
Chapter 1

Metamodeling in Software Architectures

To manage the complexity of systems and enhance their understanding,
different modeling techniques (e.g. object-oriented, component-based and
services-oriented software architectures) often define two or more modeling
levels using the definition of a metamodel, or even a meta-metamodel to
explain, comment, document, simplify, create and compare models.

In this chapter, we intend to emphasize the importance of metamodeling
in the context of software architecture compared to the metamodeling in the
object paradigm. This concept helps to abstract architectural concepts
(components, connectors and configurations) and facilitate handling, using
and reusing, analyzing and developing software architectures.

1.1. Introduction

During the last two decades, several languages for describing software
architectures have been proposed to promote the development of
architecture-focused applications. These languages provide, in general,
formal or semi-formal notations for describing and analyzing software
systems. They are usually accompanied by tools to analyze, simulate and,
sometimes, to generate the code of the modeled systems. The consensus on
the fundamental concepts that architecture description languages (ADLs)
must include was achieved relatively late; however, through the efforts of
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standardization and interoperability, new ADLs (known as second generation
ADLs) were introduced.

Moreover, it is proved that the specification of an architecture may go
through several levels of modeling, thus reflecting different categories of
users (application architects, application developers, builders of software
infrastructure, etc., see Chapter 3). One of the most appropriate techniques to
highlight these different levels of modeling is metamodeling and, more
precisely, the software architecture modeling frame that implements the four
levels of modeling proposed by the Object Management Group (OMG)
[OMG 03]. The highest level is represented by the meta-object facility
(MOF) meta-metamodel [MOF 02]. The goal of MOF is to define a single
standard language for describing metamodels. It consists of a relatively small
set (although not minimal) of “object” concepts for modeling this type of
information. For example, unified modeling language (UML) is one of the
metamodels described using MOF. Other notations for object metamodeling
also exist, including KM3 [JOU 06], ECORE [BUD 08] and Kermeta
[MUL 05].

In software architecture field, very few works have adopted the technique
of metamodeling. Architecture Meta-Language (AML) [WIL 99] is the first
attempt to offer a base that provides ADLs with a solid semantic base. AML
only defines the statements of three basic constructions: components, types
and relationships.

In this chapter, we propose an approach to model software architectures
at different levels of abstraction using a meta-metamodel called Meta
Architecture Description Language (MADL) [SME 05a].

In this context, MADL, like MOF, works as a unified solution for
architectural representations. In addition, it allows easy handling, using,
reusing and developing of software architectures. It reduces the complexity
of software architectures and facilitates the transformation and transition of
architectures from one to another. In addition, this meta-metamodel has a
minimal core whose purpose is to define the concepts and basic relations,
such as metacomponents, metaconnectors and metainterfaces. Based on this
meta-metamodel, we describe a strategy for mapping of ADL concepts to
UML concepts (particularly UML 2.0). We used UML as an example of
mapping because of its popularity in the industrial world. This strategy is
carried out in four steps: instantiating MADL by the selected ADL, mapping
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MADL to MOF, instantiating MOF by UML and, finally, the selection of the
most appropriate UML concepts for the selected ADL. This strategy reduces
the number of concepts obtained. As an example, we will show how to map
the ADLAcme [GAR 00] to UML 2.0.

1.2. Metamodeling, why?

An act of metamodeling has the same objective as an act of modeling
with the only difference in the modeling purpose. In all cases, it involves
supporting all or part of the lifecycle of a model: (formal or informal)
specification, design and implementation. In the case of reflexive models,
metamodeling makes it able for models to describe themselves.

We distinguish three different views of metamodeling [BOU 97]:

– Metamodeling as a reflexive technique: metamodeling is an act of
modeling applied to a model. It can allow a model to self-represent itself: we
refer to this as reflective models.

– Metamodeling as a technical dialogue: a picture is worth a thousand
words. This technique is increasingly used to explain, comment upon,
document and compare models (in particular semi-formal models used in
design methods). It is concerned with describing a model by its conceptual
concepts, the result of this is a specification step using a semi-formal (most
of the time) metamodel. This mapping therefore constitutes an explanatory
document and/or documentation of the model. It can also serve as a means of
comparison and unification of models.

– Metamodeling as technical engineering: this is concerned with
documenting, explaining and unifying “semi-formal” models. Natural
languages, if not so ambiguous, could be used as a metamodel. This is not
the case in an objective to support model engineering. It means applying our
own engineering techniques to our models. We can model a model for the
same reason as application systems are modeled.

1.3. Software architecture metamodeling

Metamodeling techniques have now reached maturity and have been
widely used to address real problems in programming languages, databases,
engineering models or distributed systems. In this chapter, we will show how
these techniques can be applied to the field of software architecture. We will
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also highlight the need to propose mechanisms of reflexivity in the context
of software architectures metamodeling.

In knowledge representation, we talk about meta-knowledge to evoke
knowledge about knowledge, metamodel for a model representing a model,
etc. [OUS 02]. In the context of software architectures, metamodeling is an
act of modeling applied to the architecture. The result of an act of modeling,
i.e. using an architecture to establish an abstraction of an application
architecture, is called architecture (level A1 in Figure 1.1) the A0
application. Similarly, the meta-architecture of an architecture itself is an
architecture that models an architecture. Since the act of modeling applies to
software architectures, the process is called meta-architecting. A meta-
architecture is therefore a formal or semi-formal ADL that allows the
modeling of particular systems, namely architectures. The meta-architecture
(level A2) is an architecture itself and therefore, in a more general way, a
system can thus be modeled. We then obtain the architecture of the meta-
architecture: meta-meta-architecture (level A3). As with any recurring
modeling, this process should stop on a reflexive architecture, that is self-
description. The number of levels makes little difference, but it seems that
three levels of modeling are sufficient in an architecture engineering
framework where level A3 will be used to self-model and model ADLs.

Figure 1.1. Four levels of modeling in software architectures

In the context of object-oriented models, this self-modeling is generally
implemented by the concept of a metaclass that guarantees the uniformity of
concepts and extensibility of the system. This involves designing an
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architecture by itself or using an architecture to describe or design another
architecture.

Metamodeling can also be a means of formalizing semi-formal
architectures. Formal ADLs based on mathematical forms ensure
unambiguous specification. However, these formal ADLs may seem
repulsive to application designers, and they are not easily understood by an
untrained person. It is therefore useful to be capable of carrying out
transcription of a semi-formal specification using a formal specification. The
approach is to specify, once and for all, the concepts of semi-formal
architecture in a formal specification. We then obtain a meta-architecture of
the semi-formal architecture, which can be used directly. The formal
architecture is used as a meta-architecture and produces the meta-
architecture of the informal architecture.

To summarize, we can say that the meta-architecture is a good way to:

– Standardize: architectures that are based on well-defined semantics.
These semantics are provided through meta-architectures. Each architecture
must conform to a meta-architecture, which shows how to define
architectures. The description of different architectures using the same meta-
architecture gives the meta-architecture a standardization role.

– Use and reuse: the same meta-architecture can be used and reused
several times to define new architectures.

– Compare: the meta-architecture is a good tool to compare several
architectures. In fact, the description of several architectures with the same
formalism facilitates comparison and analysis.

– Define and integrate multiple architectures: the meta-architecture
facilitates and supports exchange of architectures between the ADLs.

1.4. MADL: a meta-architecture description language

1.4.1. Four levels of modeling in software architectures

The four levels of OMG metamodeling [MOF 02] (see Table 1.1) can
be applied to software architecture. The result is a conceptual structure of
four levels: meta-meta-architecture level, meta-architecture level,
architecture level and application level, as shown in Table 1.1:
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– The meta-meta-architecture level (M2A, denoted as level A3): this
provides the minimum components of modeling architecture. The basic
concepts of an ADL are represented at this level (e.g. metacomponent and a
metaconnector in Figure 1.2).

– The meta-architecture level (MA, denoted as level A2): this provides
the basic modeling components for an ADL – component, connector,
architecture, ports, roles, etc. These basic concepts are used to define
different architectures. Meta-architectures conform to the meta-meta-
architectures. As part of a conformity relation, each element of MA is
associated with an element of M2A. For example, in Figure 1.2, component
is associated with metacomponent.

– The architecture level (known as level A or A1): at this level, several
types of components, connectors and architectures are described.
Architectures comply with meta-architectures (ADL); therefore, each
element of A is associated with an element of MA. For example, in
Figure 1.2, the client and server are components, the RPC is a connector and
the client-server is a system.

– The application level (A0): A0 is the place where the executive bodies
are located. An application is seen as a set of instances of types of
components, connectors and architectures. Applications are consistent with
an architecture. Each element A0 is associated with an element of A. For
example, in Figure 1.2, CL1 is an instance of client, S1 is an instance of
server, RPC1 is an instance of RPC and C-S is an instance of client-server.

Modeling by objects Modeling by components

The meta-metamodel at
M3 level MOF MADL

The meta-metamodel at
M2 level UML, CWM, SPEM, etc. Acme, COSA, UniCon, C2,

Fractal, etc.

The model at M1 level Models Architectures

The instance at M0 level Information Applications

Table 1.1. The four conceptual levels in object-oriented modeling
and component-oriented modeling
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Figure 1.2. The application of the four levels of OMG in
software architecture

1.4.2.MADL: reflexive core dedicated to the meta-meta-architecture

In this section, we describe the entities that are essential to precisely
define a reflexive meta-meta-architecture dedicated to metamodeling. This
meta-meta-architecture, like the MOF, functions as a unified solution of
representing architectures. It also needs to define a minimum core whose
purpose is to define the concepts and the following basic relations:
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– meta-element to define components and compotation units;

– metaconnector to define connectors and associations;

– meta-architecture to define architectures and configurations;

– metainterface to define interfaces.

MADL is a “reflexive” model, i.e. it models itself. This provision is
intended to end the “stacking” of architecture models, i.e. the use of an
architectural model to model the considered architecture model. In theory,
such a process can be infinite.

1.4.3.MADL structure

The meta-meta-architecture must be a minimum core whose purpose is to
define the components of meta-meta-architecture, which in its part defines
the element types for meta-architectures. It introduces the concepts of
metacomponents, metaconnectors, metainterfaces and meta-architectures
that are required to process and define the architectural concepts (structural
and behavioral). These metaconcepts are organized in a meta-meta-
architecture called MADL, shown in Figure 1.3 [SME 05a, SME 05b].

Figure 1.3. MADL structure
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Some basic principles about the structure of MADL are the following:

– MADL is component oriented in the sense that everything is a
component (all components are subtypes of the abstract class “Component”),
as in the MOF where everything is subclass of the abstract class
“modelElement”. We consider that the component is the basic architectural
entity of the model.

– Each architecture must be explicitly derived from a meta-architecture;
thus, all components of an architecture component are derived from the
meta-architecture.

– To remain compatible with the four conceptual levels of the OMG, each
architecture is an instance of its superior architecture (its meta) including the
meta-meta-architecture, which is an instance of itself.

– Dependencies between architectures and components are based on the
dependencies used in the model of the OMG, including instantiation,
inheritance and composition. Thus, we do not introduce new relationships.

MADL is organized into three packages:

– The meta-meta-architecture package: to define an architecture we need
a meta-architecture, and to define a meta-architecture we need a meta-meta-
architecture. Hence, the meta-meta-architecture package reflects the fact that
any architecture is derived from a meta-architecture. The meta-meta-
architecture package has all the concepts needed to define meta-architectures
and architectures. Meta-meta-architecture is not consistent with another
architecture, but it acts as its own meta-architecture. Similarly, each element
of a meta-meta-architecture must be combined with another element of a
meta-meta-architecture, to meet the self-consistent relationship, except the
meta-meta-architecture package, which is an instance of itself.

– The meta-architecture package: to define architectures, we need a meta-
architecture; thus, the meta-architecture package classifies and defines
architectures. Architectures contain components and connectors. Therefore,
meta-element and metaconnector are components of the meta-architecture
package. Accordingly, each component and each connector at the MA level
must be part of an architecture at the MA level. Meta-architecture itself is an
architecture; therefore, meta-architecture inherits the architecture package.
To allow architectures at the MA level to have interfaces,
meta-architecture also includes metainterface within its components.
Meta-architecture is consistent with the definition of meta-meta-architecture,
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that is, it is an instance of meta-meta-architecture. The meta-architecture
package contains the following metacomponents:

- Meta-element: this is an architectural metaelement that classifies and
defines constructors for the computing and support units at the MA level.
Meta-element is a component, so it inherits from the component class of the
architecture package. Meta-element is a part of the meta-architecture
package. To respect the principle of reflexivity upon which the MADL is
based, meta-element is an instance of itself;

- Metaconnector: this is an architectural meta-element that classifies
and defines constructors for the interactions at the MA level. Metaconnector
is part of the meta-architecture package;

- Metainterface: this is an architectural meta-element that classifies and
defines interfaces. Meta-element, metaconnector and meta-architecture may
have metainterfaces to allow the definition of interfaces for components,
connectors and architectures at the MA level. We assign a metainterface to
architecture for enabling architectures at the MA level to communicate with
other architectures or components. Moreover, metainterface can be
composed of another architecture and can inherit other architectures.

– The architecture package: software architecture components are part of
architectures; also MADL components are part of the MADL architecture
package. The principle on which the MADL is built, “everything is a
component”, is applied to the architecture package. Thus, the architecture
package inherits components. Note that this relationship is a conceptual
relationship. Therefore, architectures at the MA level behave like
components, i.e. they can communicate and have a relationship of
composition, and inheritance architecture is an instance of meta-architecture.
Architecture consists of the abstract class component that classifies and
defines all components of MADL. Therefore, all components of MADL are
inherited, directly or indirectly (the principle of “everything is a
component”) from the component class. Components and connectors at the
MA level may be generalizable and specializable, and they can also be
composed of other components. This justifies the existence of the inheritance
relationship and the relationship of the composition between the component
class and itself, and thus allows components at the MA level to have these
relationships. The component class is a part of the architecture package, and
each element at the MA level must be part of an architecture.
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1.4.4.MADL instantiation: example of the ADLAcme

The definition of a meta-architecture can be approached in two ways:

– In the first definition: “a meta-architecture is considered as an
architecture whose instances are architectures”. This definition fits well
within the paradigm of object-oriented languages. According to this
definition, MADL can be considered as a MADL allowing the creation of
concepts of languages such as Acme and C2. Based on this definition, a
meta-architecture can help create architectures by instantiation like in object-
oriented languages.

– In the second definition: “a meta-architecture is a representation of an
architecture made with an architecture model”. This definition is applied to
designate the representation of an Acme architecture made with an extension
of a MADL meta-architecture. Thus, for example, the “Meta-element” Acme
modeled with MADL represents all components that can be created with
Acme such as client components and servers. Based on this definition, a
meta-architecture is derived from an architecture by representation
operation.

The above two definitions of a meta-architecture are based on two
operations:

– instantiation: operation that helps create architectures from a meta-
architecture;

– representation of an architecture: operation that helps create a meta-
architecture from an architecture.

To define a new meta-architecture (new ADL), MADL is instantiated, and
a new model consistent with the definition of MADL is obtained. Each
element of the meta-architecture is an instance of an element MADL. For
example, the components and notations related to computation are instances
of meta-element; components and notations related to interaction and
communication are instances of metaconnector. Thus, for example,
components, properties and constraints are instances of meta-element, while
connectors, bindings and attachments are instances of metaconnector.

Figure 1.4 shows how MADL can be instantiated to obtain Acme. As
shown in this figure, each Acme element must conform to an element of
MADL. Components and systems are instances of meta-element; connectors



12 Software Architecture 2

are instances of metaconnector; ports and roles are instances of
metainterface; attachments (which connect a port to a role) and bindings
(which connect two ports or two roles) are instances of metaconnector.
Similarly, styles (which define families of systems) are instances of meta-
architecture.

Figure 1.4. MADL instantiation to obtain Acme
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1.4.5. Comparison of MADL and MDA/MOF

In this section, we will try to position MADL compared to the MDA
(model-driven architecture [FRA 03]) approach and to MOF.

1.4.5.1. Model-driven architecture (MDA) approach

The MDA approach was proposed by the OMG. It is presented as a
product in line with the OMG’s concerns of integration and interoperability
(“ensure that you can incorporate what you’ve built, with what you are
building, with what you will build” [FRA 03]).

MDA provides a response to the complexity of middleware. These
middleware can be “standard” such as CORBA, DCOM or “somewhere in
between” (JMI or HTTP/XML/SOAP) [TRA 05]. The idea of MDA is to
provide a “stable”, independent model for middleware, from which it is
possible to derive different tools. The objective is to build the model and
use/reuse it instead of constantly migrating one middleware to another. The
MDA is based on the OMG modeling standards: UML, CWM and MOF.

In fact, MDA offers several core models, corresponding to the M2 level
of the four levels of metamodeling architecture. According to the
terminology of the OMG, these models are also called “UML Profiles”. They
are dedicated to a class of problems, such as Enterprise computing or Real-
Time computing. These models are independent of any platform. Their
number is expected to grow to cover other needs. However, it is intended to
be relatively unimportant because everyone wants to be “general” and
includes features common to all problems in its category.

The UML profile is the foundation of the MDA approach, which explains
the use of the equivalent term “core model”. Below, we give an overview of
the concept of the UML profile. At present, there is no standard definition of
the UML profile. However, it is widely accepted that a UML profile is a
specification consistent with one or more of the following points:

– Identification of a subset of the UML metamodel: this subset can be the
entire UML metamodel;

– Definition of well-formalized rules, in addition to those contained in the
subset of the UML metamodel: a well-formalized rule is a term used in the
standardized specification of the UML metamodel. Such rules help describe
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a set of constraints in natural language (or using the Object Constraint
Language (OCL)) to define an element of the metamodel;

– Definition of standard components (standard components) in addition
to those contained in the subset of the UML metamodel: a standard element
is a term used in the specification of the UML metamodel to describe a
standard instance of a UML stereotype or a constraint;

– Definition of new semantics expressed in natural languages, in addition
to those contained in the subset of the UML metamodel;

– Definition of common components of the model, i.e. instances of UML
components, expressed in terms of a profile.

Whatever the target platform (component corba model (CCM), entreprise
java bean (EJB), etc.), the first step in developing an MDA-based application
is the creation of a Platform Independent Model (PIM) by instantiating the
metamodel.

Second, specialists of the target platform are responsible for the
conversion of this general application model to CCM, EJB or another
platform. Standard mappings, based on the “core model”, help consider a
partial automation of the conversion.

Not only artifacts specific to the platform are generated (in interface
description langage (IDL) and other languages), but also a specific model
(Platform-Specific Model (PSM)) is generated in this way. This model is
also described using a UML profile. This is called “jargon”. Due to the
mapping, UML reveals components related to the implementation on the
target platform. This gives a richer sense to the semantics of the solution
than with IDL or XML.

The next step is the generation of the code itself. The higher the UML of
the PSM reflects the target platform, the better the semantics and behavior of
the application can be integrated into the PSM, and the code can be
generated.

Among the advantages of the MDA approach described by the OMG, we
can report the simplicity of managing interoperability between developed
applications using the same “core model”.

Although the MDA approach is very often associated with profiles, the
OMG describes the MDA as a general framework for metamodeling in
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which the model is considered a first-class entity. Applicable operations to
these models (mainly PIM and PSM) are of two kinds:

– Manipulation: this term covers various operations such as storage,
exchange, display, derivation, fusion and alignment;

– Mapping (between models): conventionally, we count “PIM2PIM”,
“PIM2PSM”, “PSM2PSM” mappings, etc.

1.4.5.2. Positioning MADL/MDA/MOF

The MDA approach has a number of advantages. From the general point
of view, it combines the advantages of metamodeling and standardization
implemented by the OMG. If the number of basic models available is low, it
is, however, not fixed. The MDA device is “extensible” through new models,
as much as the MDA approach leaves open many challenges. Strictly
speaking, the integration activity, the consideration of legacy applications of
previous developments and the management of interoperability between
middleware are points frequently mentioned by the OMG as a number of
avenues to be explored. In addition:

– If the maximum automation of the mapping is a goal, we must consider
the use of the “manual” procedure, in the absence of MDA tools.

– At present, the degree of automatic code generation is relatively low.

– The OMG recommends completing the middleware-centered approach
by a model-centered approach.

As a result, it is possible to position the MADL as a new MDA base
model. More specifically, it involves proposing a new UML profile (PIM)
dedicated to software architecture whose originality, besides the fact that it
deals with a meta-architecture problem understudied in the ADL, lies in the
nature of its specialization. In fact, existing UML profiles are dedicated to an
application type (distributed systems, real time, etc.); thus, MADL would be
“orthogonal”, specialized in a particular activity of modeling ADLs. Being
able to represent meta-architectures with MADL with UML notation
provides a natural reuse of the graphical UML modeling tools associated
with it.
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More specifically, the “UML Profile” approach is aimed to extend the
UML metamodel by adding new concepts of ADL. This operation is based
on the use of stereotypes, tagged values and OCL constraints [WAR 98]. The
recognized advantage of this approach is the use of UML tools. The major
drawback lies in the difficulty to understand the separation between the
meta-meta-architecture (M2A level), the meta-architecture (MA level) and
architecture (level A). The term “dialect UML” is also used to describe this
situation.

The OMG proposes another metamodeling approach, which overcomes
this problem. This approach is called the “MOF”. It involves building a new
metamodel binding metaclasses by meta-associations and specifying OCL
constraints. It is an alternative to positioning the MADL. This approach is
tantamount to depriving de facto the UML tools and in any event has no
ADL concepts equipped with independent semantic loads from object-
oriented support concepts.

This is usually shown as the main drawback of this approach. At present,
the MOF approach is less “popular” than the UML Profile approach. The
latter is clearly implemented more frequently.

Currently, some research conducted by the ADL community focuses on
the development of “second generation” generic languages. The ADL
approach arising from academic circles has not been imposed. It is often
criticized for using difficult to implement formal notations and for providing
tools that are difficult to process.

Research is thus taking a new direction toward the work of the OMG.
These two communities have worked in parallel in recent years; the UML
semantics poverty in terms of software architecture concepts probably being
the cause (at least partially). Nowadays, the integration of the component
concept in UML 2.0 can also be interpreted as a sign of this development
and suggests the possibility of defining architectures (based on components)
whose passage to the adapted platforms of execution will be facilitated.

We place the MADL in this latest trend. It combines the advantages of the
ADL approach and of the MDA/MOF of the OMG approach. From the ADL
approach, it retains the concepts and mechanisms inherent to components,
connectors and architectures. As for the MDA/MOF approach based on the
metamodeling, it has the advantage of being able to consider the models
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(in our case, architectures, meta-architectures and meta-meta-architectures)
as first-class entities, and being able to apply various operations, in
particular, mappings enabling the implementation of the system on different
execution platforms [ALT 07].

Standardization of architectural concepts around the MADL allows the
provision of common functionalities for handling different architectures
arising from these different meta-architectures. MADL has therefore been
defined as an expression language of meta-architectures. This is its main
function, but it can also be used so as to be independent of a particular ADL
and to manipulate the architecture of these ADLs.

Concerning the technical point of view of the MADL, we have opted for
a MOF-type approach, but one which explicitly responds to the following
shortcomings:

– the absence of meta-entities representing meta-architectures;

– the absence of meta-entities representing architectures;

– the absence of meta-entities representing components;

– the absence of meta-entities representing connectors;

– the lack of an explicit relationship between an architecture and its meta-
architecture;

– the lack of an explicit relationship between an element and its meta-
element, a connector and its metaconnector.

In summary, we can consider MADL as a “new” MOF intended for
modeling ADLs and, more importantly, it can be part of the MDA approach.

1.5. Mapping of ADLs to UML

Some studies have tried to establish a mapping of an ADL to UML such
as Acme to UML and C2 to UML. In this section, we show an approach
enabling the mapping of a given ADL to UML 2.0. This method is based on
the instantiation of the MADL by ADL, then mapping MADL to MOF and,
finally, the instantiation of the MOF by the UML.
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1.5.1.Why to map an ADL to UML?

After the introduction of UML as a unified language for all notations and
object-oriented modeling techniques, object-oriented modeling has become a
de facto standard in the development process of software systems. In fact,
UML has become a standard language for specifying, visualizing,
constructing and documenting the objects of software systems [BOO 98].
However, UML lacks the semantic support for capturing and exploiting
certain architectural aspects whose importance has been demonstrated by
software architecture research and practice. In particular, UML lacks direct
support for modeling and exploiting connectors, interfaces and architectural
styles. However, with the introduction of UML 2.0 [OMG 03], new notations
have been proposed and existing ones were modified to meet the needs of
software architecture, including:

– the definition of components as a kind of classifier, thus the
components may have instances and have access to some mechanisms, such
as subtyping by the generalization relationship, behavioral description,
internal structure, interfaces and ports;

– the redefinition of interfaces that can include not only interfaces but
also the required interfaces;

– the introduction of ports as points of interaction for classifiers;

– the introduction of structured classifiers to represent the internal
structure (decomposition) of classifiers;

– the introduction of connectors to represent a connection between two or
more instances. However, connectors in UML 2.0 are defined by a simple
relationship between two components and thus cannot be associated with a
behavioral description or attributes that characterize the connection.

The idea of mapping ADL concepts to UML concepts enables UML to
include semantics related to ADLs and also to get the benefit of:

– the variety of advantages of UML such as multiple views, a semiformal
semantics expressed in a metamodel, a powerful associated language to
express constraints (e.g. OCL [WAR 98]) and a code generation rules;

– a variety of tools that are implemented for UML, such as Rational Rose,
Microsoft Visual Studio, Poseidon for UML. Most of these tools provide
code generation services in different languages such as C++, Java and C#;
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– The mapping is done manually. A well-established methodology that
guides the process does not currently exist, but some researchers have
proposed a number of criteria in order to justify their choices [GAR 02].

– This strategy requires that the entire UML metamodel should be
considered for each ADL notation.

– The same long research process takes place every time a new ADL is
considered for mapping to UML.

This strategy has been used in several studies. In [MED 02], the authors
presented two approaches to support components and architectural notations
in UML 1.4. The first approach uses UML notations without changes, “UML
as is”, while the second approach uses the UML extension mechanisms
(stereotypes, tagged values, constraints, etc.) to incorporate the concepts of
three ADLs (C2, Wright Fast). The mapping of C2 is shown in Table 1.2 and
the mapping of Wright is given in Table 1.3.

In [GAR 02], the authors have tried to select a number of UML 1.4
notations that best represent architectural notations. They stressed the
advantages and limitations of each notation and showed aspects of
architectural description that are intrinsically difficult to model by UML 1.4.
However, UML 1.4 and earlier versions are not adequate enough to represent
architectural concepts such as connectors, configurations, interfaces (ports
and roles), styles or even components as components in UML 1.4 are
representations of a deployable and replaceable system part which
encapsulates execution.

UML 2.0 [OMG 03] has been enriched by new architecture concepts such
as connectors, ports and structural classifiers and has redefined the concept
of components to be a subtype of classes in UML metamodel. Thus,
components have an expressive power similar to the classes as they may
have interfaces, they can contain other components or classes, etc.

In [GOU 03], the authors considered connectors as stereotyped
components without other interfaces than those defined by their roles and
properties. However, describing the connectors as components can clutter the
design and make it difficult to understand its overall structure and the roles
of connector and component ports difficult to distinguish. Mapping Acme to
UML 2.0 using this strategy is summarized in Table 1.4.
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In [IVE 04], Ivers et al. studied the relevance of these new notations to
describe the view of components and connectors (C&C) of software
architecture, in particular for the Acme language. They examined the
mapping of Acme notations that are related to the C&C view (i.e.
components, connectors, ports, roles and attachments) to UML 2.0. They
chose the semantic connection, visual clarity and support by tools as basic
criteria for selecting UML notations, which may represent the architectural
description. They offered two choices for each notation (except for
attachments that have not been considered) as shown in Table 1.5. They
concluded that even if the new notations have improved the description of
software architecture using UML, they still have major drawbacks.
Moreover, some aspects of architectural description continue to be
problematic, for example, the lack of ability of UML 2.0 to associate
semantic information with a connector to describe its behavior. Also, UML
2.0 does not distinguish the roles, which are interface connectors, and ports,
which are component interfaces.

C2 UML 1.4 OCL/Tagged values
Component
(Type)

<<C2 Component>> (Class metaclass
instances)

C2 Component must implement
exactly two interfaces.

Connector
(Type)

<<C2 Connector>> (Class metaclass
instances)
<<C2 Attach Over Comp>> (Association
metaclass instances)
<<C2 Attach Under Comp>>
(Association metaclass instances)
<<C2 Attach Conn Conn>> (Association
metaclass instances)

C2 Connector must implement
exactly two interfaces.
C2 Attachments are binary
associations, one end of
attachment must be a C2
Component and the other end
must be a C2 Connector.

Port <<C2 Interface>> (Interface metaclass
instances)

Role <<C2 Interface>>(Interface metaclass
instances)

System
<<C2 Architecture>> (Model metaclass
instances
<<C2 Attach>>

Architecture is a network of C2
concepts.

Message
<<C2 Operation>> (Operation metaclass
instances)

C2 Operations are labeled as
notifications or requests and as
incoming or outgoing.

Interface <<C2 Interface>>

Table 1.2. Mapping C2 to UML 1.4 [MED 02]
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Wright UML 1.4 OCL/Tagged values

Component
(Type)

<<WrightComponent>> (Class metaclass
instances)

WrightComponent must
implement at least one
WrightInterface.

Connector
(Type)

<<WrightConnector>>
(Class metaclass instances)
<<WrightGlue>>
(Operation metaclass instances)

WrightComponent must
implement at least one
WrightInterface.
WrightGlue contains a
WrightStateMachine.

Port <<WrightInterface>>
(Interface metaclass instances)

Role <<WrightInterface>>
(Interface metaclass instances)

System
(Architecture)

<<WrightArchitecture>>
(Modelmetaclass instances)
<<WrightAttachment>>
(Association metaclass instances)
<<WrightComponentInstance>>
(WrightComponent instances)
<<WrightConnectorInstance>>
(WrighConnector instances)

Architecture is composed of
instances of components and
connectors.

CSP protocol
(state machine)

<<WSMTransition>>
(Transitionmetaclass instances)
<<WrightState>>
(Statemetaclass instances)
<<WrightStateMachine>>
(StateMachinemetaclass instances)

WSMTransition is labeled as
an event or action.
All transitions made in a
WrightState must be
WSMTransitions.

Operation <<WrightOperation>>
(Operation metaclass instances)

WrightOperations have no
parameters.
All operations in a
WrightInterface are
WrightOperations.

Interface <<WrightInterface>>
(Interface metaclass instances)

WrightInterface is labeled as
ports or roles.

Table 1.3. Mapping Wright to UML 1.4 [MED 02]
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Acme UML 2.0 OCL/Tagged values

Component
(Type)

<<AcmeComponent>> Components only have interfaces known
as ports or properties.

Connector
(Type)

<<AcmeConnector>> Connectors have no other interfaces than
those defined by their roles.

Port Port Ports can only be used with Acme
components and they have a provided
interface and a required interface.

Role <<AcmeRole>> Roles are related to Acme connectors and
have a provided interface and a required
interface.

System <<AcmeSystem>> Systems represent a graph of components
that communicate with each other.

Rep-maps Delegation connector All delegation connectors binding ports
and roles

Properties <<AcmeProperties>> <<AcmeProperty>> port has a provided
interface that must provide the get and set
operations for the value and the type of
property.

Constraints <<AcmeConstraints>> This stereotype must have an enumerated
attribute with two allowed values:
invariant and heuristic.

Style
(Family)

Package All connectors used in a pipe filter system
must comply with PipeT.

Table 1.4. Mapping Acme to UML 2.0 [GOU 03]

Acme Choice 1 Choice 2

Element
(Type) Object (Class) Element instance (Element)

Connector
(Type)

Object binding (Association
class) Object (Class)

Port Port Port

Role Port Port

Attachment – Assembly connector

Table 1.5. Mapping Acme to UML 2.0 [IVE 04]
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1.5.2.2. Second mapping strategy (at the meta-meta level)

We believe that the best way to benefit from UML in the field of software
architecture is to map the concepts of architectural description to the UML
metamodel (certainly without changing the metamodel itself and taking
advantage of all its tools and environment). To do this, we propose to
establish the connection of architectural concepts and objects at the meta
level (MOF) to reduce the number of concepts to be translated and help
improve the readability and visibility of different notations at stake.
Therefore, we rely on the MADL as meta ADL for software architecture and
then map the MADL components to the MOF. In this strategy, the mapping
is carried out in four steps [SME 05a]:

– instantiating MADL to obtain the desired ADL (i.e. we want to map to
UML);

– mapping each MADL element to an MOF element;

– instantiating each element of the MOF for one or more UML
components. At the end of this step, we can obtain more than one choice for
each ADL component, but the number of choices is very limited;

– reviewing and selecting the UML concept, which is the most suitable
for our ADL, by using appropriate criteria.

The advantages of this strategy are:

– Instead of working with the UML metamodel, we work with the UML
meta-metamodel (MOF); therefore, the number of notations and elements
that we deal with is considerably less.

– The passage from an ADL to the meta-ADL is natural and inherent,
hence quite easy, where the two use coherent architectural elements.

– The passage from MOF to UML already exists and is well defined.

– The selection of the corresponding UML concept is easier when the
number of choices is reduced.

However, this strategy requires the definition of a higher level of
abstraction for the software architecture, i.e. the metacomponents, the
metaconnectors and the metaconfigurations. That is why we use the MADL
meta-metamodel.
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In the following sections, we will describe the process of mapping an
ADL to UML (Figure 1.5(b)).

1.5.2.2.1. Instantiating MADL by an ADL

The first step (Figure 1.5(b)) is instantiating MADL by an ADL; each
component of the ADL must comply with a component of the MADL. For
example, we will try to map Acme to UML 2.0. Figure 1.4 shows how the
MADL was instantiated by Acme. Components and systems (which
represent configurations of components and connectors), connectors,
attachments (which connect a port and role), connections (which connect
two ports or two roles), ports and roles (which are the interfaces of
components and connectors), styles (which define families of systems) are
obtained through successive instantiations of the meta-element,
metaconnector, metainterface and meta-architecture. Table 1.6 summarizes
the instantiation relationship of the MADL by Acme.

Acme MADL

Element Meta-element

Connector Metaconnector

System Meta-element

Attachment Metaconnector

Binding (Rep-Map) Metaconnector

Port Metainterface

Role Metainterface

Architectural style Meta-architecture

Table 1.6. MADL instantiation by Acme

1.5.2.2.2. Mapping of MADL concepts to MOF

MOF is a meta-metamodel, which is used to define metamodels (e.g.
UML). In principle, MOF can be used to define a metamodel for software
architecture. However, as we noted earlier, MOF has a number of limitations
on the architectural description.
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In fact, MOF contains basic concepts to define meta-entities (MOF
Class), the metarelations (MOF Association) and packages acting as
containers for these meta-entities and metarelations. A meta-architecture
described with the MOF for example, will consist of a main package that
contains all the MOF definition of the meta-architecture. Therefore, although
there is no concept for representing the MOF meta-architectures, a package
can be used for this purpose.

A package can therefore be used and generalized to represent a meta-
architecture, but nothing can be used to represent an architecture. Therefore,
the MOF relationship, which enables binding of an architecture to its meta-
architecture, does not exist. In addition, although the concept of the MOF
Class may represent the concept of meta element, no concept can be used to
represent a component or connector. Therefore, no MOF relationship can be
defined between a component and its meta-element or a connector and its
metaconnector.

It may be noted that no relationship in the MOF enables the specification
that an architecture is defined by a meta-architecture (i.e. all the architectural
components of an architecture cannot find their type in that meta-
architecture).

For all these reasons, we turned to the definition of MADL, which is
equivalent to the MOF for software architecture. In fact, MADL, by
construction, includes the concepts and mechanisms of ADLs.

When considering integration strategies, it is important to define a
number of criteria to select a notation from several notations. These criteria
help determine whether a particular notation is likely to be appropriate or
not. The criteria that we selected for our study are:

– the semantic connection: the interpretation chosen by the MOF
notations must comply with the homogeneous interpretation of the original
description of the MADL;

– expressiveness: all architectural concepts that are defined in the MADL
must have the capacity to be represented by the MOF;

– structural connection: mapping (of the topology) of the MADL on the
MOF must comply not only to the MADL but also to the MOF;
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– compliance with the MOF specification: mapping of the MADL must
correspond to specific components of the MOF complying with their
definitions.

Each component of the MADL is represented as a subclass component of
the MOF, which has a similar semantic. The reason for which we define
MADL notations as subclasses of MOF notations is that we do not want to
violate the semantic of the MOF by changing its structure with new
associations and new notations.

However, if no semantic connection is found, a new component is
introduced by stereotyping a subclass. In the following, we map each
component of the MADL to its connection in the MOF (see Figure 1.6):

– A component of the MADL is mapped to ModelElement MOF. In MOF,
ModelElement is an abstract class that classifies the basic manufacturer’s
models. It is the root element in the MOF model. Thus, all components of
MOF are subclasses of ModelElement. The same principle is applied to the
MADL. Component classifies and defines all components and entities of the
MADL (MADL is based on the principle that “everything is a component”).

– The MADL Architecture is mapped to Namespace MOF. In MOF,
Namespace is a subclass of ModelElement. It classifies and characterizes
ModelComponents, which may contain other ModelComponents.
Namespace contains ModelComponents. Note that in the MADL, the
Architecture contains one or more components.

– The meta-element of the MADL can be represented by the MOF class.
A class in the MOF defines a classification for a set of instances defining the
state and behavior. It is a subclass of class Namespace. A class can be
associated with another class. In MADL, meta-element classifies and defines
the components that may associate themselves.

– The MOF association is the metaconnector of the MADL. The
Association in the MOF defines a classification for a set of bindings through
classes. Each binding, which is an instance of the association, denotes a
connection between instances of Class. In the MADL, the metaconnector
defines connectors that handle relationships between components. The
Association is redefined by the composition relationship with the Feature
class in order to have connectors with interfaces.
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– The metainterface of the MADL is mapped to the MOF Feature class.
In the MOF, Feature defines static and dynamic characteristics of
ModelElement. Thus, it defines the services offered by ModelElement. The
metainterface in the MADL classifies and defines interfaces for components
and connectors. These interfaces represent services provided or required by a
component or connector.

– The package of the MOF represents the MOF meta-architecture. In the
MOF, a package is a container for a collection of ModelComponents that
forms a logical metamodel. Packages may consist of and inherit other
packages. The meta-architecture classifies and defines the architectures,
which are containers of components and connectors, and can compose and
inherit other architectures. The definition of the package is redefined; we
then have architectures with interfaces and therefore they may be combined
with other architectures.

The MADL meta-meta-architecture as a meta-architecture is stereotyped
with the following constraints:

– A meta-meta-architecture only contains meta-architectures and
architectures.

– A meta-meta-architecture cannot inherit from other meta-meta-
architectures.

The relationship of composition between the meta-meta-architecture and
Namespace and Package is defined to allow the meta-meta-architecture to
contain meta-architectures and architectures.

Figure 1.6 shows the mapping of the MADL concepts and those of the
MOF. Even with the introduction of new relationships, the criteria mentioned
above are taken into account and respected. Table 1.7 summarizes this
mapping.

In this model, only a stereotype and three relationships (relationship of
composition between Feature and Class, Feature and Association, Feature
and Package) are added to the original model. Note that other studies have
stereotyped almost all concepts (see [GOU 03, MED 02]).
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Figure 1.6. Mapping MADL to MOF

MADL MOF

Element ModelElement

Meta element Class

Metaconnector Association

Metainterface Feature

Architecture Namespace

Meta-architecture Package

Meta-meta-architecture Stereotype package

Table 1.7. Mapping MADL to MOF
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1.5.2.2.3. Instantiation of MOF by UML

The instantiation of the MOF by UML is done automatically using the
specifications of the OMG [OMG 03], which describe the instantiation of the
MOF by UML. Each element of a UML is an instance of the MOF
component including the UML itself. Table 1.8 shows the possible UML
instances for each element of MOF. We deduce the following comments
regarding the instantiation of the MOF by UML:

– Components and systems can be represented as UML classes, or UML
components or stereotyped UML classes.

– Connectors are mapped to UML classes, UML associations, UM
association classes or UML communication paths.

MOF UML 2.0

Class Class, Component, Stereotype

Association Class, Association, AssociationClass,
CommunicationPath

Feature Interface, Port, Operation, Property,
Connector UML

Package Package

Table 1.8. MOF instantiation

Associations can be used for connectors defined implicitly (as in Darwin,
Fractal, etc.) and classes or association classes, which are statements of
semantic relationships, for connectors defined explicitly (as in Wright,
Acme, etc.). However, UML communication paths cannot represent ADL
connectors because a UML communication path is a physical association
that can only be defined between nodes. Therefore, the choice of ADL
connectors as UML communication paths is discarded.

ADL interfaces are mapped to UML interfaces, ports, operations,
properties or connectors. However, only interfaces, ports and operations
may represent the interfaces of software architecture. Other concepts
cannot represent interfaces insofar as properties are values denoting a
characteristic of a component and the connectors are bindings that allow
communication between two or more instances; therefore, this choice is
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discarded. In addition, ports may represent points of interaction and
operations may represent services for the ADLs which separate the
services of points of interaction; architectural styles can be represented as
UML packages.

1.5.2.2.4. Selection of UML 2.0 concepts

The last stage of mapping is the selection of the final concepts. At the end
of the instantiation step of the MOF by UML, we obtain a reduced number
of choices for each ADL concept and we must choose the concept which is
the most representative and which is semantically closest to the concept of
the ADL mapped. To do this, the user can define and apply some criteria that
will help and guide him in his choices.

1.6. Amapping example: the case of the Acme language

Let us take Acme as an example and try to map its concepts to UML 2.0.
This example has been studied by Ivers et al. [IVE 04] (Table 1.5). Table 1.6
summarizes the mapping of Acme to MADAL. From the table, we can see
that Acme components and Acme systems are instances of the MADL meta-
element, Acme connectors, bindings and attachments are instances of the
MADL metaconnector, Acme ports and roles are instances of the MADL
metainterface, and Acme styles are instances of the MADL meta-
architecture. Table 1.7 shows that the MADL meta-element is mapped to the
MOF class, the MADL metaconnector is mapped to the MOF association,
the MADL metainterface is mapped to the MOF Feature class and the
MADL meta-architecture is mapped to the MOF package. From Table 1.8,
we find that UML classes, components and stereotypes are instances of the
MOF class, associations and UML association classes are instances of the
MOF association, UML packages are instances of the MOF package and
UML ports, operations, properties and connectors are instances of the MOF
Feature class.

Therefore, we can deduce that the Acme concepts can be mapped as
follows: components and systems to classes, UML components or
stereotypes; connectors, bindings and attachments to associations or to UML
association classes; Acme styles to UML packages and roles and ports to
UML ports or operations. Table 1.9 summarizes the mapping of Acme
concepts to UML 2.0.
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Acme UML 2.0 Comment

Element
and systems

Class, component,
stereotype

The UML components are the most appropriate
components to represent the components and
systems of Acme. However, stereotyped classes
may also represent the Acme components.

Connector Class, Association,
AssociationClass

The association classes (AssociationClasses) are
the most appropriate components to represent the
Acme connectors. Using AssociationClasses, we
can define the behavior of connectors and
interfaces.

Style Package Systems and styles can be considered as
packages.

Port Interface, Port,
Operation

As Acme does not separate the points of
interaction of services, UML ports are the most
appropriate components to represent the ports and
roles of Acme.Role Interface, Port,

Operation

Attachment Association,
AssociationClass

The UML associations represent bindings
between classes; they represent the most
appropriate components to describe attachments
and bindings.

Binding
(Rep-Map)

Association,
AssociationClass

Table 1.9. Final mapping step of Acme to UML 2.0

1.7. Some remarks on the mapping of ADL concepts to UML

The mapping of Acme concepts to UML has raised a number of
comments and issues concerning the use of UML to describe software
architecture.

1.7.1. UML 2.0 as an ADL

UML 2.0 cannot be considered as an ADL even with new notations and
redefinitions. For example, the introduction of connectors to represent a
binding between two instances is not sufficient to represent connectors of
software architecture. A connector in UML 2.0 remains a simple binding
between two components and, therefore, cannot be associated with a
behavioral description or attributes that characterize the connection. In
general, some software architecture notations are absent in UML 2.0. For
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example, we can note the absence of entities to represent architectures
(configurations) and architectural styles.

1.7.2.Mapping strategies

The first strategy:

– This strategy has served as a starting point for the mapping of the ADLs
to UML. It is based on an evaluation of the entire UML metamodel for each
component of the ADL. Also a long research process takes place, every time
a newADL needs to be mapped.

– The mapping is done manually.

The second strategy:

– This strategy can be seen as a mapping methodology dedicated to
software architecture.

– Although this strategy leads to a finite number and reduces choices for
each component, it has the merit of systematizing the connection and
providing better readability and, therefore, a better understanding of
concepts. In fact, the first strategy uses the entire UML metamodel, which
has a significant number of notations and definitions. In addition, some of
these are not related to software architecture.

This strategy proposes a semi-automatic method for mapping any ADL to
UML. All components and notations of software architecture are considered
in the meta-meta-architecture. Therefore, the model is reusable and can be
applied to most existing ADLs. In fact, steps 2 and 3 of this strategy are
completely reusable for other ADLs.

The fact that the largest part of the process is carried out at the meta-meta
level allows us to work with a reduced number of notations (more than 100
notations for the meta level and 10 notations for the meta-meta level).

In contrast to existing work [IVE 04] on the mapping of ADLs to UML,
the second strategy has the advantage of being reusable on different ADLs
and of automatically justifying the selected connections.

The process can be used for any version of the UML as it is based on the
same version of the MOF.
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1.8. Conclusion

In this chapter, we have discussed the meta-architecture concept. The
meta-architecture of an architecture is an architecture that models an
architecture. The meta-architecture being itself an architecture can therefore
be modeled. We then obtain the architecture of the meta-architecture, i.e. the
meta-meta-architecture. We have also presented a meta-metamodel for
software architecture called MADL. This meta-metamodel works as a
unified solution for representing software architectures. It makes it possible
to structure these architectures, reduces their complexity, facilitates the
mapping of architectures and, finally, promotes the passage from one to
another.

By using this meta-metamodel, we described a strategy to map ADL
concepts to UML 2.0. The mapping of architectural notations to UML is
strongly encouraged due to the extensive use of UML in the industrial world.
This strategy consists of four steps: instantiating MADL by ADL, mapping
MADL to MOF, instantiating MOF by UML and, finally, the selection of the
most appropriate UML concepts for the ADL concerned. This strategy
reduces the number of concepts obtained. To illustrate this strategy, we have
shown how to map the concepts of Acme to UML 2.0.
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