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Framework of Discrete Mechanics

1.1. Frames of reference and uniform motions

Any change in the position of a particle defined by its position x, at
time t, depends on the frame of reference in relation to which the
motion is observed. As no absolute rest state exists, it is possible to
choose an inertial frame of reference, wherein a body remains at rest or
animated with uniform rectilinear motion when not subjected to any
external force. In view of the principle of relativity, the physical laws
take the same form in all inertial frames of reference. This principle
holds true for velocity values which are much lesser than the speed of
light. Herein, we shall not take account of the relativistic effects, and
our discussion fits into the context of mechanics at moderate velocities,
far lesser than the celerity of light. We are left with the fundamental
principles of restricted (special) relativity theory or of general relativity
in the presence of gravitational forces, which apply for all velocity
levels.

The case of a uniform rotational motion is similar in nature: an
observer at rest in the rotating frame of reference is subject to a
centripetal force which is equal and opposite to the centrifugal force
deriving from a scalar potential Φ = ρ/2 (Ω× r)2, where Ω is the
constant speed of rotation of the frame of reference.

A uniform rectilinear motion “eludes” definition by the law of
Mechanics; the acceleration is zero and the sum of the forces at work is
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2 Discrete Mechanics

also null. In the presence of an external force, such as constant gravity,
an observer is at rest in a frame of reference linked to the Earth when a
different force is exerted upon him/her – in this case, the gravitational
pull of the ground; the body forces, in this scenario, derive from a
scalar potential Φ. The fundamental law of dynamics therefore
becomes −∇Φ+ ρ g = 0, which is the equation of static of fluids.

In both cases, the acceleration due to gravity and the centripetal
acceleration are compensated by the gradient of a scalar potential. If
the corresponding forces could no longer be described on the basis of
true potentials, the medium would be subject to acceleration, and
therefore would lose the state of relative rest. These two examples
illustrate that forces which derive from a scalar potential do not give
rise to motion: they simply contribute to a modification of the
definition of the potential. The Hodge–Helmholtz decomposition,
which separates the two components of a vector into a gradient of
scalar potential and a rotational of a vector potential, suggests that for a
medium at rest, the acceleration vector is null, and therefore, with the
exception of the sign, the gradient of the scalar potential is equal to the
rotational of the vector potential. The Hodge–Helmholtz theorem
predicts, for a simply-connected domain, that a field such that
∇a = ∇ × b is a constant. This constant is, simultaneously, the
gradient of a scalar potential and the rotational of a vector potential; it
is a harmonic field which corresponds to a decomposition into three
Hodge–Helmholtz terms. Generally speaking, the third term Vh is
practically impossible to extract directly, and its existence probably
needs to be linked to the uniform motions.

A constant introduced on the right-hand side of the motion balance
equation can be interpreted as a gradient of a scalar potential, or as the
rotational of a vector potential; in both cases, all that changes is
the definition of the existing potentials. The directional aspect of the
gradient operator suggests that the uniform rectilinear motions will be
carried by a scalar potential, whilst the uniform rotational motions will
be contained in a vector potential.

The Law of Dynamics formulated by Newton cannot be used to find
the uniform motions – be they rectilinear or rotational. The model of
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the physical phenomena constructed here in order to take account of
the numerous effects observed for a continuum – e.g. viscosity,
capillarity, rotation, dissipation, etc. – will therefore not take account
of these uniform motions. However, if they are present, it is essential
that they do not give rise to any artifact for the model; such is the case
of the rotational motion, which must be prevented from engendering
mechanical dissipation. Note that, at a small timescale, a uniform
rotational motion can be considered to be a uniform rectilinear motion.

If we cannot find out the acceleration, why then are we interested
in the position of a point of the medium as a function of time? In any
case, our knowledge of the particle’s absolute position at a later moment
in time will be altered by errors, because we can always superimpose a
uniform velocity fieldV′ to calculate it using the formula x = xo+(V+
V′) dt. In solid mechanics, the problem can be resolved by adopting a
Lagrangian approach using a reference state. As for fluid mechanics,
where we are only interested in the velocities and their variations, the
question simply does not arise. A more unified approach to mechanics –
both fluid and solid – would lead us to consider only the velocities; the
displacements would then be deduced by an incremental process based
on the evolution from one state of mechanical equilibrium to another.

Another important question merits particular attention: do we
actually need a frame of reference? If we consider that the velocity is a
vector W, then it is necessary to perform elementary operations such
as the scalar product, which uses the components of the vector. In this
case, we introduce a frame of reference anchored to a given system of
coordinates. If we now consider that the velocity is an oriented scalar,
following a fixed direction Γ, it can be considered either as a new
vector V = (W · t) t or as a scalar V = (W · t), where t is the unit
vector over Γ. Evidently, merely knowing V and t is insufficient to
find the local vector W, but is it really necessary to do so? If we
replace the scalar product with a geometric projection, and differential
geometry can be used to write all the operators on the basis of the
components of V alone, then knowing the velocity vector W is no
longer useful, in the same way as a frame of reference is no longer
needed. It is the concept of a continuum, where all the values are
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defined at a single point, which creates the need for a frame of
reference. Certainly, the lengths, surface areas, volumes, normals, etc.
of the topologies need to be known, and therefore calculated
previously, in order to be able to apply the differential operators.

Based on this observation, it is possible to do away with the notion
of a vector and that of a tensor, instead using the concept of a
component associated with elementary topology – that of the oriented
bipoint. Hence, by simply knowing the scalars V on all of the oriented
edges Γ, we are able to define a motion on a discrete topology made up
of edges and points. The aim of Discrete Mechanics is to construct
physical models on that basis. To find the starting point for this theory,
we need to go back to the primary form of the fundamental law of
dynamics formulated by Newton.

It is no easy task to reconstruct the velocity W; it is a free vector,
whose definition is linked to the chosen topology – polygonal or
polyhedral – and depends on the number of sides or faces which make
it up. For example, we could construct a vector associated with the
barycenter of the polygon or the polyhedron, but there are other
choices that could judiciously be made. Thankfully, most of the
necessary operations can be performed simply with the components V
on the oriented edges Γ. For example, the rotational over a flat surface
made up of oriented edges of the vector W will be calculated as the
circulation of its components V on the edge Γ using the Stokes
theorem. The other operators – the gradient, the divergence, the primal
and dual rotationals, etc. will be defined in a similar manner on
similarly oriented flat surfaces or portions thereof.

1.2. Concept of a Discrete Medium

The “Discrete Mechanics” developed in this book offers a very
different approach to that of Continuum Mechanics. It involves a
differentiated consideration of different types of objects: points,
oriented edges, oriented surfaces and volumes.

Figure 1.1 illustrates a control volume Ω comprising points, edges
and surfaces. If it is necessary to adjust the volume Ω to tend toward
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zero, then the transformation applied to all the different elements will be
the same. The reduction of the volume toward zero will be homothetic,
and the resulting object will be similar to the original at all intermediary
scales.

The application of this concept is subject to the same restriction as
is that relating to Continuum Mechanics: the discrete conservation
equations are valid only provided the length of each edge is greater
than the mean free path of the molecules.

Figure 1.1. In Continuum Mechanics, an elementary volume is reduced to a
single point, and that point needs to be anchored within a fixed and absolute
frame of reference; in Discrete Mechanics, the directions are also preserved

when we look at the topology, regardless of the scale

Thus, the microscopic structure of the material (in terms of
molecules, atoms, etc.) can be ignored. The term “discrete” used
throughout this book refers to the topology of the reference volume,
made up of points, edges, surfaces and volumes. The formulation given
below is formal, and in no case refers to the numerical methods used to
discretize the space into elementary volumes.

Thus, let us consider the elementary topology used in Discrete
Mechanics (see Figure 1.2). It is composed of two points connected by
an edge, and a volume around a point, which we call the dual volume.
The segment is oriented arbitrarily, and the dual volume has an outer
normal. The set of edges connecting all the corners (or nodes) of the
same surface is called the primal topology.

No condition is fixed to define the elements of the elementary
topology: the edges may be curvilinear, and the dual surfaces
themselves can have any form at all. However, if we consider that the
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dimensions of the object in question tend toward zero, the elements of
the primal surface are, essentially, flat surfaces. When the primal
surface is made up of more than three points, it can always be
subdivided into triangles. As the theorems of differential geometry are
applicable for all types of surfaces, the applicability of the method
presented herein is not limited by these geometric aspects. This
approach theoretically formalizes the concept introduced by Harlow
and Welch about the localization of the unknowns on a Cartesian
primal topology [HAR 65]. The spirit of Harlow and Welch’s
publication is similar to the work of Tonti [TON 13], who questions the
necessity of numerically discretizing the physical equations to show a
direct link between the physical model and an algebraic description.

Figure 1.2. Definition of the elementary topology: points connected
by edges and a dual volume

1.2.1. Vectors and components

In mathematics, the notion of a vector is clearly defined, using a base.
From the physical point of view, the notion of a vector is somewhat
trickier to fully comprehend, because it cannot be measured directly –
for instance, we cannot measure its components in prevailing directions
by using Laser Doppler Anemometry. By reconstructing a particular
vector, we actually find a set, or field, of vectors, applicable in three-
dimensional space.

Now, the question becomes whether knowing a vector’s
components alone will enable us to circumvent the process of
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reconstructing it to directly access the laws of mechanics. If we let W
represent the velocity, its component in the direction δ of unitary vector
t will be V = (W · t) t is also a vector. The whole of Discrete
Mechanics is based on this concept. The velocity remains undefined;
only the components are defined on each edge of the primal topology.

Figure 1.3 illustrates all of the notations which will be used later on.

Figure 1.3. Definition of the physical system

The symbols and notations given in Figure 1.3 have the following
meanings:

– W = u e1 + v e2 + w e3 the velocity vector in an orthonormal
Cartesian system;

– P = ϕ1e1+ϕ2e2+ϕ3e3 the heat flux in an orthonormal Cartesian
system;

– t, the unit vector carried by δ;

– m, the unit vector in M normal to the plane A;

– n, the outward unit vector normal to the surface of the dual
topology;

– V = (W · t) t, the velocity vector projected along the δ axis;

– Φ = (P · t) t, the heat flux vector projected along the δ axis;

– U = dtV, the displacement vector projected along the Δ axis;

– P and R, the nodes delimiting the edges;

– Γ = [P R], the edge carried by δ;

– f , the vector representing the forces outside of the volume;

– p, the pressure on the nodes of the primal topology;
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– T , the temperature on the nodes of the primal topology;

– ω, the rotational vector of the velocity vector on the primal
boundary Γ + Γ′;

– ω = μ∇×V, the vector potential of the quantity of acceleration;

– Ω, the volume of the dual topology around the point P ;

– S , the surface of the dual topology around P ;

– A, the surface of the primal topology with the boundary Γ + Γ′.

Consider a line δ in space and an oriented edge Γ, defined by its
endpoints P and R - two points on the line Δ. That line may be straight,
as shown in Figure 1.3, or curved. The unit vector t carried by δ in
oriented in the same direction as Γ. It is on that edge that the equilibrium
between the various mechanical actions will be expressed.

The primal topology is constructed on the basis of other curvilinear
or rectilinear edges Γ′ with the endpoints P and R. The boundary Γ+Γ′

is closed and defines a surface which is not necessarily flat A, which
itself is oriented, with the normal m, which enable us to calculate the
rotational of a vector.

The dual topology, which is not represented here, around the point
P defines a closed surface S whose outward normal is n. The volume
associated with R has the same portion of surface as the point P ; this
curvilinear or faceted surface can be used to calculate the fluxes
exchanged between the points P and R.

1.2.2. Physical meaning of the differential operators

The primal and dual discrete topologies are constructed around a
physical system, with the volume Ω and surface Σ. The choice adopted
is to make the primal topology coincide with the surface of the system;
this strategy enables us to simply define the scalar potential with a
point on the surface. The presentation of the differential operators may
be greatly different depending on the degree of formalization of the
differential geometry [MAR 02]. The succinct and non-exhaustive
presentation given here is based on a simple physical approach which
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allows us to define the operators associated with the switch from one
topology to another, on the basis of scalar or vectorial information. It
should be remembered that although the classic notion of a continuum
has been set aside, the material is a continuum where the directions of
the edges and of the normal to the surfaces are also preserved at all
scales of observation.

Gradient of a scalar

The gradient operator applied to a scalar p, ∇p, represents the
difference of that scalar over a distance δ in a given direction. Unlike
with the concept of Continuum Mechanics, the gradient vector defined
here has only one component, assigned as a scalar to the edge Γ. The
gradient of a scalar in the space has no meaning – it is an illegal
operation in Discrete Mechanics. The gradient is calculated solely on a
bipoint PR linked by an edge.

Primal rotational of a vector

The primal rotational of a vector W, ∇p ×W, is associated with
the circulation of its components V over all the edges Γ constituting the
primal boundary. It is represented by a vector n orthogonal to the primal
surface. This surface is considered to be flat. This apparent restriction
disappears as the surface area ds tends toward zero; however, it will
remain a condition for the application of the theorems of differential
geometry in particular context discussed here.

Divergence of a vector

The divergence represents the flux of a vector W, ∇ ·W, across
all the facets of the dual surface. The scalar obtained as assigned to the
single point inside the dual volume. The flux is calculated on the basis
of the components V on the edges Γ of the vector itself. If the vector
W is a rotational, calculated as the circulation of another vector on each
primal boundary, then the divergence will be strictly null.
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Dual rotational of a vector

The dual rotational of a vector W, ∇d ×W, physically represents
the flux of the vector W across that portion of the dual surface
associated with the edge Γ. This flux is calculated using the circulation
of the vector, or rather, of its components, on the boundary delimiting
the dual portion which, in general, is not flat. The result of this
operation is assigned to the edge Γ as a vector or an oriented scalar, if
necessary.

1.2.3. Use of the theorems of differential geometry

The velocity W is defined in relation to an orthonormal basis
(e1, e2, e3) composed by unit vectors in each of the spatial directions.
The essential point in the description of the mechanical motion given
in the coming chapters is that it is not necessary to consider the
velocity vector W in itself, and therefore it is possible to discount the
orthonormal Cartesian frame of reference needed to define it. Only its
component V = (W · t) t on the edge Γ will be used to describe the
motion. On the basis of the various components, it is possible to
determine the vector W in an appropriate frame of reference.

Figure 1.4. Stokes theorem on the edge Γ

Indeed, the operators of differential geometry ∇, ∇·, ∇× are
invariant when the base changes. It is therefore possible to carry out a
certain number of transformations based on knowledge of the
components only. Take, for example, the calculation of the rotational of
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the vector W based on Stokes’ theorem (equation [1.1]):∫∫
A
∇×W ·m ds =

∫
Γ
W · t dl =

∫
Γ
V · t dl

=

∫∫
A
∇×V ·m ds [1.1]

The vectors W and V have the same rotational ω = ∇ ×W =
∇×V. The discrete rotational is defined by:

∇×V =
1

[A]

∫
Γ
V · t dl [1.2]

where [A] is the measurement of the curved surface A.

Similarly, the divergence theorem is based on the projection of the
vector W along the normal to the oriented surface S :∫∫∫

V
∇ ·W dv =

∫∫
S
W · n ds [1.3]

and the discrete divergence is defined as

∇ ·W =
1

[V ]

∫∫
S
W · n ds [1.4]

where [V ] is the measurement of the dual volume V . In this case, the
flux of the vector W will be written on the basis of the components V
on all of the portions of the dual surface S associated with each segment
Γ around the point P .

Finally, the discrete gradient of a scalar value p is calculated very
simply over the edge Γ by way of the relation:

∇p =
1

[L]

∫
Γ
∇p dl [1.5]
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where [L] is the distance PR. Hereafter, this gradient will be assumed
to be constant along the entire length of the edge Γ, giving us:

(pR − pP ) =
1

L

∫ R

P
d p dl =

∫
Γ
∇p · t dl [1.6]

There is an important difference which exists in the use of the
Stokes and Green-Ostrogradski theorems; in the current context, the
gradient- and rotational operators are the only ones capable of
describing mechanical equilibrium. The divergence operator is
secondary in this context, and can be used to calculate the fluxes so as
to then return the values of the scalar variables. This distinction is
already present in the Hodge–Helmholtz decomposition, because that
formula can be used to decompose any vector into a gradient and a
rotational.

It will be necessary to define the momentum vector ρV along the
edge. We shall suppose that the density along the edge is a constant ρ:

ρ =
1

[L]

∫
L
ρ dl [1.7]

and that the component V is also constant along the edge; the
momentum can be written interchangeably as ρV = ρV = ρ V. It is
possible to theoretically calculate the exact value of ρ for a
conservation of momentum in the context of a non-conservative
formulation of the motion balance equations.

The body forces are represented by their volumetric density f . Their
effects on the motion are perceived by way of the projection f · t. These
forces can be associated with a scalar potential such as g = ∇φ, as
with gravity for a constant density, for instance, or indeed with a vector
potential; generally speaking, they will have both components.

1.2.4. Two essential properties

The circulation of a vector on a boundary or the flux over a surface
are concepts which have been extended to apply to the material point.
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Hence, the properties ∇ × ∇p = 0 and ∇ · ∇ ×V = 0 are supposed
to be satisfied in the continuum formulation. However, a contour or a
surface cannot be reduced to a point, and it is only by extension that
these concepts can be used in the context of a continuum. In Discrete
Mechanics, the topologies can be reduced but, whatever the scale, they
remain homothetic to the original geometries, and the local rotational
can be defined, if necessary, as the extension of the discrete rotational.
The same is true for the flux density over the dual topology.

Figure 1.5. Property 1: the rotational of a gradient is null on the primal
topology. This property is verified on all types of topologies: polygons and

polyhedrons with any number of faces

Figure 1.5 shows a primal topology, over which it is possible to
calculate the circulation of the velocity vector W, which is also the
circulation of its components V along the boundary Γ.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ b

a
∇p · t dl = pb − pa∫

Γ
∇p · t dl = 0∫∫
S
∇× (∇p

) · n ds = 0

∇h ×
(∇h p

)
= 0

[1.8]

The calculation of the circulation of the vector ∇p along a closed
path Γ is given by the system of equations [1.8]. Here, p is a simple
scalar, and irrespective of the function chosen, the result is the same.
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Regardless of the primal topology that is chosen, the rotational of the
vector∇p is always equal to zero. On the closed path, each contribution
of p to the circulation is used twice, with opposite signs.

The second property∇·∇×V = 0, applicable over the whole of the
dual topology, is illustrated by Figure 1.6. The global flux is calculated
on all of the facets:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

Γi =

n∑
i=1

∫∫
s
∇×V · n ds = 0

∫∫
S

(∇×V
) · n ds = 0∫∫∫

V
∇ · (∇×V

)
ds = 0

∇h ·
(∇h ×V

)
= 0

[1.9]

As each edge is used twice with opposite directions of travel, its net
contribution is null, as is shown by the relations in system [1.9].

Figure 1.6. Property 2: the divergence of a rotational is null over the dual
topology. This property is verified on all types of topologies: polygons and

polyhedrons with any number of faces

The two rotationals of the relations∇p×∇p = 0 and∇·∇d×V = 0
are not defined on the same topology. For the rotational applied to the
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gradient, it is the primal rotational; for the second, it corresponds to the
dual rotational applied to the flux of the primal rotational.

These properties [1.8] and [1.9] are obtained by construction of the
operators which apply to values that are localized in a unique manner:
the scalars at the points and the components of the vectors on the edges
connecting two points. The gradient operator is, naturally, calculated
using values at the extremities of the bipoint, and assigned to the
corresponding edge. The primal rotational is defined on the faces
which are supposed to be flat, so the rotational vector is represented by
a vector which is normal to the face in question. The dual rotational
defined on the edge is calculated on the basis of the fluxes over the
facets of the primal topology. The divergence of the vector V
calculated on the dual topology is assigned to the point P .

The example given in Figure 1.7 clearly illustrates the advantage to
using a formulation which respects these two properties. It is a planar,
rectilinear, uniform motion which cannot give rise to any gradient of
a scalar potential p or any rotational of a vector potential ω. Here, the
topology is based on a pattern of regular triangles. The initial solution
corresponds to a state of rest where all the components V are zero.
A constant flow rate is imposed on the left-hand wall of the domain.
As the medium is considered to be incompressible (∇ · V = 0), the
solution is obtained instantly in the form of values for the components
such that V = V0 t, where V0 represents the imposed velocity and t
the unit vector carried by each edge. The scalar potential p is null, as
is the rotational ∇ × V. Any reconstruction of the velocity vector W
would give W = V0 ex; the motion is indeed rectilinear and uniform,
everywhere. This result can be obtained with any topology made up of
polygons or polyhedra.

The stream lines shown in Figure 1.7 do correspond to the motion
we are looking for. It is easy to see that the superposition of that motion
on any other motion will have no effect whatsoever on the values of the
potential fields of the latter. If a field deriving from a scalar potential
were added, the motion would not be altered.
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Figure 1.7. Uniform rectilinear plane flow: stream lines in a
triangle-based primal topology: the components of the velocity along each

edge are such that V = V0 t, exactly

Similarly, a motion of uniform rotation superposed upon any other
will not modify the latter, provided an appropriate potential is added to
the existing scalar potential. Consider the case of the primal topology
shown in Figure 1.8, where a medium which is initially at rest is
gradually caused to rotate, maintaining the velocity of the surface of
the outer circle at Vθ = Ω0 R, where Vθ is the imposed velocity and R
the radius of the circle. The momentum transfer due to the viscous
effects leads the system to reach a state of uniform rotation.

Figure 1.8. Uniform rotational flow: stream lines in a triangle-based primal
topology: the velocity components on each edge are such that V = Ω0 r t

The steady-state solution to the problem obtained on the basis of the
discrete equations corresponds to a polar velocity equal to V = Ω0 r t,
and constant rotational ∇ ×V = 2 Ω0 and a pressure field defined by
the potential φ = −ρ (

Ω × r
)2
/2, such that ∇(p + φ) is zero. In the



Framework of Discrete Mechanics 17

moving frame of reference whose axis is orthogonal to the plane of the
cylinder, the system would be in a state of rest.

The two uniform motions, rectilinear and rotational, do not lead to
precisely the same conclusions; whilst for the rectilinear motion, the
scalar potential is null, in the case of uniform rotation we find a scalar
potential, created by the centrifugal effects. However, the viscous effects
are null in both cases. This suggests that we can add the gradient of any
function without giving rise to permanent motion.

It could be said that the two properties ∇p × ∇p = 0 and
∇ · ∇d × V = 0 mimic the properties applied to continua. More
seriously, we can say that the properties assigned to the continuum are
the result of reaching the system’s limit; for example, the rotational
only has meaning if we are able to previously calculate the circulation
in a plane along a path of finite length.

1.2.5. Tensorial values

The notion of a tensor is needed here, when we wish to combine the
variations of the same property into a single point in the direction of
observation. In that the direction of observation Δ is fixed, the various
values, mechanical properties, stresses, etc. will be simple scalars or
vectors oriented along Γ. Certain materials have tensorial properties
such as heat conductivity, permeability, certain mechanical properties,
etc., such as the components of the heat flux, of the displacement or the
velocity, the tensorial values will be carried by the edge Γ by
projection.

Consider, for example, the case of diffusion of the heat flux Φ in an
anisotropic material. The matrix Λ representing the heat conductivity
tensor can be diagonalized, and its eigenvectors define the principal
directions of the tensor Λ; in its principal basis, the matrix is diagonal
λ = (λ1, λ2, λ3).

The flux carried by the edge t can, formally, be written Φ · t =
−k (TR−TP )/L, where k is the scalar representing the conductivity on
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the edge and (TR−TP )/L the discrete gradient. Hence, we can identify
the heat flux in direction t and calculate the value of k:

k = λ · t [1.10]

where in this case, t is represented on the principal basis. This property
will be constant along the entire length of the edge.

It should be noted that any value taken by the oriented edge of unit
vector t, can interchangeably be written as a scalar which is constant
along the whole length of the edge, or as an oriented vector.

The behavioral laws, the constitutive laws, the state laws, etc., are
only necessary to describe the behavior of a medium, be it fluid or
solid, as a function of certain scalar or vectorial variables such as the
temperature, pressure, mechanical stress, etc. If the properties of the
medium are variable as a function of the direction, as is the case with
anisotropic media, it may be advantageous to describe its behavior
using a symmetrical tensor to simulate that direction, and enable us to
calculate the stress in any given direction. However, the tensor is
defined by a base, which is generally orthonormal, and it is there that
the problem lies. The very general nature of this approach also
introduces a certain number of difficulties which need to be overcome
in other ways – notably by way of the principle of material frame
indifference, for example. These tensorial properties are then
introduced into the conservation laws.

The six independent coefficients of the Cauchy stress tensor,
defined at a single point, are expressed on the basis of the velocity or
the displacement to give the 81 coefficients of the elasticity tensor
corresponding to the stress/strain relation given by Hooke’s law. For an
isotropic medium, these are reduced to two coefficients: the Lamé
coefficients, which do not have the same degree of representativeness
in fluids and solids.

This strong link between the constitutive laws and the conservation
laws can be broken without adversely affecting the representativeness
of the model constructed on the basis of the fundamental law of
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dynamics. The anisotropy of the medium, just like its inhomogeneity,
has no direct influence on the model. The physical properties,
including the viscosity attributed to the primal surface and the
compressibility coefficient defined at the endpoints of each edge, are
dependent on scalar variables such as pressure, temperature or density,
or of vectorial variables such as the vector potential. The way in which
we deal with anisotropy is similar to the approach for inhomogeneity:
the viscosity is defined per plane and compressibility per point, and
their values are variable in space and, of course, over time.

1.2.6. The scalar and vectorial potentials

The physical values adopted to describe the evolutions of the
physical system are:

– the vectorial variables located on the direction edge of unit vector
t; for example, the velocity V, the displacement U, the heat flux Φ,
etc. are defined at the midpoint of the edge [PR]. These values will be
constant along the whole length of the edge;

– the scalar potentials of the stresses linked to the velocities,
displacements, fluxes, etc. located at the vertices of the primal topology.
These values are constant throughout the whole of the dual volume,
but are assigned to the point. The scalar values are entirely separate
variables such as the density ρ, the pressure p or the absolute
temperature T . They are defined at P and depend directly on the
vectorial variables which feed into them – the velocity V and the heat
flux Φ. When the mechanical effects associated with solid behaviors are
taken into account, we need to introduce the accumulator linked to the
shear ω.

The scalar potential p contains two terms: the accumulation potential
po corresponding to equilibrium, and its deviator, which represents all
the contributions liable to alter the pressure, the velocity, the flux, etc.
Similarly, the vector potential ω is the sum of an accumulator ωo and a
deviator, which is a function of the rotational and the velocity. All these
values will be defined below. It should be noted that the accumulation of
shear stresses is negligible in fluid media. However, by using the term
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ωo, we are able to represent the fluid and solid behaviors in a continuous
manner, and describe complex rheological behaviors.

Depending on the physics we are looking at, many other variables
can be defined, but for reasons of clarity, our presentation here will be
limited to the mechanical effects of viscosity and elasticity. The
pressure used in these examples will be the thermodynamic pressure
corresponding to mechanical equilibrium, which is written as po. In
order to describe the effects of compression it will be necessary to take
account of the thermodynamic and thermal evolution of the system.
These aspects are described in this author’s previous publication on
Discrete Mechanics [CAL 13a].

The values which we shall call potentials (ρ, p, T,ω) will be updated
as a function of the fluxes of matter and heat. For example, the density of
a fluid contained in a non-deformable envelope will increase over time
as a function of the degree of momentum ρV injected. These values
therefore appear in the form of accumulators, fed back by the divergence
of the influx and outflux into/out of the dual volume across the dual
surface S . The vectorial accumulator ω is updated on the basis of the
rotational of the displacement ∇×U = dt∇×V.

These physical properties defined at point P are variables, taken
from the conservation balances, but cannot be found by solving
equations. The scalar conservation laws merely serve to feed back
these properties into the values necessary to express mechanical
equilibrium. In the Lagrangian approach adopted here, we consider
that the initial equilibrium at time t, defined by the values
(ρo, po, T o,ωo) and described by the vectorial equations on the fluxes,
can be broken by a number of causes (sources, boundary conditions,
evolution over time, etc.) and the system will evolve to reach a
different state of equilibrium at time t+ dt.

1.3. The physical characteristics

The continuum hypothesis is associated with the notion of
assignment to the point P of any and all variables – be they scalar,
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vectorial or tensorial – defined in a finite control volume surrounding
the point in question. For instance, the mean density is the volumetric
mean, calculated for the volume:

ρ =
1

[V ]

∫∫∫
Ω
ρ dv [1.11]

The continuum hypothesis reduces the volume to a single point, by
adopting ρ = ρ. Whilst this hypothesis poses no difficulty for a scalar,
its application to vectorial or tensorial values eliminates all concept of
direction. To define a vector in the space, therefore, it will be necessary
to create a base upon which to express its three components. Worse still,
in order to preserve the vectors over an oriented surface, it is necessary
to resort to a tensorial form to express the scalar product and obtain the
vector we seek for a given direction.

In linear elasticity, the Lamé mechanical coefficients – λ, the
compression viscosity coefficient, and μ, the shear viscosity
coefficient – are linked by simple laws to measurable values: Young’s
modulus E and the Poisson coefficient σ. Whilst the coefficient λ has a
definite physical meaning in a solid material, the same is not true for
fluids. Measuring λ (generally by ultrasounds) yields results which are
highly disparate, and dependent on the working method. Discrete
Mechanics [CAL 13a] shows that the single physical coefficient, linked
to the effects of undeniable compression, is the compressibility
coefficient, which is easily measurable both in fluids and solids.

In Discrete Mechanics, the physical properties of the media are
simple coefficients whose values need to be known. Unlike in
Continuum Mechanics, there is no particular formalization of these
coefficients that can prove a constitutive law. The state laws, the
phenomenological relations, the rheology of the fluid or solid media
may yield specific formalizations, but these do not enter directly into
the establishment of the conservation equations.

The scalar values will be defined at the point P , which is one of the
endpoints of the edge Γ. They could include the thermodynamic
properties such as the compressibility coefficient of the material χT , its
coefficient of thermal expansion β, its specific heats, at constant
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pressure or constant volume, cp or cv, etc. Other values are defined on
the edge Γ, including the heat conductivity k, the permeability K, etc.
They will be considered constant along the whole length of the edge.
Finally, the viscosity of the medium μ makes sense only when it is
associated with the primal surface, and is constant on that surface.

These properties do not depend primarily on the vectorial variables,
the velocity or the flux; they may, of course, depend on the scalar
values, the pressure, the temperature, etc. These physical
characteristics are known locally, and obtained independently by any
means (measurements, tables, laws, etc.).

1.4. Equilibrium stress state

Before giving an expression of the stress state, it is advisable to
define mechanical equilibrium. Mechanical equilibrium is obtained
when the law of dynamics is satisfied, ρ γ − f = 0 if f represents all
the volumetric forces applied to the system studied at time t. This
choice of the concept of equilibrium precludes all motions where
acceleration is null, the uniform rectilinear motion and the block
rotational motion. For the second case, the constant centrifugal
acceleration counterbalances the centripetal force; we shall see that the
case poses various problems for non-connected domains, which we
shall look at later on.

Any disturbance to this state of equilibrium due to modifications
made to one of the source terms, the boundary conditions, etc., will
lead to a change in the variable used – i.e. velocity or displacement –
which leads the system to a different state of equilibrium at time t+ dt,
for which we shall also have ρ γ − f = 0. What changes between the
two states of equilibrium is the residual stress state manifested by two
potentials – the equilibrium pressure po and the vector potential of the
acceleration ωo. Hence, for a state of mechanical equilibrium, the sum
of the relative contributions to these two values is null and the
acceleration is also null; the motion is limited to the cases discussed
above.
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The question that now arises is of the description of the residual state
of equilibrium (po,ωo); the dimension of ωo is also that of the pressure,
and we shall write the equilibrium stresses as (po,ωo).

Consider a medium at equilibrium Ω and divide it, by introducing the
surface S (see Figure 1.9), without the upper part, which is removed.
The problem is to define the stress state enabling us to maintain the
remaining part also in a state of equilibrium. The unit vector n is the
support for the forces of pressure applied at point P to the elementary
surface ds, i.e. dF = −pds. The separation between the pressure effects
and the viscous effects will be discussed later on, but we shall introduce
a formal separation of these two effects, which will be defined by the
two independent potentials.

Figure 1.9. Stress state at equilibrium for a medium
separated from its upper part

The shear stress applies to the surface S orthogonal to the vector n.
This does not mean that that support of the applied force is in the plane
of that surface. Such is the case for a rotation force which is exerted on
the medium in the plane and whose support is the normal to that plane
n. We then introduce the rotational operator∇×V to describe the local
rotation of the medium. That rotation can be calculated on the basis of
the circulation of V along the boundary Γ surrounding the surface ds. It
is still necessary that the boundary be able to be defined, which requires
that its length be finite, along with the surface ds, in order to be able to
calculate the rotational.
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Here, we can see what could be a difficulty linked to the
multidimensional nature of the operator ∇ × V: it only exists in one
direction. Thus, the concept of a rotational for a material point is
meaningless; this operator is always attached to a surface whose
normal is clearly defined.

The notion of the shear stress of the medium in only introduced by
the spatial variation over S of the local rotational. It is no longer
necessary to refer to a fixed system of coordinates – the direction of the
normal to the plane is enough to take care of the forces of pressure and
shear.

The rotation/shear stress will be calculated on the basis of the
rotational of the velocity and a coefficient which will depend on the
nature of the medium; it will be assumed to be constant over the
surface ds. This coefficient, which will be written as μ, will be called
the rotational viscosity, and its existence is linked to the first Lamé
coefficient of the medium.

The pressure stress Tp and the rotation/shear stress written as Tv,
local and instantaneous, will therefore be written as:{

Tp = −p n
Tv = −μ∇×V

[1.12]

It should be noted that po and ωo are the stresses are time t, where
all the forces applied before that instant are “remembered”. The
formalism presented here enables us to take account of the entire
history of the medium, i.e. its evolution over time from an initial
neutral state. For a given instantaneous state of strain, there may be
multiple paths by which that state can be reached, and (po,ωo) will,
alone, contain the whole of the medium’s history. It is not helpful to
know the local and instantaneous stresses, in that these two potentials
will have accumulated stresses over time. These potential can therefore
be used to take account of the behavior of media with continuous
memory.
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It is not necessary to define a total stress To including the effects of
pressure and those of shear/rotation. However, if it were necessary to do
so, we would write:

To = −po n+ ωo [1.13]

The influences of pressure and of shear stress are thus represented by
forces with the same carrier: the normal to the plane S . It is therefore
no longer essential to use a tensorial value – the Cauchy stress tensor
used in Continuum Mechanics – to describe a local stress applied in the
direction normal to a face in a given direction.

1.4.1. Two examples of mechanical equilibrium

Consider an example of a steady-state flow (see Figure 1.10)
engendered by the animation of two parallel horizontal walls at
velocity Vo. The pressure is constant throughout the domain in
question. The motion corresponds to a constant shear stress, and can be
characterized as a row of co-rotating vortices throughout the thickness
of the fluid layer.

�

�

� �

� � � �

� �

Figure 1.10. Couette flow engendered by a row of vortices animated by a
stress applied in the direction orthogonal to the plane

The combination of these vortices gives rise to a so-called Couette
flow, where the vertical velocity component is zero and its axial
component is equal to u(y) ∝ y. The vector potential is constant and
equal to ωo = μ∇×V.

The case of a Poiseuille flow (see Figure 1.11) can also be
interpreted as the superposition of vortices caused by rotational
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stresses along the axes orthogonal to the plane (x, y) of the domain in
question. The intensity of the vortices is a linear function of y.

In this example, the pressure stress is not constant, and we can show
that mechanical equilibrium represents one solution in terms of the
linear pressure p(x) ∝ x.
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Figure 1.11. Poiseuille flow defined by a set of rotational stresses whose
intensities vary with the y value

As these two examples illustrate, the variation of the local rotational
stress may give rise to a shear stress; thus, the solution to the problem
at hand needs to take account of the imposed boundary conditions. The
derivation of the motion balance equation is established on the basis of
the concept of local stress, pressure and viscosity. The physical meaning
of the rotational operator associated with the viscosity μ suggests the
possibility of representing the effects of viscosity in the motion balance
equation for any given motions.

1.5. Thermodynamic non-equilibrium

In order to prevent the confusion which results from the typical
jargon employed in each discipline, it must be understood that local
non-equilibrium as defined here is not the same as the local
non-equilibrium encountered in molecular physics ([CHA 99]). For our
purposes, the material is always considered to be a continuum, so that
we can make use of the concepts of pressure, density and local
temperature. The length of the edge d of Γ is greater than the mean free
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path of the molecules l, d >> l. Hence, we can see the advantage
inherent in looking at edges instead of points, as is done in Continuum
Mechanics.

Local Thermodynamic Equilibrium (LTE) is generally used to
describe the relationship which exists between the traditional
thermodynamic variables, such as pressure, temperature or density, for
a divariant fluid. This relation is called the state law, and if we limit the
variables to those already given, it can be expressed in the form
f(ρ, p, T ) = 0, where p and T are the thermodynamic pressure and the
thermodynamic temperature.

Although no principle exists which explicitly links these potentials,
the state laws are commonly used for simplicity’s sake. Only the
thermodynamic coefficients have an undeniable reality – the
compressibility coefficient χT , the dilatation coefficient β, etc. There is
no reason why they could not easily be deduced using a law, but under
no circumstances can these laws constitute a closure of the
conservation equations. As we shall see, each conservation equation
has its own potential, and the state law is not needed to bring closure to
the system. Indeed, direct use of the state law can even negate the
conservation of the various values – particularly the conservation of
mass.

Hence, when establishing the discrete equations for Discrete
Mechanics, we shall not invoke this hypothesis; only the
thermophysical property values which have an incontestable meaning
will be used.

Discrete Mechanics is based on the fact that the equations found
using this approach describe mechanical equilibrium. We can define
the main vectorial values, which are the velocity V and the heat flux
vector Φ. These fluxes enter into the domain across its surface, with an
outward normal n. Any equation stemming from this theory describes
a state of equilibrium associated with the values of the equilibrium
potentials ρo, po, T o,ωo. If the equilibrium is broken because of the
alteration of one of the boundary conditions, one of the source terms,
etc. then the system of equations can re-establish mechanical
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equilibrium by an appropriate adaptation of the velocity, the flux, etc.
Symbolically, if an equation is written as

L(ρo, po, T o,ωo,Vo,Φo) = 0 [1.14]

then it is a state of mechanical equilibrium.

The equilibrium potentials (ρo, po, T o,ωo) are strictly independent,
and therefore cannot be connected by any state law. This assertion is,
of course, accepted when the time-constants of the phenomena are very
small (as is the case with shockwaves, explosions, etc.) but is generally
adopted here.

Figure 1.12 shows the diagram illustrating the Lagrangian evolution
of a system at equilibrium at time t and evolving toward a different
state of equilibrium at time t + dt. The choice of the symbol dt to
represent the time difference may be surprising for some, but it is
neither a characteristic time (which could have been written as τ in a
physical approach to denote changes of scale) nor a numerically-based
time-lag (which would be written as Δt), used for simulations as an
increment of time. Thus, it is the time taken to evolve from one state of
equilibrium to another, and the symbol employed here is that which is
used to write the material derivative. The discrete approach developed
here can be extended to the notion of time; only the state of
equilibrium at time to and the instantaneous state t can be used to
quantify the variables involved in the system. Between these two times,
the values of these variables are unknown, as are the physical
properties of the medium. This is, at once, a handicap (because this
incremental process is linked to the observation time-constant dt) and
an advantage, in that the history of the medium’s evolution is contained
in the potentials po and ωo. They express the stresses undergone by the
medium throughout its entire history of evolution, or in other words,
they contain the medium’s memory.

Over the course of the system’s evolution between time t and time
t + dt, the potentials will evolve from ρ to ρ + dρ, from p to p + dp,
from T to T + dT and from ω to ω + dω. The new state will be a state
of mechanical equilibrium if the equation is exactly satisfied.
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Figure 1.12. Definition of the physical system and observation of that system
between two states of mechanical equilibrium t and t+ dt

At no time will the state law be invoked; there is no reason for
thermodynamic equilibrium to be verified at all times, locally. The
system is closed by the density, which is recovered for the conservation
of mass equation, whilst the pressure and the vector potential ω are
raised by the momentum conservation equation and the temperature by
the heat flux conservation equation.

It should be noted that whilst the properties of the materials, the
coefficients and the transport properties, all influence the solution, they
have no implicit structural link to one another. They simply need to be
worked out on the basis of the potentials.

1.5.1. Forces and fluxes

Consider the system (Figure 1.12) at time t; this exhibits a state of
instantaneous equilibrium defined by the relation [1.14]. Vo and Φo are
the velocity flux and heat flux across the surface S of Ω. Within the
system, these fluxes are written as Vo and Φo. The potentials at that
moment in time are (ρo, po, T o) – density, pressure and temperature.

The material system will be followed in its motion between times
t and t + dt. The system will evolve as a function of the fluxes Vo

and Φo on the surface, but also because of the forces exerted within
the system itself: forces of pressure, of friction, body force density or
any other sources within the system. The system will evolve to reach a
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different state of equilibrium, which is also defined by the relation [1.14]
where the new potentials will be (ρ, p, T,ω). The fluxes of matter and
heat will also have evolved toward the values V and Φ calculated from
the material derivatives. To work back from this to find the temporal
evolutions of the potentials and fluxes, it will be necessary to perform
an Eulerian description, expressing the partial derivatives.

Traditionally, the thermodynamic variables used are scalar values:
temperature T , enthalpy h, internal energy e, entropy s, etc. There are
as many forms of conservation of energy as there are thermodynamic
potentials. The approach adopted here is different: it is the conservation
of heat flux Φ which will be preserved; the other scalars are merely
accumulators of energy. These scalar values will be a function of the
fluxes of matter and heat defined by V and Φ. Out of all these scalar
values, we shall choose the temperature T to quantify the evolutions of
the system’s energy.

The evolution of the system’s temperature is a function of the
divergence of the fluxes, ∇ · V and ∇ · Φ and of the various heat
sources (production) or mechanical sources (dissipation) introduced
into the domain.

Hence, for phenomena limited solely to the mechanical and thermal
effects, the only variables used are vectorial (V and Φ) and the only
accumulators are the potentials (ρ, p, T,ω). Finally, the associated
thermophysical characteristics (χT , β, cv, cp) and the transfer
coefficients (μ, k) may or may not depend solely on the potentials.

1.6. Conservation of mass

The conservation of mass for a closed domain which is tracked as
it moves yields a formula identical to the conservation law when we
consider a constant volume, also tracked, where we introduce the flux
of mass across its surface.

Here, we consider that the dual volume is constant over
time (Figure 1.12) and that the flux of mass across the boundary can be
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used to calculate the evolution of the mass for an open system:

d

dt

∫∫∫
Ω
ρ dv = −

∫∫
Σ
ρV · n ds [1.15]

so ∫∫∫
Ω

∂ρ

∂t
dv +

∫∫
Σ
ρV · n ds = 0 [1.16]

We then find∫∫∫
Ω

(
dρ

dt
+ ρ∇ ·V

)
dv = 0 [1.17]

Consider the local conservation of mass law:

dρ

dt
= −ρ∇ ·V [1.18]

This relation expresses that the local evolution of the density, when
we track the motion of a material point, is due only to the local
compressions or decompressions of any origin (be it mechanical,
thermal, mass, etc.).

Although the model is limited to the case of a pure fluid or a
homogeneous mixture or pseudo-fluid, it is possible to extend it to
apply to a multi-component mixture (see section 5.8). In this case, it is
necessary to know the velocities of each component Vi, so there are as
many motion balance equations as there are components in the
mixture. The reading is then taken on the basis of each partial density
ρi and the conservation of the total mass of the mixture is thus ensured
perfectly.

The density ρ is a potential accumulator of the flux of matter within
the dual volume; a positive fluid flow rate for the system across the
surface leads to a negative divergence of the velocity, and therefore an
increase in density.
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If ρo is the density in the equilibrium state at time t, we can calculate
the equilibrium density at time t+ dt by integrating the above law:

ρ = ρo e−dt∇·V [1.19]

considering∇ ·V to be constant throughout the time period dt. We can
view the calculation of ρ simply as the updating of the accumulator:

ρ = ρo − dt ρo ∇ ·V [1.20]

As we shall see, the conservation of mass law serves only to
calculate the Lagrangian evolution of the density; not to formulate a
pseudo-equation for the pressure. In no case can the density be
evaluated by way of a state equation: it depends solely on the velocity
divergence operator, and its variations with other variables –
particularly the temperature – are taken into account only through the
velocity.

In addition, the conservation of mass cannot be considered to be a
law associated with the conservation of motion: it is an integral part of
the conservation of motion, in the strongest possible since.
Thermodynamics has shown us the equivalence of the mechanical
energy and the heat, and relativistic mechanics introduced the link
between the mass and the mechanical energy. In the next chapter, on
conservation of momentum, we shall integrate the conservation of
mass law into the conservation of momentum law, whilst remaining in
the context of Newtonian mechanics.


