1.5] has a unique solution for
compatible loads.
[1.7] has an infinity of solutions
for any elongations.

III Nss > 0
Nm = 0

[1.5] has an infinity of solutions
for any loads.
[1.7] has a unique solution
for compatible elongations.

IV Nss > 0
Nm > 0

[1.5] has an infinity of solutions
for compatible loads.
[1.7] has an infinity of solutions
for compatible elongations.

Table 1.1. Classification of truss structural systems according to Pellegrino
[PEL 93]. Nss denotes the number of independent states of self-stress, or
degree of hyperstaticity, and Nm denotes the number of independent zero-
energy deformation modes, or mechanisms. The structure is said to be
statically and kinematically determinate when Nss = 0 and Nm = 0,
respectively
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1.3. Layout and topology optimization

1.3.1. Basic problem statement

Layout optimization is among one of the most general
approaches for structural design. Given a design domain
subjected to boundary and loading conditions, layout
optimization aims to find the best material distribution
according to the problem definition. The stress-constrained
minimum volume problem was first studied more than a
century ago with the classical Michell’s theorem [MIC 04],
which gives the limit of economy for a structural frame. As
discussed in section I.3, the scope is essentially theoretical
but it provides essential information on how far a structure
can be further optimized by relaxing constraints (in the
general sense).

The exact optimal layout given by Michell’s theory can be
numerically approached via truss layout optimization. Based
on a discretized model, the method follows the ground
structure approach [DOR 64] where the design domain
(Figure 1.2(a)) is divided into a grid of nodal points
interconnected by tentative bars (Figure 1.2(b)). The most
investigated strategy to solve the problem is topology
optimization where both structural component sizes and
system connectivity are simultaneously optimized.
Cross-sectional areas a ∈ RNb are generally defined as
continuous design variables. As such, topology optimization
can be viewed as a sizing optimization problem with side
constraints:

a1, . . . , ae, . . . , aNb
≥ 0. [1.13]

The accuracy of truss topology optimization with respect to
the exact analytical solution depends on the density of the
grid, but also on the system connectivity: it can be limited to
neighboring nodes (Figures. 1.2(c) and 1.2(d)), to a given
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order of vicinity, or expanded to all nodes (Figures. 1.2(e) and
1.2(f)). Obviously, the latter case leads to better results, but
at the expense of a considerable computational cost along
with the presence of long and slender elements that are
deemed inefficient to resist local buckling.

a) Initial design domain b) Discretization by 15× 45 grid

c) Ground structure with
neighboring connections

d) V ∗ = 22.600

e) Fully connected ground structure
(for the sake of clarity, only
connections for the bottom left node
are displayed)

f) V ∗ = 20.660

Figure 1.2. A cantilever truss. The design domain is a rectangular panel
of ratio 3:1. The supports are applied on leftmost nodes. A downward unit
load is applied on the rightmost middle node. The exact analytical solution
of 19.036 was calculated in [LEW 94]. The design domain and the initial
ground structure are given in a) and b), respectively. For a ground structure
with adjacently connected nodes c), the optimal layout is depicted in d). For
a fully connected ground structure e), the optimal layout is depicted in f)

Regarding the problem definition, most of the
developments in the literature are concentrated on
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compliance despite the fact that stress is among the most
important consideration (see [BEN 03] for a comprehensive
overview). Two main reasons explain this choice. First,
compliance optimization problems are generally convex and
thus easier to solve by mathematical programming [BEN 94].
Second, for single loading, compliance optimization is
equivalent to the stress-constrained minimum volume
problem [ACH 92] (see also section 1.3.2).

The goal of compliance optimization is to distribute a given
amount of material to obtain a structure with maximum
stiffness (i.e. of minimum compliance). Typically, the external
work of applied loads is minimized subject to a global
constraint on the allowable volume V ∈ R+:

min
a∈RNb ,u∈RNd

fTu [1.14a]

subject to: K (a)u = f , [1.14b]

Nb�
e=1

ve (a) = V , ae ≥ 0, ∀e = 1, . . . , Nb. [1.14c]

The enforcement of strict zero lower bounds on
cross-sectional areas permits the removal of structural
members. The resulting problem may converge to optimal
structures with mechanisms: the system under unstable
equilibrium is optimized for the applied loads but any
perturbation of loads might lead to structural collapse.
Stability issues are investigated in Chapter 2.

Equivalently, compliance optimization can be solved by
minimizing the complementary (strain) energy. This switch is
permitted because the total potential energy principle states
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that the external work and the complementary energy are
equal at equilibrium:

f�u =

Nb�
e=1

t2ele
Eeae

. [1.15]

Using this objective function, the implementation benefits
from the minimum complementary energy principle. In linear
elasticity theory, among all stress components satisfying the
static equilibrium equations, the actual stress distribution
that enforces the compatibility condition is obtained by
minimizing the complementary energy [KAN 05]. Hence,
compatibility equations can be removed from the problem
formulation and the problem is stated with static equilibrium
equations [1.5]. Once again, a non negative lower-bound must
be enforced to avoid infinite values of the complementary
energy [1.15]. These considerations lead to the following
problem [BEN 94]:

min
a∈RNb ,t∈RNb

Nb�
e=1

t2ele
Eeae

[1.16a]

subject to:
Nb�
e=1

teγe = f , [1.16b]

Nb�
e=1

ve (a) = V , ae ≥ a −, ∀e = 1, . . . , Nb. [1.16c]

Finally, we consider a tractable form of the classical
problem that consists of reducing as much as possible the
volume of material while enforcing that member stresses
remain below the maximal allowable value σ ∈ R+. Early
work formulates this stress-constrained minimum volume
problem in plastic design by neglecting the compatibility
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condition [DOR 64, PED 70, HEM 73, ACH 96]:

min
a∈RNb , t∈RNb

Nb�
e=1

aele [1.17a]

subject to:
Nb�
e=1

teγe = f , [1.17b]

− aeσ ≤ te ≤ aeσ, ae ≥ 0, ∀e = 1, . . . , Nb, [1.17c]

where stress constraints [1.17c] are multiplied by
cross-sectional areas in order to avoid that σe → ±∞ when
ae → 0 for some vanishing members e ∈ {1, . . . , Nb} [BEN 94].

For solving problems [1.14], [1.16] and [1.17], it is
important to observe that they are all equivalent in a certain
sense. This property can be used to reformulate them as a
linear programming problem, as presented in section 1.3.2.

1.3.2. Problem equivalence and numerical solution

This section shows that compliance and volume
optimization under single loading lead to the same optimal
truss and that a unique formulation in linear programming
can be used for solving them. The study of optimality
conditions is thus necessary for devising an efficient
optimization process. For this, the relationship between
compliance and volume optimization is first studied via the
single-bar truss example shown in Figure 1.3.

Figure 1.3. The one-bar truss example. For convenience, the length
is set at l = 1, the pulling force at f = 1, the Young’s modulus at

E = 1, the direction cosine at γ = 1, the allowable volume at V = 1
and the limiting stresses at σ = 1
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For compliance optimization, we intuitively understand
that the process tends to increase a while enforcing the limit
on the allowable volume of material al = V , whereas volume
optimization tends to decrease a while enforcing the limit on
the allowable stress σ < σ. It turns out that both problems
converge to the same optimum in the design space (up to a
factor that depends on the ratio between V and σ). This can
be demonstrated if there is a unique solution satisfying the
KKT conditions for the following three formulations: the
minimum compliance [1.14] identified by I, the minimum
complementary energy [1.16] identified by II and the
minimum volume [1.17] identified by III. For the single-bar
truss, these problems are given by:

min
aI∈R,uI∈R

�
f IuI

!!!! EaI

l
γ2uI = f I, aIl = V , aI ≥ 0



, [1.18]

min
aII∈R,tII∈R

�
tII,2l

EaII

!!!! tIIγ = f II, aIIl = V , aII ≥ a −


, [1.19]

min
aIII∈R,tIII∈R

�
aIIIl

!!!! tIIIγ = f III, −aIIIσ ≤ tIII ≤ aIIIσ, aIII ≤ 0



.

[1.20]

The Lagrangians of these problems are, respectively:

LI = f IuI + λI
1

�
EaI

l
γ2uI − f I

�
+ λI

2

�
aIl − V

�
+ λI

3

�
−aI

�
,

[1.21]

LII =
tII,2l

EaII + λ1

�
tIIγ − f II

�
+ λII

2

�
aIIl − V

�
+ λII

3

�
a − − aII

�
,

[1.22]

LIII = aIIIl + λIII
1

�
tIIIγ − f III

�
+ λIII

2

�
tIII − aIIIσ

�
+ λIII

3

�
−tIII − aIIIσ

�
+ λIII

4

�
−aIII

�
. [1.23]
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By differentiation, we obtain the KKT conditions for [1.21]
by:

λI
1

E

l
γ2uI + λI

2l − λI
3 = 0, f I + λI

1

EaI

l
γ2 = 0, [1.24a]

EaI

l
γ2uI = f I, alI = V , −aI ≤ 0, λI

3 ≥ 0, λI
3a

I = 0, [1.24b]

for [1.22] by:

− tII,2l

EaII,2 + λII
2 l − λII

3 = 0,
2tIIl

EaII + λII
1 γ = 0, [1.25a]

tIIγ = f II, aIIl = V , aII ≥ a −, λII
3 ≥ 0, λII

3

�
a − − aII

�
= 0,

[1.25b]

and for [1.23] by:

l − λIII
2 σ − λIII

3 σ − λIII
4 = 0, λIII

1 γ + λIII
2 − λIII

3 = 0, [1.26a]

tIIIγ = f III, tIII ≤ aIIIσ, −tIII ≤ aIIIσ, −aIII ≤ 0, [1.26b]

λIII
2 , λIII

3 , λIII
4 ≥ 0, [1.26c]

λIII
2

�
tIII − aIIIσ

�
= 0, λIII

3

�
−tIII − aIIIσ

�
= 0, λIII

4 aIII = 0.

[1.26d]

For the same optimal design aI = aII = aIII = 1 with state
variables uI = uII = uIII = 1, tI = tII = tIII = 1 and σI =
σII = σIII = 1, we can find Lagrange multipliers satisfying
the optimality conditions [1.24]–[1.26]. We also verify that the
compatibility condition [1.7] is satisfied at the optimum, i.e.
σ∗ = (E/l) γu∗. Hence, the following assertions hold for the
single loading case:

– the optimal compliance problems using the external work
or complementary energy are identical;
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– the compliance and volume optimization problems
converge to an equivalent solution;

– this equivalent solution is a fully stressed design with the
same strain energy density σ2/E in each bar;

– such a solution obtained in plastic design automatically
enforces the compatibility condition.

The assertions are still valid when the optimal structure is
statically indeterminate [ACH 92] and for different yield
stresses in tension and compression [ACH 96]. These
properties allow us to reformulate the problem by linear
programming algorithms.

To do so, the vector of internal forces can be expressed by
non-negative tension force t+ ∈ RNb

+ and compression force
t− ∈ RNb

+ such that t = t+ − t−. The fully stressed design
assumption allow us to define the cross-sectional area in terms
of internal forces:

ae
�
t+e , t

−
e

�
:=

1

σ

�
t+e + t−e

�
, ∀e = 1, . . . , Nb. [1.27]

Introducing these variable changes in the minimum volume
problem results in the linear programming formulation:

min
t+∈RNb ,t−∈RNb

Nb�
e=1

le
σ

�
t+e + t−e

�
[1.28a]

subject to:
Nb�
e=1

�
t+e − t−e

�
γe = f , [1.28b]

t+e ≥ 0, t−e ≥ 0, ∀e = 1, . . . , Nb. [1.28c]

The problem structure implies that either t+e or t−e will be
non-zero at the optimum. The use of the specific linear
programming algorithm will efficiently find the global
optimum for a very large design space [SOK 11].
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Using this formulation, much effort is currently devoted to
developing adding member procedures for high-density
ground structures [GIL 03, SOK 11, SOK 13]. This loosely
constrained problem in topology optimization with many
nodes will converge to a continuous-like Michell’s truss.
However, the practical applicability is not obvious. For this
reason, the formulation must be extended to consider more
realistic designs.

1.4. Generalization

1.4.1. Self-weight and multiple loading

Truss topology optimization can be generalized in various
ways to include additional design settings. A first aspect,
often neglected in the literature, is self-weight of structural
members and assemblies, which may have a considerable
impact on the design of long-span lightweight structures. In
this chapter, we assume that self-weight is equally carried by
truss end-nodes while bending is neglected. Self-weight loads
are considered as external forces that depend on the
structural volume subject to gravity effects [BEN 03]. Let
ge ∈ RNd be the vector of nodal gravitational forces for each
member, the vector of external forces f becomes a
design-dependent loading:

f
self-weight−−−−−−→ f +

Nb�
e=1

ve (a)ge. [1.29]

This seemingly minor extension significantly influences
the design problem as well as the numerical procedure. The
external force vector is no longer constant but varies with
respect to the design variables. This might lead to trivial
situations where self-weight loads exactly balance the
external loading, thus resulting in unstressed structures. In
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the remainder, we will formally exclude such situations
[BEN 03]:�
a ∈ RNb

+

!!!!!
Nb�
e=1

ve (a) = V , f +

Nb�
e=1

ve (a)ge = 0

�
= ∅. [1.30]

Another important consideration is multiple loading
[DA 97]. In practical applications, the structure is often
subject to significant load changes. The designer must
identify the framework of most critical loading cases for
which the structure is designed accordingly. Let fk ∈ RNd be
the vector of external forces, at each loading condition
k = 1, . . . , Nc corresponds an equilibrium state. Hence, the
system of equilibrium equations is expanded Nc times. In
addition, the consideration of multiple loading conditions has
consequences on the formulations and the design issues.

1.4.2. Compliance optimization

The extension of compliance optimization to include
multiple loadings is not straightforward since there is one
specific compliance measure by loading case:

ck (a,uk) =

�
fk +

Nb�
e=1

ve (a)ge

��

uk, ∀k = 1, . . . , Nc. [1.31]

Ideally, a structure simultaneously minimizing all specific
compliances would be the optimal solution. However, such a
solution does not exist in general, and a trade-off can be
found by multicriteria optimization [MEL 12]. To combine
these specific compliances in a single global measure,
commonly accepted formulations are either the
weighted-average or the worst-case compliance. In the former
case, non-negative weights wk ∈ [0, 1] with

 Nc
k=1wk = 1 are

assigned to every specific compliance. Then, the weighted
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sum of specific compliances is minimized subject to a global
constraint on the allowable volume of material V :

min
a ∈ RNb

uk ∈ RNd

Nc�
k=1

wkck (a,uk) [1.32a]

subject to: K (a)uk = fk +

Nb�
e=1

ve (a)ge, ∀k = 1, . . . , Nc [1.32b]

Nb�
e=1

ve (a) = V , ae ≥ 0, ∀e = 1, . . . , Nb. [1.32c]

The latter case is a min-max optimization problem where
the worst compliance over all loading cases is minimized:

min
a ∈ RNb

uk ∈ RNd

max
k=1,...,Nc

ck (a,uk) [1.33a]

subject to: K (a)uk = fk +

Nb�
e=1

ve (a)ge, ∀k = 1, . . . , Nc, [1.33b]

Nb�
e=1

ve (a) = V , ae ≥ 0, ∀e = 1, . . . , Nb. [1.33c]

Problems [1.32] and [1.33] can be reformulated as convex
problems and solved by several techniques, for instance
semidefinite programming [KOČ 06] or second-order cone
programming [MAK 10b].

1.4.3. Volume optimization

The most useful formulation to explore different design
settings remains the minimum volume problem. There are
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scenarios in which we wish to impose different stress
constraints corresponding to different load cases, and
possibly to different regions of the structure [LE 10]. For
instance, stress constraints for permanent loads would be
related to the material’s yield limit whereas stress
constraints for repetitive loads would be related to the
material’s endurance limit. In steel structures, stress
constraints may also depend on the region of the structure
when different steel strength classes or element types are
used (strut, cable, etc.). Similarly, limiting stresses in tension
and compression can be different. Other examples for
displacements can be mentioned: tight displacement
constraints can be enforced for permanent loads while
accidental loadings are not restricted. Moreover,
displacement constraints can be different following the
directions. For all these reasons, stress and displacement
bounds must have the possibility to take different values
with respect to each loading case k = 1, . . . , Nc, spatial
direction i = 1, . . . , Nd and structural member e = 1, . . . , Nb.

Unlike some particular cases (e.g. [MAK 10a]), the
minimum volume problem with self-weight and multiple
loading is generally not equivalent to compliance
optimization [MEL 12]. Furthermore, the compatibility
condition is required to obtain the actual stress field. To
ensure meaningful solutions, limiting stresses in tension
σ +
e,k ∈ R+ and compression σ −

e,k ∈ R+ are imposed for all
structural loading cases and truss members. Moreover, nodal
displacements can be restricted by different extrema denoted
as u −

i,k ∈ R+ and u +
i,k ∈ R+. Finally, compressive members are

also sized to remain below the Euler critical buckling load
σ cr
e . Setting uk as the optimization variable, stresses are

computed by combining compatibility equations [1.7] with
Hooke’s law [1.9] [KIR 89c] and the minimum volume
problem subject to stress, local buckling [PED 93] and
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displacement constraints [KOČ 97] takes the form [WAN 07]:

min
a ∈ RNb

uk ∈ RNd

Nb�
e=1

ve (a) [1.34a]

subject to: K (a)uk = fk +

Nb�
e=1

ve (a)ge, ∀k = 1, . . . , Nc,

[1.34b]

− σ −
e,k ≤ Ee

le
γ�uk ≤ σ +

e,k, ∀e = 1, . . . , Nb, ∀k = 1, . . . , Nc,

[1.34c]

− Ee

le
γ�
e uk ≤ σ cr

e (a) , ∀e = 1, . . . , Nb, ∀k = 1, . . . , Nc,

[1.34d]

− u −
i,k ≤ ui,k ≤ u +

i,k, ∀i = 1, . . . , Nd, ∀k = 1, . . . , Nc,

[1.34e]

ae ≥ 0, ∀e = 1, . . . , Nb. [1.34f]

Problem [1.34] is inherently non-convex and does not have
a specific mathematical structure (e.g. linear or quadratic
programming). A formulation of the form [1.34] is called
simultaneous analysis and design in the literature [ARO 05].
In those formulations, both design and state variables are
treated as optimization variables and the equilibrium
equations set as equality constraints, which are solved by
general-purpose nonlinear programming algorithms. Because
we will follow the lines of this approach in our method, more
details are given in Chapter 2.

Still, the most widespread approach to solving the
stress-constrained optimization problem (especially for the
design of continuum structures) is nested analysis and design
[ARO 05]: displacement variables are removed from [1.14] by
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performing a structural analysis via the displacement model
[1.11]. However, truss topology optimization is an unusual
structural optimization problem because the stiffness matrix
may become singular when members vanish (see section 1.2).
The intent of positive lower bounds a − ∈ R+ on
cross-sectional areas is to ensure that the stiffness matrix
remains non-singular. These lower bounds are assumed small
enough to be structurally insignificant. The resulting
problem is stated as:

min
a∈RNb

Nb�
e=1

ve (a) [1.35a]

subject to: − σ −
e,k ≤ Ee

le
γ�uk (a) ≤ σ +

e,k, ∀e = 1, . . . , Nb,

∀k = 1, . . . , Nc, [1.35b]

− Ee

le
γ�
e uk (a) ≤ σ cr

e (a) , ∀e = 1, . . . , Nb,

∀k = 1, . . . , Nc, [1.35c]

− u −
i,k ≤ ui,k (a) ≤ u +

i,k,

∀i = 1, . . . , Nd, ∀k = 1, . . . , Nc, [1.35d]

ae ≥ a −, ∀e = 1, . . . , Nb, [1.35e]

where the displacement variables are computed via a
dedicated linear algebra routine:

uk (a) = K (a)−1

�
fk +

Nb�
e=1

ve (a)ge

�
, ∀k = 1, . . . , Nc. [1.36]

The solution process might converge to suboptimal
solutions because some members are not completely
eliminated from the ground structure [KIR 90a, CHE 92]. For
more accuracy, Bruns [BRU 06] employs singular value
decomposition but the analysis operation is more expensive.
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However, both problems [1.34] and [1.35] are very difficult
to solve because the numerical process is prone to numerical
difficulties due to the presence of stress and local buckling
constraints, as discussed in the following.

1.4.4. Stress singularity

Topology optimization with stress constraints is difficult to
solve because the optimum might correspond to a singular
point in the design space. This phenomenon is called stress
singularity or singular topology in the literature. Sved and
Ginos [SVE 68] first pointed out singular topologies. Hajela
made the first representation of the corresponding feasible
region [HAJ 82]. Kirsch also showed several properties of
optimal topologies [KIR 87, KIR 89a].

For illustrative purposes, consider a variant of the
three-bar truss example proposed by Kirsch [KIR 89b]. The
structure and the design settings are depicted in
Figure 1.4(a). To investigate various possibilities of optimal
topologies, we introduce a non-negative parameter β ∈ R+

varying the cost of the second bar in the total volume
function. Thus, the minimum volume problem subject to
stress constraints is:

min
a∈R3

+,u∈R2

�
a1l1 + βa2l2 + a3l3

!! K (a)u = f ,

−σ −
e ≤ Ee

le
γ�
e u ≤ σ +

e , ∀e = 1, 2, 3



. [1.37]

Figure 1.4(b) depicts the corresponding design space.
Using standard algorithms of mathematical programming,
the solution process will converge to either point A or point B:

Point A: a1 = 0, a2 = 1, a3 = 0, if β ≤ 2, [1.38a]

Point B: a1 = 1, a2 = 0, a3 = 1, if β ≥ 2. [1.38b]
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a) b)

c)

Figure 1.4. The three-bar truss example with stress singularity. The
representation of the initial ground structure is given in a). The system is
subject to an upward unit load. Young’s moduli are taken as Ee = 1, the
length le = 1 and the limiting stresses are σ −

e = 1 and σ +
e = 1 for all

e = 1, 2, 3. The corresponding design space with respect to a1 and a2,3 for the
case with singular optimum b) and using relaxed constraints c)

The optimal volume of point B is V ∗ = 2. However, the true
optimum for this problem is:

Point A: a1 = 0, a2 = 1, a3 = 0, if β ≤ 1√
2
, [1.39a]

Point C: a1 =
1√
2
, a2 = 0, a3 =

1√
2
, if β ≥ 1√

2
. [1.39b]

The value V ∗ =
√
2 of point C is below the optimal volume

of point B. This demonstrates that optimization algorithms
are unable to properly eliminate the redundant member 2. To
figure this out, we expand the system Ku = f into the
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following two equilibrium and three compatibility equations:

√
2

2
a1σ1 −

√
2

2
a3σ3 = 0, [1.40a]

−
√
2

2
a1σ1 − a2σ2 −

√
2

2
a3σ3 = 1, [1.40b]

√
2

2
ux −

√
2

2
uy =

σ1
E1

l1, [1.40c]

−uy =
σ2
E2

l2, [1.40d]

−
√
2

2
ux −

√
2

2
uy =

σ3
E3

l3. [1.40e]

Stresses and displacements constitute the five unknowns
of the linear system. We easily verify that solutions of
equations [1.40] for points A and B also satisfy stress
constraints. By contrast, at point C, the compatibility
condition [1.40d] of member 2 enforces σ2 = −2/

√
2. This

value is inconsistent with stress constraints because the
allowable stress −σ −

2 = −1 is exceeded. Hence, both stress
and compatibility constraints for member 2 cannot be
satisfied simultaneously and point C is discarded by the
optimization algorithm. The situation is paradoxical since
member 2 does not exist at point C, but the optimization
algorithm still handles those physically meaningless
constraints.

Such a problem was recently identified as a mathematical
program with vanishing constraints [ACH 08]. The major
difficulty is that some regularity conditions of vanishing
constraints – which are required to reach the true optimum –
are violated. For instance, the dependence between the
compatibility condition and stress constraint of member 2
violates the linear-independence constraint qualification, and
thus all subsequent regularity conditions. Obviously,
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assuming a plastic design (by neglecting compatibility
equations) would prevent this conflict but the true optimum
could be found only if the optimal topology is statically
determinate [KIR 89b, KIR 89c, KIR 90a]. A general
relaxation method was developed in the framework of
mathematical programming [HOH 12, ACH 13].

Alternatively, the optimization problem can be stated in
terms of cross-sectional areas by solving the equilibrium
equations separately. Thus, the stress-constrained minimum
volume takes the form:

min
a∈R3

+

�
a1l1 + βa2l2 + a3l3

!! − σ −
e ≤ Ee

le
γ�
e

�
K (a)−1 f

�
≤ σ +

e ,

∀e = 1, 2, 3



. [1.41]

To avoid that σe (a) → ±∞ when ae → 0, some authors
[HAJ 82, CHE 95] have proposed a variant but equivalent
expression to make stress constraints feasible:�

σe (a)− σ +
e

�
ae ≤ 0, ∀e = 1, . . . , Nb, [1.42a]�

σ −
e − σe (a)

�
ae ≤ 0, ∀e = 1, . . . , Nb. [1.42b]

Despite the fact that the stress constraints of non-existing
members seemingly vanish, the design space shown in
Figure 1.4(b) shows that point C belongs to the strip BC. The
difference of dimension between this degenerate subspace
and the main feasible space is precisely the number of
vanishing members. Standard algorithms of nonlinear
programming cannot deal with these infinitesimally narrow
strips. However, Cheng [CHE 95] pointed out that they are
always connected to the main feasible design space.

This assertion has guided several authors to develop
techniques to relax stress constraints by expanding the
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region BC, as shown in Figure 1.4(c). Among others, Rozvany
[ROZ 96] employed the Kreisselmeier–Steinhauser smooth
framework function, but the most popular and widely studied
technique for truss topology optimization remains the
�-relaxation method [CHE 97]. The basic idea is to introduce
a relaxation parameter � ≥ 0, which continuously decreases
� → 0 so that the original problem is recovered at the
optimum [PET 01]. For this, parameter � is introduced into
the stress constraints as follows:�

σe (a)− σ +
e

�
ae ≤ �, ∀e = 1, . . . , Nb, [1.43a]�

σ −
e − σe (a)

�
ae ≤ �, ∀e = 1, . . . , Nb, [1.43b]

ae ≥ �2, ∀e = 1, . . . , Nb. [1.43c]

Nevertheless, Stolpe and Svanberg [STO 01] proved that
the trajectory of the �-relaxation method may be non-smooth
and even discontinuous. Even worse, its application to
moderate-size structures introduces additional local optima
[STO 03].

1.4.5. Local buckling singularity

The consideration of local buckling constraints exhibits
similar issues with stress constraints. The problem was first
identified by Guo et al. [GUO 01]. To illustrate the problem,
consider again the three-bar truss (Figure 1.5(a)). The
minimum volume problem with local buckling constraints is:

min
a∈R3

+,u∈R2

�
a1l1 + βa2l2 + a3l3

!! K (a)u = f ,−Ee

le
γ�
e u ≤ σ cr

e (a) ,

∀e = 1, 2, 3



, [1.44]

where σ cr
e (a) represents the Euler critical buckling load

written in terms of cross-sectional areas (see section 3.3 for



26 Computational Design of Lightweight Structures

more details). Figure 1.5(b) depicts the corresponding design
space. The true optimum is given by the following points:

Point A: a1 = 0, a2 = 1, a3 = 0, if β ≤ 1√
2
, [1.45a]

Point B: a1 =
1√
2
, a2 = 0, a3 =

1√
2
, if β ≥ 1√

2
. [1.45b]

The optimal volume is V ∗ = 1 at point A and V ∗ =
√
2 at

point B. However, standard algorithms are unable to reach
either point A or point B. The cause is the inconsistency
between local buckling and compatibility constraints of
vanishing members. On the one hand, we easily verify with
equations [1.40] that compatibility equations enforce
non-zero stresses. On the other hand, zero stresses are
required to ensure the feasibility of local buckling constraints
when ae → 0. Hence, both constraint types cannot be satisfied
simultaneously.

As for stress constraints, the singularity also arises when
the problem is stated in terms of cross-sectional areas only:

min
a∈R3

+

�
a1l1 + βa2l2 + a3l3

!! − Ee

le
γ�
e

�
K (a)−1 f

�
≤ σ cr

e (a) ,

∀e = 1, 2, 3



. [1.46]

The design space of Figure 1.5(b) shows that the optimal
points belong to degenerate subspaces. Compared to stress
constraints, the problem is even more critical because the
feasible design domain is disjoint. Guo et al. [GUO 01]
proposed a variant of the �-relaxation method to reconnect
the different parts by modifying the local buckling
constraints as follows:

−σe (a)− σ cr
e (a) ≤ �, ∀e = 1, . . . , Nb, [1.47]
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The reconnected design space is depicted in Figure 1.5(c).
Despite this modification, the feasible design domain is
highly non-convex and the problem remains difficult to solve
by optimization algorithms. Hence, the proposal was
enhanced via a second-order smooth approximation of
relaxed constraints. Applications are still limited to
structures of moderate size.

a) b)

c)

Figure 1.5. The three-bar truss example with local buckling singularity. The
representation of the ground structure is given in a). The system is subjected
to a upward unit load. Young’s moduli are taken as Ee = 1 and the length
le = 1 for all e = 1, 2, 3. The design space is given in b) for the case with
singular optimum and c) using relaxed constraints

1.5. Truss geometry and topology optimization

1.5.1. Optimization of nodal positions

In the quest for more practical design methods, some
recent works in topology optimization focused on



28 Computational Design of Lightweight Structures

incorporating technological considerations to prevent short,
thin and overlapping bars or to restrict the number of joints
[GIL 05a, PRI 05]. Yet, truss layout optimization might also
comprise the search for the optimal nodal locations; a natural
way of dealing with these constraints. This feature is
especially relevant in view of designing lightweight
structures. In that case, the overall problem is called truss
geometry and topology optimization. Kirsch [KIR 90b]
pointed out that good results can be obtained with sparse
ground structures by optimizing the structural geometry.

For this highly nonlinear problem, an important issue is
how to define the geometrical variables. Computer-aided
geometrical design parameterization [KEG 06] and
sensitivity filtering techniques [BLE 09, LE 11] for freeform
surfaces are unsuitable because they discard potentially
interesting regions of the design space. On the contrary, the
variable giving maximal control on the geometry is the
position of nodes x ∈ Rd.Nn . This vector is defined on the set of
permissible positions X ⊂ Rd.Nd , which, in its general form,
becomes:

X :=

�
x ∈ Rd.Nn

!! gi (x) ≤ 0, hj (x) = 0, i = 1, . . . , Ng,

j = 1, . . . , Nh



. [1.48]

The set X can be more or less difficult to enforce, depending
on the vector functions of geometrical constraints gi (x) :X →
RNg and hj (x) :X → RNh . To mention a simple one, all nodes
could lie within a bounding box apart from those coordinates
where support conditions are prescribed:

X := {x ∈ Rd.Nn | x −
i ≤ xi ≤ x +

i , ∀i = 1, . . . , Nd, [1.49a]

xi = xi, ∀i = Nd + 1, . . . , d.Nn}. [1.49b]
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Here, x −
i ∈ R and x +

i ∈ R are, respectively, the lower and
upper bounds of the ith nodal coordinate whereas xi ∈ R
stands for the support reactions.

The impact of varying nodal coordinates has consequences
on the member length le and the vector of direction cosines γe.
For these functions, the following formula holds (see [ACH 07]
for the proof):

le : X → R+, x �→ le (x) :=
1√
2
�Cex�2, ∀e = 1, . . . , Nb, [1.50]

l2e : X → R+, x �→ l2e (x) := x�Cex, ∀e = 1, . . . , Nb, [1.51]

γe : X → RNd ,x �→ γe (x) :=
1

le (x)
PCex, ∀e = 1, . . . , Nb,

[1.52]

where �.�2 denotes the Euclidean norm, Ce ∈ Rd.Nn×d.Nn is a
symmetric, positive semidefinite assembly matrix containing
exactly d3 non-zero entries of ±1 and P ∈ RNd×d.Nn relates the
system in non-reduced coordinates to the system in reduced
coordinates. Note that le and γe are present almost
everywhere in volume and compliance problem formulations.
In particular, the global stiffness matrix in reduced
coordinates can be formally defined as the following
matrix-valued function with respect to the design variables:

K : RNb
+ ×X → RNd×Nd , (a,x) �→ K (a,x)

:=

Nb�
e=1

Eeae
le (x)

γe (x)γ
�
e (x) . [1.53]

Besides the nonlinear behavior, the variation of nodal
positions poses some numerical difficulties when dealing with
mathematical programming. This issue is discussed in
section 1.5.2.
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1.5.2. Melting node effect

In optimal geometries, the melting node effect refers to
members vanishing due to the melting of truss end nodes.
The phenomenon was first identified by Achtziger [ACH 06].
To give an illustrative example, consider the five-bar truss
depicted in Figure 1.6(a). For this example, the position of
nodes 2 and 3 are optimized along the vertical direction
without restriction. With the design variables (a,x), the
minimum volume problem subject to stress constraints is:

min
a ∈ R5

+

u ∈ R4

x ∈ X

�
5�

e=1

aele (x)
!!K (a,x)u = f ,−σ −

e ≤ Ee

le (x)
γe (x)u ≤ σ +

e ,

∀e = 1, . . . , 5

�
. [1.54]

The true optimum of V ∗ = 2.5 includes melting nodes 2
and 3 (Figure 1.6(c)). However, standard algorithms of
mathematical programming are unable to reach the solution
because the presence of melting nodes causes serious
convergence difficulties: the solution process will move close
to the optimum (Figure 1.6(b)) without being able to find a
KKT point. At the vicinity of the solution, the algorithm
suddenly exhibits an erratic behavior with zigzags between
two non-optimal points.

The length function is the bottleneck for the admission of
melting nodes in optimal structures. At melting nodes, the
length vanishes, i.e. �Cex�2 = 0 for some e ∈ {1, . . . , Nb}. The
consequence for the solution process is twofold. First,
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consider the derivative of the length function [1.50] with
respect to the nodal coordinates:

∇le (x) =
Cex

�Cex�2 , ∀e = 1, . . . , Nb. [1.55]

1 2

4 3

a)

3

1

4

2

b)

1

4

2

3

c)

Figure 1.6. The three-bar truss example. The representation of the initial
ground structure is based on a square of unit side and given in a). A
downward unit load is applied on node 2. Young’s moduli are taken as Ee = 1
and limiting stresses are σ −

e = 1 and σ +
e = 1 for all e = 1, . . . , 5. The

solution close to the optimum is given in b) and the actual optimum in c)

A close inspection reveals that the derivative is undefined
for melting nodes since the length appears in the denominator.
This prevents the determination of a KKT point.

Second, the optimization problem involves some functions
(e.g. the stiffness [1.53] and the direction cosine [1.52]), which
are undefined for melting nodes since, once again, the length
appears in the denominator. A common approach to avoid
this is to define the set of permissible positions X0 so that the
melting node effect cannot occur [XIA 13]:

X0 := {x ∈ X | le (x) �= 0, ∀e = 1, . . . , Nb} . [1.56]

However, this approach is cumbersome and possibly
intractable for complex applications. Actually, optimal
geometries with melting nodes are even desirable to the
extent that such solutions may achieve more effective results
[BEN 93, BEN 94, RAH 08].
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1.6. Concluding remarks

In this chapter, we have described truss layout
optimization in a mathematical programming context. First,
topology optimization for minimum volume and compliance
problems under single loading was stated along with the
equivalence between both problems. Then, the formulation
was progressively extended to obtain the general problem of
truss geometry and topology optimization including member
self-weight and multiple loading, as well as stress,
displacement and local buckling constraints. For these
extensions, the singularities that arise in optimum solutions
were identified.

In the literature, truss geometry and topology
optimization remain unsolved. Thus, the purpose of
Chapter 1 is to develop a novel formulation to treat the
problem by mathematical programming.


