Symbolic Representation and Inference of
Regulatory Network Structures

Recent results have demonstrated the usefulness of symbolic approaches for
addressing various problems in systems biology. One of the fundamental challenges
in systems biology is the extraction of integrated signaling-transcriptional networks
from experimental data. In this chapter, we present a general logic-based framework,
called Abductive Regulatory Network Inference (ARNI), where we formalize the
network extraction problem as an abductive inference problem. A general logical
model is provided that integrates prior knowledge on molecular interactions and
other information for capturing signal-propagation principles and compatibility with
experimental data. Solutions to our abductive inference problem define
signed-directed networks that explain how genes are affected during the experiments.
Using in-silico datasets provided by the dialogue for reverse engineering assessments
and methods (DREAM)) consortium, we demonstrate the improved predictive power
and complexity of our inferred network topologies compared with those generated by
other non-symbolic inference approaches, showing the suitability of our approach for
computing complete realistic networks. We also explore how the improved
expressiveness together with the modularity and flexibility of the logic-based nature
of our approach can support automated scientific discovery where the validity of
hypothesized biological ideas can be examined and tested outside the laboratory.

1.1. Introduction: logical modeling and abductive inference in systems biology

Systems biology is generally concerned with developing formal models that aim
to describe the operation of various biological processes. Its study is based on the
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synthesis of a model or a theory from empirical experimental information. At the
cellular level, systems biology aims to build models that describe, at some level of
abstraction, the underlying operation of a cell at the genomic and/or protein level.
The central challenge is then how to choose an appropriate framework that would (1)
enable the construction of a model from experimental data and (2) empower such
models with a predictive capability for new information beyond the one used to
construct the model.

As in many cases of such scientific exploration, the choice of the framework
under which we formulate the model depends on the type of experimental data that is
available at the time of the development of the scientific model. In general, at the
initial stages of an investigation the available data is usually descriptive and
qualitative rather than quantitative. As such we set out to develop a first model, based
on some principles that we believe underlie the phenomena, where we are primarily
interested in capturing the overall and general interrelation between the concepts of
interest. It is then important to require a framework that is (1) high-level close to the
human description of the phenomena and thus close to the experimental language,
and (2) modular and flexible so that the models can easily be adapted to new
information and other changes that might come about.

Under these conditions and requirements for our language, a symbolic or logical
framework is particularly suitable. A logical scientific theory normally offers a
high-level declarative description that can be understood easily by the expert
experimental scientists that provide the experimental data. Logical models are also
highly modular where changes can often be isolated to parts of the model without the
need for an overall complete reformulation of the model. Furthermore, within a
logical approach we can employ abductive reasoning to help in the process of
building a theory from experimental data. Abductive reasoning is a formalization of
the explanatory scientific reasoning that is typically carried out by human scientists
when they think about the phenomena they are studying, either when they are trying
to understand their experimental findings, or when they are planning the next set of
experiments to help them improve their understanding of the phenomena.

Hence, in choosing a logical approach, we provide a framework that not only
responds well to the object level requirement of describing the phenomena, but also
to the meta level task of reasoning about the models developed thus far and deciding
on their further investigation through new experiments, or indeed new desirable
properties and principles that the model must adhere to. For molecular biology, logic
is particularly suited as, at least currently, in many cases the theoretical models and
experimentation of cell biology are developed following a rationale at the qualitative
rather than quantitative level. The nature of much of the experimental data is
descriptive with the aim to first understand the qualitative interrelations between the
various constituents and processes in the cell.
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In this chapter, we have developed a logical model of regulatory cell networks,
covering both transcriptional networks and upstream signaling regulatory networks.
We have implemented a qualitative model that is based on general biological
principles and which exploits current prior knowledge of molecular interactions that
are already known. The approach, called ARNI, for abductive inference of regulatory
networks, constructs causal signed-directed networks of interactions between genes
from high-throughput experimental data. These networks rely on the simple and
general underlying principles that signals from the environment propagate along
paths of protein interactions to reach the regulatory components of cells (i.e.
production of genes) and that genes are under the influence of multiple overlapping
inputs, which might be compatible or competitive to each other. The networks also
exhibit several important motifs including feedback loops (positive and negative),
which allow a gene to control its own expression, and feed-forward loops (coherent
or incoherent), whereby a gene has both direct and indirect connections to its target!.
Each of these motifs governs fundamental properties of the overall dynamic
behaviorof the network such as robustness, oscillations, memory and
bistability [ALO 07, YEG 04].

Our construction of regulatory networks relies on abductive reasoning as an
automated form of the scientific reasoning of rationalizing the high throughput
experimental data. Indeed, the problem of signaling network reconstruction naturally
maps to an abductive task. Specifically, (1) gene expression data constitutes the
experimental data; (2) the given (partial) knowledge is a logic-based theory
governing biological phenomena, as for instance the notions of gene regulation,
interactive potential; (3) biological constraints like sign consistency between
interacting gene expressions are captured via integrity constraints and (4) sentences
about unknown compatible and competitive gene regulations are the abducible
information that can be assumed to form a network. Thus, assuming the general
possible structure of signaling networks an abductive computation results in the
inference of possible signed-directed networks, in terms of compatible and
competitive gene regulations, that conform to the available experimental
observations.

As argued above, our logical approach offers a high-level declarative model with
suitable and increased expressiveness for the wide applicability to a variety of
signaling network problems and challenges. We demonstrate these properties of the
approach through a series of evaluation experiments that test the effectiveness of the
abductive networks and explore the expressiveness of the logical framework. We also
examine the usefulness of our abductive approach in the meta-level scientific
reasoning, as a scientific assistant and how this, together with the modularity of the

1 Feed forward loop motifs are either coherent, if the direct effect of the regulator is the same
at its net indirect effect, or incoherent otherwise.
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approach, can support the further development and improvement of the initially
constructed networks.

Our approach follows a series of works that rely on logical abduction for
addressing various problems in systems biology. Abduction has been used to
learn/revise metabolic pathways [RAY 10, TAM 06] and to hypothesize on the
function of genes [RAY 08, KIN 04]. Abductive reasoning is also used
in [TRA 09, LAZ 13] for meta-level reasoning over hypotheses but de-novo topology
inference is not considered in these existing contributions. More directly related to
our work is the approach in [PAP 05], which uses abductive logic programming to
infer gene dependencies to explain the changes in the gene expression levels. Our
work advances that in [PAP 05] in several ways, specifically by allowing the use of
prior knowledge, modeling and reasoning about competitive gene influences and
presenting a framework that can act as a scientific assistant to biologists for testing
the validity of new hypotheses.

In comparison with non-symbolic approaches such as gene co-expression
networks based on statistical principles [ROT 13, HE 09] and physical network
models [YEA 04, OUR 07, HUA 09], logical approaches like ours offer improved
expressiveness, as they enable the inference of networks with more complex
regulatory structures, and added modularity that allows the logic model to be easily
adapted to new available information (e.g. addition of new constraints).

This chapter is structured as follows. Section 1.2 presents the ARNI approach with
its main key components. Section 1.3 describes the results on evaluating the predictive
power of our approach and demonstrates the increased expressive power of ARNI.
Section 1.4 explores ARNI as a scientific assistant for biological hypothesis testing
and section 1.5 concludes the chapter with a discussion on related work and future
directions.

1.2. Logical modeling of regulatory networks

In this section, after briefly summarizing the basic notions and terminology from
abduction, we study how the problem of inferring regulatory networks can be
formalized as an abductive problem. We analyze the general biological features of
the problem and develop the underlying logical model over which the task of
constructing regulatory networks from experimental data can be understood and
computationally realized in terms of abduction.

1.2.1. Background

An atomic formula (or atom in brief) is a proposition or an n-ary predicate P
followed by an n-tuple of terms.A positive literal is an atom ¢, and a negative literal



Symbolic Representation and Inference of Regulatory Network Structures 5

is a negated atom, written as not ¢, where not is the negation as failure operator.
Positive or negative atoms are referred to as literals. A clause is a rule of the form
¢ < &1,...,0n, Where ¢ is the head atom and ¢; are the body literals. Clauses can
also be facts (when n = 0), or denials of the form ic < ¢4, ¢, ..., ¢n, Where the
symbol ic means false and ¢; are literals. A clause is said to be ground if it contains
no variables, definite if all its body literals are positive, and normal if it includes at
least one negative body literal. A normal logic program is a set of normal clauses. In
general, a model I of a set II of normal clauses, is a set of ground atoms such that,
for each ground instance 7, of a clause r in II, I satisfies the head of r, whenever it
satisfies the body. A model I is said to be minimal if it does not strictly include (in
terms of set inclusion) any other model. Normal logic programs may have one, none,
or several minimal models. It is usual to identify these minimal models, called stable
models, as the possible meanings of a program [GEL 88].

Abduction is a process of reasoning from observations to possible causes. In
essence, it is concerned with the construction of explanations, A, that conform with
given observations and prior knowledge, 11, and that, together with II, are consistent
with given integrity constraints, /C. Abductive explanations are usually restricted to
ground atoms from a predefined set called abducibles. Intuitively, abducibles are
undefined information in a given knowledge base, whose truth value can be assumed
to (partially) complete the knowledge base. In logic terms, given a set I of normal
clauses, expressing prior knowledge and observations, a set /C' of denials, and a set
A of abducible ground atoms, with terms from the Herbrand domain of II, an
abductive reasoning problem consists of finding a set of abducibles A C A such that
IC is satisfied in a canonical model of IT U A. We assume as canonical models, the
stable models of T1 U A. Such stable models are also referred to as generalized stable
models of the abductive task [KAK 90].

DEFINITION 1.1.— Let the tuple AC = (11, IC, A), be an abductive problem, where
I1 is a normal logic program, IC' is a set of denial clauses, and A is a set of ground
abducible atoms. A generalized stable model of AC' is a stable model of 11 U A for
some A C A that satisfies the IC, denoted 1 U A |= IC. The set A is referred to as
an abductive solution of AC.

Different abductive proof  procedures have been proposed
(e.g. [KAK 90, KAK 00, KAK 01]). In these approaches, a minimality criterion,
expressed in terms of subset-minimality, is often enforced on the construction of
abductive solutions. But, whereas minimality of explanations is desirable in
applications of abduction such as planning and diagnosis, extracting regulatory
networks that conform with observed gene expression data means computing
maximal networks that are biological meaningful (i.e. satisfy biological integrity
constraints), that are consistent with prior knowledge about the observed genes (e.g.
existing knowledge of a gene being an activator or an inhibitor), and that, together
with the prior knowledge, satisfies the observed data. The computation of any such
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network, in terms of collection of regulations between genes (i.e. compatible or
competitive gene regulations), would require an abductive task for which abductive
solutions (i.e. the regulations between genes) are not minimal but in fact maximal.

The answer set programming (ASP) paradigm provides the ideal environment for
efficient computation of maximal abductive solutions, as it combines a declarative
modeling language with high-performance problem solving computational
capabilities [GEB 12]. To understand how an abductive problem, with prior
knowledge II, abducibles .4 and integrity constraints /C', is modeled in terms of an
ASP problem, it is easy to think of it as a special type of open program,
(ITu IC,0,.A) [BON 01] where the set .A of open predicates (i.e. predicates that are
not defined in the program) is the set of abducibles, and () denotes that no new terms,
in addition to those in the Herbrand base of II, are considered in .A [BON 02].
Abducibles can indeed be seen as ground Boolean atoms whose truth value is not
defined in the program II, although it is constrained by /C' In biological terms, our
(abductive) problem of extracting genes regulatory network assumes that information
about regulations between genes (i.e. compatible regulation or competitive
regulations), which are our abducibles, is unknown and therefore “open” to Boolean
assignments. Open programs can be transformed into semantically equivalent normal
logic program representations (see [BON 02] for a precise definition of such
semantical equivalence), which, in turn, can be expressed as ASP problems with a
choice statement over subsets of A (see [GEB 12] for the mapping between normal
logic programs and choice statements). A choice statement is an expression of the
form {aj,as,...,am}, where a; are (possibly ground) atoms. This expression
informally means that a subset of {a1, as, ..., am} is included in a stable model (i.e.
answer set solution) of the given ASP problem. As the set of ground abducibles could
be large, choice statements can be expressed more concisely using conditional
literals [GEB 12]. Conditional literals are expressions of the form a : t; : ... : t,,
where a and t; are literals, informally denoting the list of elements in the set
{a | t1, ... ,t,}. Clearly the expansion of conditional literals is domain dependent,
i.e. it depends on the definition of the literals t ;. So, for example, given the following
literals p(1), p(2), p(3) and g(2), a choice statement {r (1), r (3) } could also be
written as {r (X) : p (X),not g(X)}.

The formalization of an abductive problem in terms of an ASP problem allows
better control on the size of the subset of abducibles that can be included in a final
solution, taking also into account different weights that could be given to different
abducibles (if required by the problem domain). For instance, we may want to specify
that a solution (i.e. answer set) should include the maximal (respectively, minimal)
number of abducibles that are consistent with the prior knowledge and the integrity
constraints. An ASP problem would in this case include, together with the prior
knowledge and the integrity constraints, the optimization expression maximize
(respectively, minimize) over the set of the abducibles. An optimization expression
is of the foorm minimize{l; = w1@p,,...,1,, = w,Q@p,}, and similarly for the
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case of maximize but with the term minimize replaced by maximize, where w;
and p, represent the weight and the priority of the literal 1;. Informally, optimization
expressions are directives to instruct an ASP solver to compute optimal stable models
by minimizing (or maximizing) a weighted sum of elements. It is easy to see that
using a maximize expression for the choice of subsets over the set of abducibles, and
assuming that each abducible has the same weight and same priority (i.e.
maximize{a,as,...,am}), we basically model the requirement that optimal
solutions (i.e. stable models) will include maximal number of abducibles (in terms of
set inclusion). The satisfiability of the integrity constraints will be implicitly
guaranteed by the computation of the optimal stable models as the ASP problem
directly includes the IC.

To analyze further the difference between our emphasis on maximality versus the
more conventional notion of minimality of abductive solutions, and its biological
relevance in the computation of regulatory networks, we consider a simple
illustrative example. Suppose that our abductive task is to compute an acyclic
directed graph with four nodes a, b, c and d that links two of these nodes, say a and b,
called seed nodes, by passing through the other two nodes ¢ and d and satisfying the
following constraints: (1) seed nodes cannot be linked directly, (2) any two nodes can
have at most one link between them, (3) a seed node can either be a source (i.e. its
links are all directed out), or a sink (i.e. its links are all directed in) and (4) no other
node is a source or a sink (i.e. if a link exists from node Y to node X, then there must
exist a link directed out from node X and a link directed into node Y). Essentially,
constraint (4) guarantees the formation of paths between seed genes. We show how
this abductive problem is formalized within the ASP paradigm and discuss
differences between minimal and maximal solutions.

Figure 1.1 shows the ASP formalization of our abductive task (II, IC, .A). It can
be shown that this representation corresponds to a normal logic program
transformation of an open program (IT U IC, (), A). The ASP problem in Figure 1.1
returns many answer set solutions corresponding to different possible subsets
(including the empty set) A C A that are consistent with the constraints. These
are determined by means of the choice statement {r (X,Y) :node (X) :
node (Y) : X ! = Y}. So, in this example, abductive solutions are finite sets of
ground instances of r (X, Y), i.e. directed links between nodes, that satisfy the
constraints (i)-(iv). To compute just solutions that have minimal abductive
assumptions, the above ASP problem can be augmented with the optimization
expression fminimize{r (X,Y)}. Clearly, in this case, the smallest set of
abducibles that satisfy constraints (1)-(4) is the empty set, and the solver will return
the solution with A = () as optimal solution. We could consider the addition of
constraints to force as many links as possible to be abduced. For instance, constraint
(5) every node must be linked in the graph could be added to the set of
ICs by including the two denials :—node (X),not connected_out (X) . and
:—node (X), not connected_in (X) . The empty solution would in this case
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not be computed, as it would violate constraint (v); but the minimize optimization
statement would generate, as optimal, all possible solutions satisfying all constraints
that guarantee all nodes to be connected but with the minimum number of links. The
abductive problem accepts in this case four minimal abductive solutions, which are
graphically given in Figure 1.2, where an arrow between two nodes (e.g., d and c¢)
represents a ground abduced r atom (e.g., (¢, d)). Although logically correct, such
solutions are not biologically very meaningful. In real biological networks, genes
(nodes in the graph) are often involved in multiple interactions (i.e. multiple
incoming links or multiple outgoing links). This redundant structure of parallel
overlapping inputs, ensures robustness under random failure and provides
adaptability to the environment [BAR 04].

Background [T Integrity Constraints 1C Abducibles = A
node(a). % constraint (i) {r(X,Y):node(X):node(Y): X!=Y }.
node(b). =r(X,Y), seed(X), seed(Y).
node(c).
node(d). % constraint (ii)
seed(a). =r(X,Y), r(Y,X).
seed(b).

% constraint (iii)

%connected_out(X) when link out of X | -.r(X,Y), r(Z,X), node(Y), node(Z), seed(X).
%connected_in(X) when link into X
connected_out(Z):- r(X,Z). % constraint (iv)
connected_in(X):- r(X,2). -r(X,Y), not connected_out(X).
-r(X,Y), not connected_in(Y).
% special case for seed nodes
connected_in(X):- seed(X).
connected_out(X):- seed(X).

Figure 1.1. An abductive task as an ASP problem

GG GG @j’) @S}

Figure 1.2. Minimal abductive solutions that satisfy constraints (1)-(5)

What we need in our problem is to compute maximal networks. This is achieved
by requiring abductive solutions to be maximal. By adding to the same ASP problem
in Figure 1.1 the constraint (v) described above and the optimization expression
fmaximize{r (X,Y)} over the choice of subset of abducibles, the abductive
problem would have, in this case, still four solutions but maximal. The solutions are
graphically described in Figure 1.3.
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Figure 1.3. Maximal abductive solutions for abductive task in Figure 1.1

In summary, the task of computing regulatory networks from gene expression
data can be formalized as an abductive task where maximal abductive solutions are
computed to give maximal signed-directed gene regulations that are consistent with
biological constraints and given gene expression data.

1.2.2. Logical model of signed-directed networks

In our ARNI abductive framework, the background knowledge II is composed of
a rule-based model, called formal model, an extensional knowledge, called prior
knowledge, and information about experimental data. The former expresses
biological knowledge on how interactions of genes are expected to affect the
concentration of genes; the prior knowledge captures any known information about
specific genes, including interactive potential between two genes and functions of
genes, which is normally available from online biological databases. Abducibles are
unknown signed-directed regulations between genes (the biological analogy of
directed links in the graph example given above). Integrity constraints over the
abducibles are of four different categories: (1) constraints that enforce
signed-directed regulations to be compatible with existing/established knowledge
(e.g. already known regulations or compatibility with known type of regulation of the
gene), (2) constraints about compatibility of the signed-directed regulations with
experimental data, (3 ) constraints that express logical consistency of the extracted
logical model, and finally category (4) that includes constraints about biological
consistency. We describe below each of the components of our ARNI framework.

1.2.2.1. Prior knowledge

Gene interactions can be of two types, protein-DNA interactions (PDI) and
protein-protein interactions (PPI). PDI are directed links from a transcription factor
to a regulated gene, whereas PPI interactions are undirected links between proteins.
Signed-directed regulations between genes can be of two types, compatible and
competitive. These types of gene regulations are in general unknown and therefore
constitute the incomplete part of prior biological knowledge. Computing a regulatory
network that conforms with observed gene expression data means discovering those
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unknown signed-directed regulations between genes, or signed-directed links, that
cause the observed data, in a way that is consistent with given biological constraints.

The domain of genes considered in our abductive task is given by the set of genes
that are present in a biological experiment. We denote this set with G. Known
potential interactions between genes are expressed in the prior knowledge as logical
facts of the form interactive_potential(gi,g;), which state that “there is a
form of interaction between genes g; and g;”. PDI interactions are normally
unidirectional whereas PPI interactions are bidirectional. Therefore our prior
knowledge will include only one ground fact of the form
interactive_potential(g;,g;) for any known potential PDI interaction, and for
any known PPI interaction between pairs of genes g; and gj, two ground facts
interactive_potential(g;,g;) and interactive_potential(gj,gi). We
denote with I P,,.;,, the following set of ground facts:

IP,.ior = {interactive_potential(g;,g;) | g: € Gand g; € G} [1.1]

It is important to note that the information of interactive_potential in the
prior knowledge does not fully capture the regulatory effects between genes as it
does not express the type of signed-directed interaction between two genes. This
information is expressed by our abducibles, and it has to be consistent with any
known information about the regulatory potential of a gene. Known regulatory
potential of a gene is extracted from online biological databases and expressed in our
prior knowledge as ground facts of the form regulatory_potential(g;,s) where
g; is a gene and s is the type of regulation, which can be 1 (for activation) or —1 (for
inhibition). For instance, the statement regulatory_potential(g;,1)
(respectively, regulatory_potential(g;, —1)) in the prior knowledge captures the
fact that the effect of the regulator gene g; on any other gene can only be of type
activation (respectively, inhibition). When no information about the regulatory
potential of a gene is included in the prior knowledge (because unavailable), then that
gene can be assumed to have either positive or negative effect on any other gene.
Again, our abductive inference process takes into account these two possibilities
when reasoning about the effects of gene interactions and, as explained later in
section 1.2.2.3, integrity constraints will guarantee that such assumptions are made in
a consistent manner. We denote with RP,,;,, the following set of ground facts:

RP,ior = {regulatory_potential(g;,s)|gi € Gands € {—1,1}} [1.2]

As mentioned above signed-directed regulations between genes are the unknown
abducibles. It is possible, however that for some pair of genes, say g; and g; in G,
specific information exists about their signed-directed regulation. Any such
knowledge is expressed as atoms of the form established_regulation(g;,gj,s)
where g; and g; are different genes in G and s is again the type of regulation. For
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instance, a ground atom of the form established_regulation(g;,g;,1) states
that gj is a known activator of g;, whereas a ground atom of the form
established_regulation(g;,gj, —1) denotes that g; is a known inhibitor of g;.
Again, our integrity constraints guarantee that abduced signed-directed regulations
between genes are consistent with any already known type of regulation. We denote
with ER,,,.;o the following set of ground facts:

ERy o = {established_regulation(g;,gj,s) | g1 € G,8: €G
ands € {—1,1}} [1.3]

Finally, information about experimental data is also part of the prior knowledge.
This includes the expression value of the genes measured in an experiment2,
represented using ground facts of the form exp_data(g;, s), where g; is a gene and
s is the state of the gene, which can be equal to 1 (respectively, —1) to denote that
the expression value of g; has increased (respectively, decreased). Specific
information about genes that have been potentially overpowered during the
biological regulation process is also computed from the experimental data and added
to the prior knowledge as ground facts of the form overpowered(g, g;, g;), where g,
g; and g; are different genes. This fact captures the biological notion that the effect
of gene g; on g has overpowered the effect of gene g; on g. For this, to occur the
degree of interdependency between the expression value of g; and g, multiplied by
the degree by which the expression value of gene g; has increased, is higher then the
inter-dependency between the expression value of g; and g, multiplied by the degree
by which the expression value of gene g; has decreased. This function is computed
using statistical packages provided by R/Bioconductor project [GEN 04]. Last, but
not least, experimental data also includes the notion of a subset of genes, within the
large pool G, that are considered to be seed genes. This information is represented
using ground facts of the form seed(g; ), which states that gene g; is a seed gene.

ExpData = {exp_data(gi,s);| g1 € G, ands € {—1,1}}
U{overpowered(g, gi,8;);| g € §,g: € Gand g5 € G} [1.4]
U{seed(g:)lg: € G}

In summary, the prior knowledge of our ARNI’s background knowledge, denoted
with Bp,ior, 1S given by the union of specific subsets of the sets (1.1)-(1.4).

2 We assume in this paper the logic-based modeling of regulatory network from single
experiments. The approach can be easily generalized to cross-experiments problems by
extending the formalization of our model with an extra argument to denote the name of the
experiment.
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1.2.2.2. Rule-based underlying model

The core rules of our model seek to connect a set of genes (i.e. the seed genes),
which have been affected in a biological experiment, to each other, either directly or
indirectly by using the information about PDI and PPI interactions given in the prior
knowledge, and to abduce signed-directionality between linked genes that are
consistent with the (biological) integrity constraints explained in section 1.2.2.3. This
consists of computing all possible paths that connect seed genes within a given
maximum length, using the following rule-based logic:

connect_seeds(MaxLength, Path) < seed(G1), seed(G2),
path([G2],G1, 0,MaxLength, Path) [1.5]

path([H|T], G, CurrLength, MaxLength, [G, H|T]) - CurrLength < MaxLength,
relevant_ip(G,H). [1.6]

path([H|T], G, CurrLength, MaxLength, [NewH, H|T]) +- CurrLength < MaxLength,
relevant_ip(NewH, H),not seed(NewH), [1.7]
member (NewH, [H|T]).

path([H|T], G, CurrLength, MaxLength, Path) - CurrLength < MaxLength,
relevant_ip(G1,H),notseed(G1), [1.8]
not member(G1, [H|T]), NewCL is CurrLength + 1
path([G1, H|T], G, NewCL, Path).

Rule [1.5] has the effect of constructing a path within the maximum length
boundary (MaxLength) that links two seeds genes (i.e. G1 and G2). The path is
recursively computed by checking that no gene is revisited more than once (i.e. rule
[1.7]), and that only relevant genes, according to the existing prior knowledge of
interactive potentials between genes, are added to a path (i.e. rule [1.8]). The latter
case is captured by the use of the abducible predicate relevant_ip(G1,G2), and the
following integrity constraint:

ic + relevant_ip(G1,G2),not interactive_potential(G1,G2) [1.9]

The abducibles relevant_ip(g;,g;) identify all the genes from a given pool G
that, according to prior biological knowledge are biologically relevant in regulations
that can directly or indirectly affect the given seed genes. The use of these abducibles
allows us to constrain the space of our regulation network in a biologically
meaningful way making the computation process more manageable. Assumptions
about relevant_ip(G1,G2) may also be abduced in order to satisfy other
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constraints, discussed later, so to guarantee their connectiveness with other genes the
following constraint is enforced:

ic + relevant_ip(G1,G2),not in_path(G1,G2) [1.10]

in_path(G1,G2) < connect_seeds(MaxLength, Path),
append(Pathi, [G1, G2|Path])

Paths generated by the above clauses are sequences of genes, which are connected
with each other according to the abduced relevant_ip(g;,g;) directed link3. But
to generate a regulatory network, the directed links have to be signed. The inference
of the sign for each abduced directed link is generated by means of the following
integrity constraint:

ic < relevant_ip(G1,G2),not signed(G1,G2) [1.11]
signed(G1,G2) + compatible(G1,G2,S), sign(S). [1.12]
signed(G1,G2) < competitive(G1,G2,S),sign(S). [1.13]
ic < compatible(G1,G2,S),not relevant_ip(G1,G2) [1.14]
ic + competitive(G1,G2,S),not relevant_ip(G1,G2) [1.15]

where predicates compatible(G1,G2,S) and competitive(G1,G2,S) are also
abducibles and they fully capture the notion of a signed-directed link between two
genes. Note that the above constraints [1.11]-[1.15], together with the constraints on
sign consistency given later, define in effect the notion of relevant interactive
potential between two genes in terms of either compatible or competitive influence.
In addition to constraints [1.9]-[1.15], abduced signed-directed links have to be
consistent with existing knowledge: for some pairs of genes, the signed-directed link
might already be known. In this case, the prior knowledge would include ground
instances of the predicate established_regulation and any abduced compatible
fact will have to be consistent with this prior. This is captured by constraint [1.16].
Similarly, the abduced type of compatible or competitive influence that a gene has on
another gene has to be consistent with the type of regulatory potential that that gene
is known to have (if any). This is expressed in constraints [1.17]-[1.18]. Constraint
[1.19], instead, guarantees that competitive regulations are limited to links with an
already known regulatory effect. This is done to further limit the solution space for
this abducible. Biologists could remove this constraint whenever they intend to
pursue a more exploratory analysis:

ic + compatible(G1,G2,8S),G1! = G2, [1.16]

3 Note that the directionality of the link is expressed by the order of the arguments in the
predicate.
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established_regulation(G1,G2,81),S # S1
ic + compatible(G1,G2,S),G1! = G2,not regulatory_potential(G2,S)

[1.17]

ic «+ competitive(G,G2,S),G1! = G2,not regulatory_potential(G2,S)
[1.18]
ic + competitive(G1,G2,8),G1! = G2, [1.19]

not established regulation(G1,G2,S)

In summary, the rule-based underlying model, II of our ARNI approach is given
by rules in clauses [1.5]-[1.19]. Constraints in clauses [1.5]-[1.19] are part of the IC'
component of our abductive problem, of which constraints [1.9] and [1.16]-[1.19]
guarantee the compatibility of the abduced signed-directed links with the existing
knowledge.

1.2.2.3. Integrity constraints

As mentioned at the beginning of section 1.2.2.1, our abductive problem is to
identify unknown compatible and competitive gene regulations (i.e. signed-directed
links) that form a regulatory network which consistently satisfies the observed data.
The main abducibles in our ARNI approach are therefore ground facts of
compatible(g;,gj,s) and competitive(g;,g;,s), whose first two arguments are
genes in G and the third argument s, which is a binary variable over the set {1, —1},
denotes the causal effect of the interaction between the two genes g; and gj. For
example, an instance of the form compatible(gi,go,1) (respectively,
compatible(gs, g2, —1)) means that gene gy activates (respectively, inhibits) gene
g:. Abduced sign-directed gene regulations have to be consistent with the four
different classes of constraints described in section 1.2.2.2. Constraint of the first
class (i.e. compatibility with existing knowledge) are the above constraints [1.9] and
[1.12]-[1.16]. We present integrity constraints of classes (b)—(d) and explain their
biological relevance.

Activation and inhibition regulations between genes is formalized by instances of
the abducibles compatible(Gy, Gy, 1) and compatible(Gy, Gy, —1). So, why do we
also need to infer competitive influence (i.e. competitive(Gi,Gj,S))? The
biological motivation for modeling competitive gene influences is to reflect the
underlying structure of real biological networks, where crosstalk between signaling
pathways, regulatory feedback mechanisms and redundancy are common aspects of a
biological system. The incoherent network motifs of feed forward loop (FFL) and
negative feedback loop, discussed in section 1.1, inherently consist of competitive
gene influences. Any inference method aiming to detect such motifs, needs to either
rely on multiple experiments to expose each of the influences individually, or to
model the concept of competitive gene influences explicitly, as done in our approach.
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The latter case has the added advantage that network motifs can be detected using
less experimental data, and competitive gene influences can be placed within the
same network as their compatible counterparts. Including these regulations in the
final solutions is also important for the applicability of the inferred networks within
the scope of planning future experiments and network based drug
discovery/repositioning. Following an experimental perturbation, competitive gene
influences could compensate for the intended experimental response and thus
rendering the experiments non-informative. Similarly, competitive gene influences
that are enhanced in the presence of a drug might lead to unforeseen side effects.
Overlooking the problem of competitive gene influences can result in inconsistencies
between the observed and predicted drug effects/experiment outcomes, hindering the
process of knowledge discovery.

The inference of compatible(Gi,Gj,S) and competitive(Gi,Gp,S) has to
comply not only with existing knowledge, but also with experimental data, biological
principles of sign consistency and internal logical consistency of the model. These
principles are expressed in our ARNI approach as domain specific integrity
constraints. This is where our ARNI approach benefits from its abductive logic-based
inference process. According to the type of biological experiments and investigation
in hand, different classes of constraints could be added or deleted without affecting
the formal framework (e.g. in order to compute specific types of regulatory networks
(e.g. networks with specific regulatory motifs: “and” gates, “or” gates, etc.).

One of the key biological principles is sign consistency. Sign consistency states
that inferred gene interactions must satisfy two main gene dependency rules:
compatible gene influence and competitive gene influence. The compatible gene
influence postulates that the state of a target gene G1 is directly related to the state of
an activator G2 and inversely related to the state of an inhibitor G2. To specify these
principles we make use of an additional predicate, called state, which takes two
arguments, a gene and a state value. The state value of a gene can be 1 to signify the
gene expression is increased, and value —1 to represent that the gene expression has
decreased. A ground literal of the form state(g;, 1) means that the expressive value
of gene gy has increased during the experiment. Since not all states of relevant genes
are measurable in an experiment, the information about the state of each gene in our
pool is only partially present in our background knowledge. To guarantee full
consistency of our regulatory network, the state predicate is therefore considered to
be an additional abducible. Integrity constraints for sign consistency include:

ic ¢+ compatible(G1,G2, 1), state(G1,81), state(G2,S2).S1 # S2 [1.20]
ic < compatible(G1,G2, —1),state(G1,S1), state(G2,S1). [1.21]
ic + competitive(G1,G2,1),state(G1,S51), state(G2,S1). [1.22]

ic < competitive(G1,G2,—1),state(G1,S1), state(G2,S2),81 # 82. [1.23]
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The incompatibility of the competitive gene inference with experimental data
implies that the abductive inference of competitive (G1,G2,S) cannot be driven by the
data. The search space explosion in allowing the competitive regulators to be
abduced without any constraints is practically prohibitive and hinders the usability of
the inferred networks. Therefore, the following constraints and related definitions
[1.24]-[1.28] are included in our model to capture two typical cases of competitive
regulators that bypass the sign consistency principle:

ic « competitive(G1,G2,S),not op_exception(G1,G2,S) [1.24]

op_exception(G1,G2,8) < overpowered(G1,G2,G3), compatible(G1,G3,W)
[1.25]

op_exception(T,R,S1) < compatible(T,R2,83), compatible(R2,R, S2),
[1.26]

iff(S1,82,83)

op_exception(T,R2,S3) < compatible(T,R,S1), compatible(R2,R,S2),
[1.27]

iff(s1,82,83)

op_exception(R2,R, S2) + compatible(T,R,S1), compatible(T,R2,S3),
[1.28]

iff(S1,82,83)

Integrity constraint [1.24] guarantees that competitive regulators are only inferred
if there is an exception that holds. A gene, say g;, can have an inconsistent state with
respect to the state of its regulator, say g, provided that there exist at least one other
compatible gene, say gz that consistently regulates g;, hence overpowering the
influence of g,. This principle is captured by rule [1.25]. Exceptions of the above
form, are derived from the data by means of an overpowered influence function that
determines the truth of the condition overpowered(g,g;, g;). Once pre-calculated
from the data (see section 1.2.2.1), this information is added as fact to the prior
knowledge to express the biological notion that the effect of gene g; on g has
overpowered the effect of gene g; on g.

Because of the way the overpowered facts are computed there is the additional
implicit constraint that genes that can participate in competitive regulations, must
have been observed as either up-regulated or down-regulated. Given the sparsity in
the microarray data, where the signal is fragmented due to the noise, and the
abstraction of all biological regulation to gene regulation, such situations are not very
common. In the absence of additional priors information (e.g. kinetic information,
promoter affinities), that can give information on the relative impact of competitive
influences, our model includes an additional exception case based on the biological
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principle of how competitive regulators can participate in some specified network
motifs. These are captured by rules [1.26]—[1.28] that correspond, respectively, to the
three scenarios in Figure 1.4, where the dashed links represent the competitive
influence link involved in the overpowered exception.

=0

Motif1 Motif2 Motif3

Figure 1.4. Network motifs of competitive influence

The sign value of the three sign-directed links that are involved in these motifs have
to satisfy one of the predefined incoherent feed forward loop cases, expressed by the
fact if£(S1, S2, 83) and graphically illustrated in Figure 1.5. Note that the three motif
examples given in Figure 1.4 have all the same configuration iff(1,1, —1). Similar
groups of three motifs, one for each of the four possible configurations of incoherent
feed forward loops, could happen in regulatory networks.

R R R R
Sz:y St=1 §2=-1 St=1 S2=-1 S1=-1 S2=-1 S1=-1
R2 S8=-14© Ro S8=1 T Ro _S3=1 . Ro S3=-1 T
Conf1 = iff(1, 1, -1) Conf2 = iff(1, -1, 1) Conf3 = iff(-1, -1, 1) Conf4 = iff(-1, -1, -1)

Figure 1.5. Configurations of incoherent feed forward loops, (iff(S1, S2, S3)

During the inference process many compatible and competitive abducibles
can be generated. It is important to guarantee that a gene is not assumed to be at the
same time a compatible and a competitive regulator of another gene. This is captured
by the integrity constraint [1.29]. Similarly, a compatible (respectively, competitive)
gene cannot be both activator and inhibitor of another gene. Constraints [1.30]—-[1.31]
make sure that this principle is satisfied during the inference of signed directed links
between genes, whereas constraint [1.32] enforces that a gene can have only one
unique state value (i.e. can either decrease or increase its expressive value during a
single experiment).

ic < compatible(G1,G2,S), competitive(G1,G2,S) [1.29]
ic < compatible(G1,G2,1), compatible(G1,G2,—1) [1.30]

ic < competitive(G1,G2,1), competitive(G1,G2, —1) [1.31]
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ic < state(G,S1),state(G,S2),S1 # S2. [1.32]

The state of a gene is an abducible in our model. This is because given an
experiment it is not guaranteed that data about the expression value for each gene
will be available (i.e. the background knowledge may include only a subset of the set
[1.4]). So for genes that have an expression value the abduced state needs to be
consistent with the available experimental data. This is captured by the following
constraint [1.33]. For the remaining genes in our identified pool, called in this case
hidden genes, any of the two states could be abduced provided that the overall set of
IC is satisfied.

ic < state(G,S1),exp_data(G,S2),81 # S2. [1.33]

In summary, the full set of integrity constraints included in our ARNI abductive
approach, denoted with IC), is given by constraints [1.9]-[1.33].

1.2.2.4. Inferring signed-directed networks and explanatory reasoning

As mentioned in section 1.1, in our ARNI approach we can employ abductive
reasoning for both inferring a signed-directed regulatory networks from experimental
data and enable explanatory scientific reasoning about signal propagations over the
generated network in order to help biologists plan the next sets of experiments or
improve their understanding of the phenomena in hand. The first abductive reasoning
task makes use of the full logical model described in this section. Specifically, it uses
as background knowledge the model II and the knowledge Bp,;.-, Wwhich includes a
set of experimental data. The set A of abducibles is the collection of all ground
instances of the abducible predicates compatible, competitive and state,
together with all ground instances of the auxiliary abducible relevant_ip. All these
abducible notions are necessary because of the limited available knowledge (i.e.
biological information already existing in online databases and the given
experimental data), and the desire to generate realistic signed-directed regulatory
networks that have complex structures (e.g. include feedback loops, competitive
regulations, etc.). The set of integrity constraints /C' includes all the constraints
described in this section. Hence, the question that we are interested in answering in
this first type of abductive reasoning task is: what is a realistic signed-directed
regulatory network that has generated the given set of experimental data? An answer
to this question is the abductive inference of a maximal set of signed-directed links
between genes with relevant interactive potential that are consistent with the given
integrity constraints and the genes’ expression level described by the experiment
data. The collection of all abduced compatible and competitive predicates,
computed in this answer, formally describe such a signed-directed regulatory
network. This abductive reasoning task can be formally defined as follows:

DEFINITION 1.2.— Abductive inference of regulatory networks. Let the background
knowledge B = Bpyior UIL, IC be the set of integrity constraints [1.9]-[1.33], A
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be the set of all possible ground instances of the abducible predicates compatible,
competitive, state and relevant_ip. An signed-directed regulatory network
inference is the abductive task (B, IC, A) with abductive solution a set A C A such
that:

B U A £ ic (consistencywith integrity constraints)

BUAU{}UIC [ ic (maximality of the network)

forany § € A/A

The ARNI abductive task may compute more the one possible maximal
regulatory network. If the prior knowledge of regulatory_potential(g;,gj) is
complete for all genes in G and the gene expression value of every gene is available
in the experimental data, then there would be only a single maximal regulatory
network that connects all the seeds genes, since, given the constraints, there can be
only one possible signed-directed link per pair of genes. But in reality, such complete
prior knowledge is not available. More than one maximal network can be generated.

The second abductive reasoning task allows us then to conduct explanatory
scientific reasoning about signal propagations over these generated networks. We
describe here how this is formally defined. Assuming that a signed-directed
regulatory network has been computed, the question that we are interested to answer,
in this second abductive reasoning task, is what are the signal propagations that
cause in an existing regulatory network a given collection of seed genes to have
certain states? The answer to this task is a maximal set of states of genes and
compatible/competitive signed directed-links in the given network through which
signal propagation can occur to cause (i.e explain) a given set of seed genes to be in a
given state. This abductive problem assumes a population G to be all the genes that
appears in a given regulatory network. The background knowledge B is given by the
same logical model considered in definition 1.2, but with the set
Exp_Data = {seed(g;)| for some given g;} and the signed-directed links that
appear  in the network, defined as ground instances of
established_regulation(g;,ga,s) (as they are now part of prior knowledge).
The set IC of integrity constraints includes all the constraints [1.9]-[1.33]
augmented with the following new constraint [1.34].

op_exception(G1,G2,S) < compatible(G1,G3,S1) [1.34]

This constraint captures, together with constraint [1.24], a weaker case of
biological consistency for competitive influence than that expressed in constraint
[1.25], which does not require experimental data to compute the overpowered
function. The set .4 of abducibles are in this case given by all ground instances of the
predicates state, compatible and competitive.
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The additional concept in this abductive reasoning task is the notion of a guery,
i.e. required state of given seed genes. The query is what our abductive reasoning
task aims to explain in terms of maximal number of genes’ state and sign
propagations that cause the given seed genes to reach their given state. For a given
query, the Exp_Data will include just the ground facts of the form seed(g;) for
each gene g; in the query. A query can be formally defined as a conjunction of
ground atoms of the form state(g;,s;):

Q = )\ state(gi, s:) [1.35]

i=1

An abductive reasoning task AC for signal propagation, and abductive explanation
for a query @ in AC' can be formally defined as follows:

DEFINITION 1.3.— Abductive inference of signal propagations. Let N be a regulatory
network. Let @ be a query as defined in [1.35]. Let B = Bp i U II but with
Exp_Data = {seed(g;)|g; that appear in Q} and ERp,.;o given by the full set of
signed-directed links present in N. Let IC' be the set of integrity constraints
[1.9]-[1.34] and let A be the set of all possible ground instances of the abducible
predicates state, compatible and competitive. An abductive reasoning task for
signal propagation is the tuple (B, IC, .A). An abductive explanation for @) in AC'is
any subset A of A such that M(A) is a stable model of B U A satisfying the
integrity constraints /C and

M(A) E Q (explanation of the query)
M(A) U {d} [ ic (maximality of the network)

forany § € A/A

In the special case where the task in definition 1.3 is given as input to a network,
N, generated by the inference task in definition 1.2, with respect to the same set of
seed genes, the state of the genes inferred through signal propagation will be the same
as that considered for the construction of N. In particular, the states of genes that
appear in the experimental data used for generating /N will be the same as that given
in the data. In other words, the signal propagation on the learned network N gives
an explanation how the observed experimental data came about. The two abductive
tasks, therefore, capture together the notion of abductive inference of a network that
explains experimental data.

More generally, definition 1.3 can be used to examine the validity of other
biological hypothesis over a (given or constructed) regulatory network. Different
queries may be formed allowing the biologists to explain how a given set of gene
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states can be caused and through which specific signal propagations; the network
itself maybe changed, and changes in the state of the genes may be observed as a
result of the addition or elimination of new signed-directed links. Also different
domain-specific integrity constraints may be considered in order to analyze signal
propagation under different biological principles. Examples of these possibilities are
presented in section 1.4 where we illustrate how our ARNI approach can be used to
support automated scientific discovery, where the validity of different biological
hypotheses can be examined and tested outside the laboratory.

1.3. Evaluation of the ARNI approach

This section describes the results on evaluating different aspects and properties of
our ARNI approach. Specifically, in section 1.3.1 we validate the predictive power of
our abductive reasoning showing that our approach is capable of extracting the
correct regulatory networks from in silico (incomplete) data, in the presence of both
biological and experimental noise. The prediction shows a recall of approximately
80% where, instead, existing best network inference methods are capable of
predicting approximately 60% of a network from datasets generated with the same in
silico method. In section 1.3.2 we demonstrate the increased expressive power of our
ARNI approach by evaluating its ability to extract regulatory network with a range of
complex network motifs structures, which are instead not detectable by other existing
inference methods.

1.3.1. ARNI predictive power

In this section, we validate the predictive power of our ARNI approach in terms
of its robustness against incomplete data and noise in the data. The choice of these
two types of validations is due to the fact that, given our logical model, the ability of
abductively inferring a gold standard network depends on the ability to retrieve as
many of the gold standard links as relevant interactive potentials# and assign to them
the correct signed-directionality, which depends ultimately on the given experimental
data. Noise in the data may result in incompatibility between the underlying gene
regulation model and the observations and thus affect the assignment of
signed-directionality. Incompleteness in the data on the other hand requires special
procedures to be able to extend the inferred networks with non-observed genes. The
two types of validations are conducted in the following way. We consider a given
gold standard network. We generate from it different in silico noisy datasets,
corresponding respectively to different types of perturbations that could occur in real
biological networks, and we evaluate the recall rate (R) of the network that ARNI
computes from each of these datasets. The recall rate is given by the number of

4 This depends on the extent to which the given seed genes cover the gold standard network.
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correct signed-directed links that the abductive reasoning is able to abduce from the
dataset with respect the total number of signed-directed links present in the gold
standard network. Intuitively, this measure expresses how much of a real underlying
regulatory network that the ARNI approach is able to extract from given datasets. We
also measure the relative recall rate (RR), which gives the percentages of abduced
signed-directed links relative to the links that have been identified as relevant in the
inferred network.The recall rate is also evaluated with respect to different degrees of
sparsity of the dataset. It is shown that although it follows the expected trend of
decreasing with the increase of sparsity of the data, even in cases of 80% of missing
data, the ARNI system is able to correctly extract 80% of the links present in the gold
standard. The same type of experiments are conducted for three different sizes of
gold standard networks in order to evaluate how the robustness changes with respect
to the size of the network. In each experiment, we assume for simplicity that the prior
knowledge is complete for the pool G of genes that appear in the gold standard
network>. Detailed discussion of the findings are given later in this section.

Datasets and metrics

We have used in silico datasets generated using the DREAM project [STO 07].
DREAM is a system biology initiative to provide mechanisms for objective
assessment of reverse engineering methods. The DREAM project defines annual
challenges consisting of a set of in silico networks, with realistic network structure,
of varied size and complexity and the corresponding simulated experimental
data [MAR 09] .

In our experiments, we have considered 11 different network topologies taken
from the DREAM 3 [PRI 10] and DREAM 4 challenges [MAR 10]. These include
five 10-gene networks, three 50-gene networks and three 100-gene networks. Using
the GeneNetWeaver simulator provided by the DREAM project [SCH 11], we have
generated three different datasets for each of the networks. The wild-type dataset
contains the (steady-state) gene expression levels in the unperturbed network, and
provides the control condition against which all other datasets are compared. The
external-response dataset contains the (steady state) gene expression levels in the
network after all nodes with no incoming links have been activated. The
external-response dataset corresponds, for example, to experimental data observed in
the case of exposure to environmental factors which, via cell surface receptors,
activate intracellular signaling networks. Finally, the multifactorial dataset contains
the (steady-state) gene expression levels obtained by applying random multifactorial
perturbations to the wild-type network. Multifactorial perturbations are simulated by

5 For each link in the gold standard network, an interactive_potential(gs,g;) fact, an
established_regulation(g;,gj, —1) fact and two facts regulatory_potential(g;, 1)
and regulatory_potential(gi, —1) are added to IPprior, ERprior and RPprior,
respectively.
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slightly increasing or decreasing the basal activation of all genes of the network
simultaneously by different random amounts. This dataset can be thought of as
experimental data observed in the presence of multiple perturbations in the network
(e.g. multiple drug effects). A total of 50 different multifactorial perturbations were
obtained from the 10-gene and 50-gene networks, and a total of 100 different
multifactorial perturbations were obtained from the 100-gene networks. Two
different types of noise were also considered when generating our in silico datasets:
biological and experimental noise. The former was simulated by adding a noise term®
in the dynamics of the networks. The latter was simulated by adding to the data
generated after the simulation a measurement error derived from a noise model
similar to that observed in microarrays [SCH 11]. In the case of the external-response
dataset, we have also considered a deterministic simulation with no added
measurement noise.

As per normal practice in real biological experiments, each dataset was simulated
three times to obtain replicates required for the application of statistical testing
(described below). For each run, the set ExpData of experimental data is given by
those genes with an observable change in their state as determined by the statistical
testing. All genes with a significant (p — value < 0.05) difference between the
wild-type level and the level observed in an experimental condition (i.e.
external-response or one of the random perturbations of the multifactorial dataset),
were considered to be affected by the given perturbation to the network and thus
included in ExpData. All genes with observed change in their state were also
specified as seed genes.

The recall R and related recall RR were defined as follows. Let IV be the number
of signed-directed links present in the gold standard network. For each experiment run
we have calculated the T'P (i.e. true positive) number of links, which occur in the gold
standard network and have been abduced with correct sign and direction, and the RI P
number of links, which occur in the gold standard network, and have been abduced
as relevant_ip in A. Given these values, the recall is defined as (TP x 100)/N and
the relative recall as (TP x 100)/RIP.

1.3.1.1. Prediction under biological and experimental noise

In this set of experiments we have validated the ability of our approach to infer
networks in a noisy experimental setup. We have used the external-response datasets
described above. Figure 1.6 reports the recall rates and relative recall rates for the
eleven networks considered and compares the results in the cases of no added noise
and experimental noise. The table shows that the relative recall rate is consistently
higher than 90%, reflecting the fact that the majority of signed-directed links
retrieved as relevant have a correct sign propagation causal effect. That is, the
expected state of the genes and the experimental observations correspond, validating

6 We used a coefficient of noise term in stochastic differentials equations equal to 0.05.
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the sign consistency principle as an appropriate model for gene regulation in the
presence of biological and experimental noise. As the size of the network increases it
becomes progressively more difficult to infer the gold standard from the data derived
from a single experiment, namely the recall rate decreases. But given the high
relative recall rates, this decrease is primarily due to the inability of the seed genes to
cover the whole network. Normally, biologists have at hand data for more than one
experimental condition and thus in large scale networks the low coverage of the seed
genes can be compensated with the higher number of experiments. In fact, the
DREAM challenges request the inference of networks using a complete set of
multifactorial experiments.

10 Node Networks 50 Node Networks 100 Node Networks
Net1 Net2 Net3 Net4  Net5 | Net6 Net7 Net8 Net9 Net10  Net11
Size| 15 16 15 13 12 77 160 173 176 249 195

No Noise
Recall| 100 87.5 93.33 100 100 | 67.53 70 69.94 | 8239 3494 5231
Relative Recall| 100 93.33  93.33 100 100 | 98.11 91.06 93.8 91.77 89.69 86.44

Noisy Data
Recall| 100 68.75  93.33 100 100 | 54.55 67.5 57.8 7159 29.72  39.49
Relative Recall| 100 100 93.33 100 100 | 97.67 90 97 96.18  79.56 83.7

Figure 1.6. Predicting gold standard networks from noisy data

To validate this hypothesis, we have evaluated, for the multifactorial dataset, the
consensus recall rate, which is the recall rate across all the experiments for each of
the eleven networks’. This is defined in a similar way as the recall rate but with the
TP parameter calculated from the union of the individual inferred networks across
experiments. The results are reported in Figure 1.7.

Figure 1.7 shows that the consensus recall rate has a significant gain over the
recall rate from single experiments and outperforms the published DREAM results.
The most recent DREAM publication [MAR 12a] suggests that the best inference
methods are only capable of predicting approximately 60% of a given gene network,
whereas our approach reports a consensus recall rate greater than 85% for all
networks considered. Selected 100-node networks can be inferred with a consensus
recall rate as high as 97%. To qualify even further the impact that multiple
experiments have on the consensus recall rate, we have taken two networks, one of
the 50-node and one of 100-node networks. We have measured the gain in the
consensus recall rate per additional experiment3 and plotted in Figure 1.8.

7 It should be noted that consensus recall rate is only applicable for datasets interrogating the
same gold standard network (e.g. Net6 from the 50-node networks.
8 Note that the selection of the added experimental data has been performed randomly.
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10 Node Metworks 50 Node Networks 100 Node Networks

Net1 Net2 Net3 Netd Net5 Neté Net? Netd Netd Net10 Netll
Recallrange of Min:| 000 000 000 000 000 | 129 875 173 | 1193 1365 2074
single expts. Max:| 66.66 9375 8666 6923 100.00| 53.00 5687 6358 | 4091 4418 5590

Concensus Recall
using all expts.

93.3 100 100 100 100 85.71 8925 96.53 a8.7 91.16 9692

Figure 1.7. Recall rate for the complete set of multifactorial experiments
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Figure 1.8. Recall rate relative to the number of individual experiments used

Figure 1.8 shows that the gain in the consensus recall rate follows a nonlinear
trend with more significant gain in the smaller network versus the smaller
incremental (but still nonlinear) in the larger network. Increasing the sample size
from a single experiment to three experiments (i.e. n = 3), results in a 2-fold
increase in the consensus recall rate; a further increase in sample size to n = 5 results
in a 1.16 fold change increase in recall. This is a highly desirable property given the
costs in running biological experiments. For example, we see that with 20% of the
experiments, we can get between 70 to 80% recall. As discussed above, with further
increases in sample size the prediction rate reaches a plateau, which is much higher
than that of other approaches.

1.3.1.2. Prediction under incomplete data

For a given network, a single experimental dataset normally reveals only a
fragmented view of the underlying gene network. The sparsity of the experimental
data is partly due to regulation at the protein level which is not captured in gene
expression data. Statistical (thresholding) and experimental noise, as well as the
inherent robustness and redundancy properties of biological networks that may mask
changes in gene effects [ROT 13], also contributes to the sparsity of data. An
inference method should be robust to missing non-observed genes and be able to



26  Logical Modeling of Biological Systems

retrieve biologically consistent information about their states. We validate here the
ability of our ARNI approach to infer state information about genes that are not
included in the given FxpData set. We have done so by pooling all individual
experiments in the multifactorial datasets creating a sample size of 700 points (50
experiments for each of the 10-gene and 50-gene networks and 100 experiments for
each of the 100-node networks). For each experiment, the percentage of
non-observed data is given by the percentage of non-seed genes over the total number
of genes in the gold standard network. We have run ARNI and computed the recall
rate.
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Figure 1.9. Recall rate under decreasing number of experimental observed genes

Figure 1.9 shows a general trend of decreasing recall rate with the increase of
percentage of missing data. For some percentage of non-observed data, the recall rate
varies quite a lot. This reflects that our approach is sensitive to the specific choice of
seed genes. The random nature of the perturbation effects in the multifactorial
datasets leads to some datasets performing particularly badly (i.e. the random effects
chosen were inconsistent with the underlying topology of the network). The
robustness of our approach to missing data depends on the topological location and
the distribution of the seed genes. With an appropriate choice of seed genes recall
rates can be in the range of 80% for datasets with as high as 80% missing data. The
desired properties of seed genes is to be widely distributed across the networks and to
include both upstream and downstream genes. In these experiments the choice of
seed genes was not controlled. They were determined by the experimental noise in
the data and the biological perturbations in order to be as close as possible to realistic
scenarios in real world applications. So, we can only speculate that, under this
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scenario, the combination of depth bounded paths between seed genes and the
declarative nature of our logic representation would allow the inference of a large
proportion of non-observed genes.

In summary, we have shown that our approach is robust to noisy and incomplete
data, and it can achieve higher recall rate than established techniques while requiring
less experimental data.

1.3.2. ARNI expressive power

In section 1.1, we stated that the high-level declarative model used in our ARNI
approach overcomes the limitations of existing methods in two ways: it is more
expressive, in the sense that it enables the inference of networks with more complex
regulatory structures, and it is modular, as it allows the logic model to be easily
adapted to new available information (e.g. addition of new constraints). In this
section we substantiate these claims by a series of experiments that demonstrate the
expressiveness and modularity of our approach.

1.3.2.1. Network motif representations

Network properties and dynamics are determined by recurrent patterns of
interactions known as network motifs. In section 1.1, we have argued that an effective
method of inference has to be able to extract from experimental data regulatory
networks that incorporate such motifs. Network motifs can be of different structural
complexity. In this chapter we consider motifs given by 3-node feedback loops (FL)
and 3-node feed-forward loops (FFL), which contain cascades, fan-in and fan-out
components?.

A regulatory network is said to exhibit a given motif type (or the motif type
occurs in the network) when all the signed-directed links that comprise the motif
appear in the network. Similarly, a regulatory network inferred by our ARNI
approach is said to exhibit a given motif type (or the motif type occurs in the inferred
network) when all the signed-directed links that comprise the motif are included in
the abduced compatible and competitive signed-directed links. So, given a gold
standard network with n occurrences of a network motif, the ability of ARNI to
detect a given motif is measured by the notion of motif detection rate. This is the
percentage of occurrences of a motif in the inferred network with respect to the
number of occurrences of the same motif in the gold standard network. As
compatible and competitive links can only be abduced within the scope of the
abduced relative_ip that connect seed genes, we have also considered an
additional measure, called motif inclusion rate. This is the percentage of occurrences
of a given motif within the relevant_ip of an inferred network with respect to the

9 These are among the most complex motif structures.
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number of occurrences of the same motif in the gold standard network!0. Given these
two measures a normalized detection rate has also been computed as the ratio
between the motif detection rate and the motif inclusion rate. We have considered the
gold standard networks described in section 1.3.1 and verified that with respect to the
four types of motifs described in Figure 1.10 the normalized detection rate of our
approach is above 75%.

Positive FL Negative FL Coherent FFL  Incohernet FFL

/O\ /O R ¢\
O-0 Oﬂ\O O-0 0O—0

n=9 n=4 n=267 n=342
Multifactorial consensus
network
Inclusion 100 100 98.88 98.54
Detection 100 100 95.5 96.78
Normalised Detection 100 100 96.6 98.21
External response
networks
Inclusion 88.09 100 52.81 49.41
Detection 88.89 75 46.06 48.53
Normalised Detection 100 75 87.23 98.22

Figure 1.10. ARNI’s network motif detection profile

For each of the four motifs shown in Figure 1.10, we have calculated the number
of its occurrences across all the gold standard networks. A total of nine positive
feedback loops, four negative feedback loops, 267 coherent feed-forward-loops and
342 incoherent feed-forward loops were identified. Using the networks inferred in the
multifactorial and external-response experiments, we have calculated the three
parameters motif inclusion rate, motif detection rate and normalized detection rate
per each motif type. Results are shown in Figure 1.10.

The nearly perfect detection rates observed for the consensus networks indicates
that ARNI has no built-in assumptions that forbid the detection of any of the motif
types considered, thus validating the hypothesis that ARNI can detect a range of
complex network structures known to be present in biological networks. The only
lower values are for the coherent FFL and incoherent FFL motifs. In these cases the
network for the external response experiment has a detection rate below 50% but it
still has high value of the normalized detection rate. This indicates that the low
detection rate is due to the inability of the given seed genes to cover the whole
network, instead of failure of the constraints for biological consistency, [1.20]-[1.23]
and [1.24]-[1.28]. We have verified this hypothesis by rerunning, for the incoherent

10 Note that because of the biological consistency constraints, these two measures do not
necessarily give the same results.



Symbolic Representation and Inference of Regulatory Network Structures 29

FFL motif, the same experiments but without constraints [1.26]-[1.28]. We have
found a marked reduction in the detection rate but the same inclusion rate (inclusion=
49,41%, detection=5%). This is because, as shown in Figure 1.11, when these
constraints are not considered the ability to infer competitive influence is much
reduced (i.e. both the median and maximum recall rate of competitive
signed-directed links is lower when [1.26]-[1.28] are not included in the model).
This not only highlights the importance of modeling competitive gene influences in
general, as it increases the recall rate, but it also shows the relevance of competitive
influence for the detection of network motifs.
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Figure 1.11. Effect of reasoning over competitive gene influenceson recall rate

As is the case for the recall rate, the motif detection rate depends on the set of seed
genes given to the abductive inference task, as different choices of seed genes may lead
to different proportions of missed signed-directed links. To exclude the possibility
of a systematic error in the evaluation of the detection rate, we have also tested for
over-representation of motif links within the missed signed-directed links in order to
answer the following question: is a motif edge more likely to be missed over a non-
motif edge? Absence of systematic errors would be indicated by equal probability of
missing a motif and a non-motif link.

All links in the gold standard networks were classified as motif link or non-motif
link, depending whether or not they occurred in any of the four tested motifs. Then,
the two worst performing (i.e. lower recall rate) multifactorial datasets (50-node Net-6
and 100-node Net-9 in Figure 1.7), were considered, and for each random perturbation
experiment with respect to these two datasets, we labelled the abduced signed-directed
links that also appear in the corresponding gold standard as inferred and the others as
non-inferred. We then performed a chi-squared test on the two factors (motif link and
inferred link) to test if there is an over-representation of a particular motif in the links
not detected (i.e. false negative). Specifically, we tested whether the ratio of inferred
over non-inferred links for motif edges was lower than the ratio of inferred over non-
inferred links for non-motif edges. Out of the 150 experiments tested, none of the
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p-values was significant (i.e. p-value < 0.05). Hence, we have been able to conclude
that our validation of ability to predict motifs was not affected by the particular signed-
directed links that were missed.

These experimental results are also particularly promising in underlying the
advantage of our logic-based inference approach versus other existing inference
methods for regulatory networks. Results published in [MAR 10, MAR 12a] on
similar network motif analysis for existing methods have demonstrated that these
methods do indeed suffer from systematic errors in detecting feed-forward loops,
cascades (i.e. incorrect prediction of shortcuts) and fan-in motifs (i.e. missed
regulation between two genes). In our approach the use of prior knowledge on
interactive potentials has helped in overcoming this shortfall. To substantiate even
further the improvement that our logic-based approach provides in detecting network
motifs versus existing approaches, we have compared our results with respect to
those achieved using a benchmarking method in physical network inference, referred
to as PNM [YEA 04]. In this case we have chosen a network, active in T-cells, that
controls T-cell differentiation into two different subtypes. The T-cell network
topology is illustrated in Figure 1.12(a). The network includes multiple feedback
loops (positive and negative), feed-forward loops and cascades that lead to the
regulation of a gene either via transcriptional regulation (triangles) or
post-translational regulation (circles). We have applied our ARNI approach and PNM
method on simulated data (under no noise conditions) with STAT4 and the three
sources, INFy, IL4 and IL12, in diamond shapell as seed genes. ARNI was able to
infer the entire gold standard network (Figure 1.12(b)) whereas the PNM approach
was able to infer only a partial network (Figure 1.12(c)).

The missed and mislabeled links in Figure 1.12(c) can be attributed to specific
limitations of the PNM modeling. The PNM approach can only infer simple paths, so
it does not support feedback loop detection. In fact, five of the eight missed links are
part of a feedback loop. In addition, the PNM modeling rules impose the restriction
that the last link in a path from source to target should be a transcription factor
(triangle). But in the gold standard, the IL12R regulation of STAT4 is at the
post-translational level causing the path linking IL12 to STAT4 to be missed in the
PNM output network. This is clearly a limitation of the PNM, as post-translational
regulation has been shown to be an important component in integrated
networks [JOS 10]. Finally, the mislabeled link between IL4 and IL4R demonstrates
the inability of PNM to reason about competitive gene influences. IL4R is under the
competitive regulation of IL4 and SOCSI, and in the particular dataset, SOCS1
overpowers IL4 to determine the required state of IL4R. As PNM does not make use
of prior knowledge about regulatory potential, it ends up inferring sign consistencies

11 The background knowledge in each case included complete knowledge of interactive
potential and regulatory potential with the expressive level as depicted in the figures (i.e. dark
grey for up regulated and light grey for down regulated).
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that are against the known IL4’s regulatory potential. ARNI has correctly inferred the
link between IL4 and IL4R as overpowered activation.

A" Gold Standard B ARNI ¢ PNM

SEIATH Y - STA
v '

Figure 1.12. Inference of T-cell differentiation network a) using ARNI b) and PNM [YEA 04] c).
The query gene is shown with black border. Diamonds denote source of perturbation, eclipses
denote proteins, triangles denote transcription factors. Arrow types denote the regulatory effect:
regular (activator) and cut (inhibitor). Dashed lines denote overpowered influences. Wavy lines
denote incorrectly inferred link

In summary, we have shown that ARNI can infer complex regulatory structures,
achieving improved expressiveness over existing methods. The non-restrictive nature
of the symbolic representation, coupled with reasoning over competitive gene
influences and prior knowledge are key features of our approach for the detection of
network motifs.

1.3.2.2. Representing complex interactions

As it transpires from section 1.2, the constraints of our logical model are grouped
by categories of functionally related concepts. Constraints [1.9]-[1.33] form the core
of our model and should therefore always be included in any of the two abductive
tasks defined in section 1.2. In order to tailor our abductive tasks to specific
inferences required by the biologists, additional constraints and assumptions can
easily be included in the model without having to redefine it. For instance, in addition
to the conventional gene regulation, a biologist might want the inference process to
take into account co-ordinated regulations. This type of information is typically not
available in online biological repositories, and it relies mainly on the knowledge of
the biologist. We consider in this section how our model could be extended to allow
for two types of coordinated regulations, called, respectively, allosteric inhibition
and protein complexes.

Allosteric inhibition occurs when the binding of one protein on a target prevents
the action of another regulator on the same target. Specific instances of allosteric
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inhibitions could be easily expressed by constraints of the form given in [1.36] and
[1.37]. In this specific case, g; is the target gene and g3 is the binding gene whose
activated influence stops the regulation of gene g, over g;. In fact, if given the
experimental data and the prior knowledge, it is possible to infer that gz is
up-regulated (i.e. state(gs,1) and compatible(gs,gy,s) had been consistently
abduced for some value of s), then it cannot be consistently inferred that g, activates
g1.(i.e. compatible(gs, ga, 1) cannot be abduced). Because of the maximization of
the abductive solution and constraint [1.36], the inhibition of g; by gz will be
inferred.

ic < compatible(g;, g, 1), compatible(gs,gs, —1) [1.36]

ic < state(gy, 1), state(gy, 1), compatible(gs, ga, 1), not inactivated(gs)
[1.37]

inactivated(X) + state(X,—1), compatible(X,Y,S)

The above constraints essentially enforce a notion of strong inhibition: in the
presence of opposite influences to a common target gene, g1, the activation of g; by
gene g, can only be inferred provided that the inhibition by gz cannot be abductively
proved. This is captured by constraint [1.37] and the given definition of
inactivated.

A protein complex occurs when two genes bind to each other to form a complex,
which then acts on another target gene. The effect of a complex on a target can be of
either activation or inhibition. An activating protein complex is only important in
explaining the up-regulation of a gene, whereas an inhibitory protein complex is
important in explaining the down-regulation of a gene. In situations where one
component of an activating (respectively, inhibitory) complex is down-regulated, it is
sufficient on its own to explain the down-regulation (respectively, up-regulation) of
its target irrespective of the state of the other component in the complex. The
behaviordescribed above, can be expressed with constraints [1.38]-[1.39] for
activating complex and [1.40]—[1.41] for inhibitory complex. In the case of activating
complex, constraints [1.38]-[1.39] ensure that the same type of interaction of both
genes forming the complex are inferred (i.e. in this case g, and gz form a complex
and they both have to have the same signed-directed link with g ). The state of g; has
to be in this case up-regulated, since the activating effect of a complex is only
important for up-regulation. Constraints [1.40]-[1.41] capture the case of inhibiting
complex, where the down-regulation (i.e. state(g;, —1)) is instead relevant.

ic + state(gi, 1), compatible(g;, g2, 1),not compatible(gs, gs, 1) [1.38]
ic < state(g;, 1), compatible(g,gs, 1), not compatible(gs, g, 1) [1.39]

ic + state(g;, —1), compatible(gs, g2, —1),not compatible(gs,gs, —1)
[1.40]
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ic < state(g;, —1),compatible(gs, gz — 1),not compatible(gs, ga, —1)
[1.41]

Note that constraints [1.38]-[1.41] are conceptually different from constraints
[1.36]-[1.37]. The latter enforce the absence of a link, whereas the former enforce
the presence of a link. Adding these additional coordinated regulations may result in
significant changes in the resulting networks. For instance, taking as an example a
protein complex that controls cell cycle, we would need to express that cyclinE and
cdk2 form a complex that leads to inactivation of retinoblastoma (rb) protein. This
can be expressed using constraints [1.42]-[1.43] below.

ic < state(rb, —1), compatible(rb, cyclinE, —1),
not compatible(rb, cdk2, —1) [1.42]
ic + state(rb,—1), compatible(rb, cdk2, —1),

not compatible(rb, cyclinE, —1) [1.43]

Embedding [1.42]-[1.43] within our logical model for the inference of a bigger
network would exclude some scenarios that would otherwise be abductively inferred.
In datasets where rb is a non-observable gene, constraints [1.42]-[1.43] would
guarantee that only the correct state for rb is inferred, namely rb is inferred as
down-regulated in the context of datasets where cdk2 and cyclinE are up-regulated.

In section 1.4 we demonstrate how constraints [1.42] and [1.43] can be used to test
specific hypotheses about the cell-cycle pathway.

1.4. ARNI assisted scientific methodology

In this section, we show that our ARNI approach is not only advantageous for
network prediction, but also for performing explanatory scientific reasoning about
signal propagations and meta-level reasoning over (inferred) regulatory networks.
Specifically, in section 1.4.1 we illustrate how ARNI can enhance scientific
knowledge discovery. We present examples in which ARNI is used as a “scientific
assistant” to help experts rationalize their hypotheses and guide them on identifying
further experiments to improve the biological accuracy of the inferred networks.
Section 1.4.2 examines how our logical model can also be used to abductively infer
discriminating tests to help choose among alternative regulatory networks.

1.4.1. Testing biological hypotheses

The ARNI approach provides a general logic-based model of gene regulations
that can be applied to any problem of interest. The flexibility and modularity of the
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logical framework allow biologists to setup and perform different inference tasks (see
definitions 1.2 and 1.3), such as topology inference, state prediction and model
checking, within the same framework. We examine, in this section, how our ARNI
approach can be used as a scientific assistant in supporting biologists through an
iterative, investigative process. Each iteration is composed of the following steps: (1)
automated analysis of the correctness of a current network with respect to a desired
biological property (i.e. model checking task), (2) human-driven biological
assumptions to address any identified counterexample, and automated check that the
new assumptions would eliminate the counterexamples and therefore establish the
desired biological properties, (3) automated prediction of the effects that the
additional biological assumptions would have on the existing network and (4)
automated verification of the correctness of the newly inferred network. We illustrate
this process by using a regulatory network that is active in T-cells and controls T-cell
differentiation into two different subtypes. This is the same network we have referred
in section 1.3.2.1 to demonstrate the expressiveness of our approach. The four steps
of a single iteration, applied to this example, are illustrated in Figure 1.13. The
iteration starts from a given (potentially incomplete) network (Figure 1.13(a) left)
and it ends with the correct network (Figure 1.13(a) right).

Before describing the single steps, we give the relevant biological context of this
example. T-cells have been shown to exist in a bistable environment and are either in
a state of high t-bet phenotype controlled by infy, or in a state of high gata3
phenotype controlled by il4. Once the network reaches one of these two states, its
behaviorbecomes irreversible independently of the stimuli subsequently
received [MEN 06]. Because of this bi-stability the abduced regulatory network
should not exhibit the property:

high 114 leads to low t—bet expression or high inf~ leads to low gata3

To verify this bi-stability property, the biologist can start from either of the two
possible unstable cases: “high il4 leads to low t-bet expression” or “high infy leads
to low gata3”. Let’s consider the first case. If the regulatory network was correct, this
property would not be satisfied even in the presence of high infy. We have performed
this model checking task by using the abductive inference task given in definition 1.3
with respect to Query 1 in Figure 1.13(b). This query is captured by the following
logical query and new background knowledge facts:

Query: New assumptions:
state(il4, 1) state(inf~v,1) |seed(ild) seed(inf~)
state (t-bet, -1) seed (t-bet)
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Figure 1.13. Using ARNI to support the scientific process of extraction of correct regulatory
network structures from experimental data. a) A single iteration process, starting from a given
(potentially incomplete) network (left) and ending with the correct network(right). b) Left:
Automated analysis of the correctness of the current network with respect to the data (i.e.
model checking task), Right: Reviewing of counterexamples by biologists can result in possible
changes to the network to establish the correctness. c) Automated prediction of the effects
that the additional biological assumptions would have on the existing network can result in
additional behaviors to be considered in order to guarantee correctness

The system was able to infer an explanation of how il4 can down-regulate t-bet,
which demonstrates lack of biological stability. Such an explanation can therefore be
seen as a counter-example to stability. It not only shows that the given topology is
insufficient to explain the bi-stability behavior, but it also provides an example
behaviorof non-stability, competitive(il4R,socsl,—1). Reviewing this
counter-example, the biologist can formulate possible changes to the network. One
such hypothesis is that socs1 should act as a strong inhibitor (known in biology terms
as allosteric inhibitor) of i14R in order to block il4R signal propagation and establish
stability. This additional assumption (i.e. dashed arrow between left and right
network in the model checking box of Figure 1.13(b)) can be expressed in our ARNI
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model by the addition of the integrity constraint [1.44], which states that “il4 has an
effect on il4R, provided that socs] is not unregulated”!2.

ic < compatible(il4R,il4,1),activated(socsl) [1.44]

activated(socsl) < state(socsl,1), compatible(socsi,X,S)

Repeating the same query as above but now with constraint [1.44] ARNI returns
no solution, which in logical terms means that the given network with the additional
hypothesis can no longer find consistent sign propagations that explain the query
“high il4 leads to low t-bet expression”. Biologically this is because socsl can be
proven to be upregulated as one of its regulators, statl, is upregulated. Hence,
compatible(il4R,i14,1) cannot be abduced, removing the only possible path
from il4 to T-bet. This second step of model checking proves that a stable t-bet
phenotype can be established in the given network under the assumption of allosteric
inhibition at i14R, captured by constraint [1.44].

But the initial property of the network is bi-stability. So the added constraint should
not affect gata3 stability, which means that property “high ing~ leads to high gata3”
should succeed under the same constraint of allosteric inhibition at il4R (or socsl
strong inhibition). The third step of our iterative process is then used to predict the
effect that socs1 strong inhibition has on gata3 stability. We have used ARNI to predict
sign propagation to explain the query gata3 stability, formalized below, with constraint
[1.44] now part of the IC of our abductive task.

Query: New assumptions:
state(il4, 1) state(infv,1) |seed(ild) seed(inf~)
state(gata3, 1) seed(gata3) seed(socsl)
state(socsl, —1) constraint (1.44)

In this case, we seek an explanation that predicts socs1 as downregulated under the
assumption that gata3, infy and il4 are high. The only explanation is that statl cannot
exert an effect on socsl on its own, in conjunction with gata3 overpowering statl’s
effect on t-bet and thus maintaining t-bet downregulated. The explanation generated
by the ARNI system includes the two abducibles competitive(socsl,statl, 1) and
competitive (t-bet, statl, 1), which are depicted with circled arrows in the
network in Figure 1.13(c). The biologist may use this prediction to infer a mechanistic
biological hypothesis that t-bet and statl act on socsl via a protein complex and that
gata3 augments its own expression resulting into statl overpowering. These are new
biological hypotheses that can be further tested in the lab.

12 This is easy to do because of the possibility of expressing in ARNI complex interactions as
discussed in section 1.3.2.2.
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1.4.1.1. Testing cross-talk between signaling pathways

As a scientific assistant the ARNI approach can be used by biologists to test a
variety of biological hypothesis. An interesting biological hypothesis is the cross-talk
between specific parts of a regulatory network. This type of specific hypothesis is
related to the notion of complex regulations, briefly introduced in section 1.3.2.2.
The basic idea of a cross-talk hypothesis is the existence of at least a signed-directed
link between two genes that belong respectively to two (biological) pathways (i.e.
parts of a network) responsible for together regulating a common biological process.
Such signed-directed link is needed to either guarantee the combined effect of the
biological pathways or to provide alternative activation pathways. Consider, for
instance, the biological pathway (or pathway in short) given at Figure 1.14(a). It
includes genes p53, wafl, cdk2 and cyclinE, and it regulates the rb gene. We refer to
this biological pathway as cell_cycle, as it is a well known part of a p53 biological
pathway responsible for controlling the cell-cycle and ensuring that cells do not enter
into uncontrolled cell proliferation stage. Genes cyclinE and cdk2 form a protein
complex that act on the target gene rb. Under normal conditions the cell_cycle
pathway causes the up-regulation of rb, via the up-regulation of p53 and inhibition of
the cyclinE/cdk2 complex.
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Figure 1.14. Investigating cross-talk in the p53 cell_cycle pathway. Successful candidates
should have a positive effect on both components of the cdk2/cyclinE complex

Biologists are then interested in identifying the existence of cross-talks between
this pathway and another given biological pathway, for instance one regulating genes
cyclinE and cdk2, referred here as candidateBioPathway, that if it becomes activated
is able to reverse the effect of the cell_cycle pathway on rb. Identifying cross-talks
between the cell_cycle and another biological pathway could for instance be
significant in revealing potential interventions points for the development of cancer.
For instance let’s assume that gene p53 is up-regulated. We still would like to
guarantee that gene rb is maintained down-regulated. According to just the cell_cycle
pathway, the up-regulation of p53 would cause the up-regulation of rb, so to
guarantee the down-regulation of rb, an appropriate signed-directed link between a
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gene in the candidateBioPathway and a gene in the cell_cycle is desirable (i.e.
cross-talk between the two biological pathways). So testing for an explanation of b
being down when p53 is up means identifying a signed consistent cross-talk between
the two pathways. The correct situation of cross-talk is illustrated in Figure 1.14(b),
where a regulation exist between a gene of the candidateBioPathway and both gene
cdk2 and gene cyclinE, which are genes of the cell_cycle pathway. Note that if
protein complex constraints [1.42]-[1.43] were not included the same signed
propagation abductive reasoning task would generate solutions where a regulation
exists between a gene of the candidateBioPathway and only one of the components
of the cyclinE/cdk2 complex. These cases are illustrated in Figure 1.14(c).

To use our ARNI approach for this type of hypothesis testing, the following
integrity constraint [1.45] can be added to IC, together with the definition, in the
background knowledge, of the genes that belong to two biological pathways under
consideration. The table below shows an example definition of two biological
pathways added to the background knowledge, where cell_cycle is abbreviated by
ccP, and candidateBioPathway, abbreviated by candP, is assumed to be composed of
four genes gl, g2, g3 and g4. We also assume that p53, rb, gl and g2 are seed genes.

ic + not crosstalk(cell_cycle, candidateBioPathway) [1.45]
crosstalk(P1,P2) < inBioPathway(P1,G1), inBioPathway(P2,G2),

connect_seeds(MaxLength, Path), member(G1,Path), member (G2, Path)

Query: New assumptions:

state(rb, —1) [seed(rb) seed(p53) state(p53,1) seed(gl) seed(g2)
inBioPathway(ccP,p53) inBioPathway(ccP,wafl)

inBioPathway(ccP, cdk2) inBioPathway(ccP,cyclinE)
inBioPathway(ccP,rb) inBioPathway(candP,gl) inBioPathway(candP, g2)
inBioPathway(candP, g3) inBioPathway(candP, g4)

If our signal propagation, abductive reasoning task finds a solution A this will
specify a network that connects the given seed genes and that, because of constraint
[1.45] has also to include at least two genes of the two given biological pathway.
The sign directionality of this network will have to explain the given query of down-
regulation of rb when p53 is upregulated. The existence of such a network guarantees
the existence of a cross-talk between the two given biological pathways.

In summary, we have presented in section 1.4.1 two key examples of how our
ARNI abductive framework can be used as a scientific assistant for testing biological
hypotheses. The logical model can be easily adapted to new information that
becomes available or relevant to the biological investigation. Biologists can
customize the set of seed genes, the set of constraints and/or add hypothetical
biological priors in order to explore biological hypotheses by posing queries and
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identifying relevant unknown gene influences that consistently explain the given
queries. We have illustrated these concepts by considering two examples: the
combinatorial regulation of T-cell differentiation network, and the investigation of
cross-talk between known biological pathways, where the emphasis has been on the
addition of specific domain-dependent integrity constraints. In a similar fashion, the
choice of seed genes provides the biologists with a declarative means for controlling
the solution space. For instance, explanations for oscillating genes could be inferred
via an abductive task that only defines the oscillating genes as seed genes. Our
logical-model would in this case be able to infer feedback loops to the oscillating
gene, thus revealing novel candidates of negative feedback regulation hidden in
experimental data.

1.4.2. Informative experiments for networks discrimination

In all the experiments described so far we have assumed complete biological prior
knowledge. If such knowledge were incomplete (e.g. established_regulation
was incomplete), our ARNI abductive task would generate multiple regulatory
networks (if any exists) that are consistent with the experimental data and integrity
constraints. In real world biological applications, it is indeed often the case that
biological knowledge available in online databases is not complete. One of the key
challenges is how to decide which of the networks is the “correct” network. In
section 1.4 we have presented a process, based on the integration of model checking
and state prediction, by which biologists can perform iterative steps of computational
investigations to ascertain missing biological assumptions. This process eventually
leads to newly discovered information about genes that biologists can further test in
the lab. In principle, this process could be applied to the different inferred networks.
Clearly, if more networks are inferred during this process, more tests would need to
be performed in order to empirically verify the new findings. As biological
experiments come with their own costs it is therefore desirable to have a
computational mechanism that identifies key lab tests. These are tests that,
independently of their empirical outcome, can rule out the incorrect inferred
networks.

Existing work [MCI 94] have demonstrated that abductive reasoning can be used,
in particular in medical diagnosis, for automated test generation. Different classes of
tests can be defined in terms of abductive solutions of different specific abductive
tasks (see [MCI 94] for further details). Building upon these results, a notion of
discriminating test can be defined and used for discriminating inferred regulatory
networks. In order to rule out a network, among all the inferred alternatives, it is
sufficient to disprove just one of its signed-directed links. A test can therefore be seen
as a pair of the form (Gene, Observation), where Gene is a single gene in the pool
G covered by all the alternative networks, and Observation is a possible state the
Gene can be in (i.e. either up-regulated or down-regulated). A discriminating test is
therefore a pair (Gene, Observation) that is consistent with the current prior



40 Logical Modeling of Biological Systems

knowledge and experimental data but that, independently of the value of the
Observation, can refute at least one inferred network. Namely, that for the outcome
up-regulated of the tested Gene there would be at least one inferred network NV; that
is refuted, and that for the outcome down-regulated there would be at least another
inferred network [V; that is refuted. There are several types of biological tests. For
example, we can test the state of a gene, by measuring its level in lab, or we could
test for causal relationship between genes by performing knock out experiments
using siRNA. The former is the simplest case and it can be represented as
test_outcome(G, 0). This fact can be treated as an abducible of a specific abductive
task for the inference of discriminating tests, and it can be used to define the state of
gene G, i.e. state(G,0) « test_outcome(G,O). The inference of state(G,O) is
consistent with some inferred networks but also inconsistent with others. So, given
the whole collection of inferred networks, the inference of a discriminating test can
be specified as the abductive task of inferring a test_outcome(G,0) that will
maximize a given user-defined score priority. The simplest such priority can be in
terms of number of inferred networks that the specific test outcome will be
inconsistent with (i.e. rules out). A full detailed description of how we can formally
define such an abductive task is outside the scope of this chapter, but preliminary
investigations have confirmed our intuition that ASP and its optimization
mechanisms provide an ideal computational environment for such an abductive task
and can be easily built upon the ARNI logical model we have developed.

1.5. Related work and comparison with non-symbolic approaches

A number of statistical approaches to gene network inference exist. These can be
divided into three main groups:!3 [LAN 08, SCH 05, MAR 06, FAI 07] use different
statistical dependency measures motivated from information theory to infer
unsigned-undirected co-expression networks. The works
in [FRI 00, FRO 08, WER 08] use probabilistic graphical models to infer joint
probability distributions over the observations. Another group of methods use
regression analysis to identify best predictors for each gene [IRR 10, KUF 12]. A key
advantage of the approach we have presented here, compared with statistical
approaches, is the ability to incorporate background knowledge on interactive and
regulatory potentials. Having a scaffold of interactions over which unknown
networks can be inferred overcomes a number of problems: (1) the sparsity in the
input data is addressed and genes in the inferred networks are extended beyond those
experimentally measured, thus resulting in more complete networks, (2) the
systematic errors in network motifs representation, reported for statistical
approaches [MAR 10, MAR 12a], are not present in our method, thus resulting in
more realistic networks and (3) the inferred networks are based on physical

13 For a comprehensive review on non-symbolic based approaches, see [ROT 13, HE 09].
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molecular interactions and as such are easier to interpret and can reveal the
underlying biological mechanism of biological processes.

Abductive reasoning has been suitable for addressing a number of problems in
systems biology. [RAY 08, KIN 04] discover the function of genes from auxotrophic
growth experiments and synthetic lethal mutations, respectively, [RAY 10, TAM 06],
learn/revise metabolic pathways. More relevant to the approach discussed in this
chapter, [PAP 05] and [INO 13] use abduction to inferring signaling-transcriptional
networks. But existing proposals suffer a high number of false predictions.
In [PAP 05], gene dependencies are inferred to explain changes in the gene
expression levels using a predefined set of regulators that are allowed to regulate any
other gene. No biological prior knowledge is considered during the inference process
and the approach does not cater for non-observed genes or concurrent gene
regulation. In [INO 13] the nature of the data and hypotheses used differs from the
one used here. The purpose of abduction is not to recover particular links, but rather
to enumerate all possible additional links in prior networks to connect a target to a
source node. The solutions are highly hypothetical, the inference process is not
driven by experimental data and the logic-based inference about concurrent gene
regulations works under the default assumption that an inhibitor always overpowers
an activator.

The approach taken in the ARNI system follows a series of works based on
physical network models (PNMs). PNMs aim to explain experimental observations
on a template of protein-protein and TF-DNA interactions, by establishing causal
chains between pairs of genes in such a way that the resulting information flow
satisfies signal propagation principles. Many different formalisms have been explored
for physical network reconstruction, including statistical scoring of active
subnetworks [IDE 02], maximum-likelihood [YEA 04], linear
programming [OUR 07], network flow optimization [YEG 09], and the Steiner tree
approach [HUA 09, TUN 13]. The existing works on PNM approaches are limited in
their ability to detect complex regulatory structures, see section 1.3.2.1, and the
extent to which they can infer causal (signed-directed) networks.
In [YEA 04, YEG 09, OUR 07], causal inference is restricted to source to target
analysis which is not applicable to observational data where the source of
perturbation is unknown. Methods that relax this
assumption, [IDE 02, HUA 09, TUN 13], can only inferred unsigned undirected
networks which have limited applicability for studying network dynamics and
motifs. The formulation of the model, as presented in our ARNI approach,
overcomes both of these limitations, allowing the inference of complex causal
networks from observational and intervention data.

A unique contribution of our method is that, while improving topology inference,
it constitutes a general logical framework that is elaboration tolerant, transparent to
biologists and provides support for meta-level reasoning to test hypotheses. Recent
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results have demonstrated how logic-based computational algorithms can be used to
address problems such as modeling, analysis and revision of complex biological
processes. Saez- Rodriguez et al. [SAE 09] developed CellNetOpt [TER 12], based
on boolean and fuzzy logic, for optimizing signaling pathways against measurements
of phosphorylation states. The problem of training logic-models of signaling
pathways is revisited in [VID 12], which formulates the problem within the
logic-based ASPenvironment and demonstrates a significant improvement on
computation time. The work in [FAY 09] adapts an ASP framework for modeling cell
cycle networks in yeast [DWO 08] to behave as a Boolean network. They conclude
that the ASP framework outperforms Boolean networks both on expressiveness and
scalability. In [GUZ 13], ASP is used to exhaustively characterize all possible
boolean models of signaling pathways. The work in [GEB 10b] proposes a new
library, called BioASP, to analyze biological networks with respect to a large amount
of high-throughput biological data. BioASP expresses the sign consistency model
presented in [SIE 06], which is closely related to our sign consistency constraints.
Automated  analysis  tasks include  detection and  explanation of
inconsistencies [GEB 08], computation of repairs and predictions [GEB 10a], and
expansions of existing biological models [SCH 09]. Although very promising and
effective on their computational tasks, none of these existing approaches can do
de-novo topology inference. In all the above methods, biological networks are
assumed given or known. More recently, abductive logic programming and ASP has
been used in [LAZ 13, PAP 12], to analyze the effect experiments have on established
networks and help biologists formulate new hypotheses and future experiments.

1.5.1. Limitations and future work

Incorporation of biological background knowledge is instrumental in overcoming
the limitations of statistical approaches to gene network inference. This, however,
introduces a bias in our ARNI approach towards interactions that have already been
reported. Despite the growing body of available high throughput interaction assays
providing a vast amount of interaction data, there are still unknown protein-protein
or protein-DNA interactions that remain undiscovered. Our ARNI approach can be
extended to complete networks with such previously unknown interactions. Logically
and conceptually these can be accommodated very easily by introducing an additional
abducible for interactive potentials and linking that to some constraints. Practically,
we will need to drive the inference by integrating statistical approaches capable of
detecting novel associations between genes, which might or might not correspond to
physical interactions. Any statistical associations that cannot be explained in terms of
paths in our approach, can be learned as new links in the networks. In this way we can
perform the task of adding new links as proposed by [INO 13] but in a more realistic
manner. In a recent work, [NOV 11] combines a Bayesian model describing modules
of co-expressed genes and their corresponding transcription factors, and a physical
interaction graph (undirected,unsigned), that links the transcription factors together.
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Their approach is limited because of inability to include feedback loops, the PPI are
unsigned-undirected, and the affected genes need to be preprocessed to clusters of
genes.

ASP solvers identify all possible solutions, which can result in a large number of
plausible networks. Our ARNI approach attempts to be as complete as possible in the
initial step of computing the networks and then provides tools for the automatic
generation of informative experiments that are most discriminatory over the inferred
gene networks. Further work still needs to be done, in terms of definitions of
informative experiments and revision operations, to formulate the revision task so to
guarantee the entire process to eventually converge to a single gene network. The
alternative networks can also be quantified probabilistically by incorporating our
logic model in a framework that allows probabilistic abductive inference [TUR 13].
Such a framework would allow the representation of probabilistic abducibles, whose
probability value can be interpreted as the the strength of the knowledge that led this
link to be inferred. The higher the probability the higher the chance that the
signed-directed link is true. Using these probabilities it could be possible to evaluate
the probability of the inferred networks and therefore provide a means for performing
model selection. Furthermore, using a BDD-based expectation maximization (EM)
learning algorithm [INO 09] we could also learn the probabilities of the
signed-directed interactions that would maximize the probability of each network
(i.e. the success probability) and then use them to rank the networks in terms of their
likelihood.

1.6. Conclusions

We have presented an approach, named ARNI, to logically model and
automatically construct through abductive reasoning, regulatory gene networks from
experimental data and background prior knowledge of gene interactions that might
be known at the time. The main challenges in gene network inference are often
considered to be the under-determined nature of the data (more parameters than data
sets), the noisy and sparse nature of high throughput data and the complexity of
network topologies. We have shown how ARNI makes key contributions to all three
areas and through a series of evaluation experiments we have demonstrated the
viability and potential of the approach.

The logical approach and nature of the constructed network models gives these
models not only predictive power but also a high degree of versatility in their further
development. They are easy to understand by the biologists and can be modularly
changed either with new information that has become available or with hypotheses
that the scientists want to examine before carrying out in vitro or in vivo experiments.
We have shown how ARNI can be embedded within a general framework that
supports automated scientific discovery where the validity of hypothesizing ideas can
be examined and tested outside the laboratory.
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This possibility of abstract analysis of potential ideas is central to the
development of scientific theories and perhaps the main advantage of any logical
approach to systems biology is that their high-level nature can facilitate this process
of thought experimentation. Given the current descriptive and qualitative nature of
much of biological knowledge, a logical formulation is well suited (compared to
other formal approaches), for the development of tools that would allow the
biologists to independently, i.e. without the continued help from computing experts,
analyze their new scientific ideas and hypotheses before moving into the laboratory
to test them. We envisage that it is possible to build an interface shell on top of ARNI
that would provide such a tool for biologists who are studying regulatory cell
networks.
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