Virtualization

In this chapter, we introduce virtualization, which is at the root of
the revolution in the networking world, as it involves constructing
software networks to replace hardware networks.

Figure 1.1 illustrates the process of virtualization. We simply need
to write a code which performs exactly the same function as the
hardware component. With only a few exceptions, which we shall
explore later on, all hardware machines can be transformed into
software machines. The basic problem associated with virtualization is
the significant reduction in performance. On average (though the
reality is extremely diverse), virtualization reduces performance by a
factor of 1000: that is, the resulting software, executed on the physical
machine that has been virtualized, runs 1000 times more slowly. In
order to recover from this loss of performance, we simply need to run
the program on a machine that is 1000 times more powerful. This
power is to be found in the datacenters hosted in Cloud environments
that are under development in all corners of the globe.

It is not possible to virtualize a certain number of elements, such as
an antenna or a sensor, since there is no piece of software capable of
picking up electromagnetic signals or detecting temperature. Thus, we
still need to keep hardware elements such as the metal wires and
optical links, or the transmission/reception ports of a router and a
switch. Nevertheless, all of the signal-processing operations can be

2 Software Networks

virtualized perfectly well. Increasingly, we find virtualization in
wireless systems.

More and more, to speed up the software processing, it is possible
to move to a mode of concretization, i.e. the reverse of virtualization,
but with one very significant difference: the hardware behaves like
software. It is possible to replace the software, which is typically
executed on a general machine, with a machine that can be
reconfigured almost instantly, and thus behaves like a software
program. The components used are derived from FPGAs (field-
programmable gate arrays) and, more generally, reconfigurable
microprocessors. A great deal of progress still needs to be made in
order to obtain extremely fast concretizations, but this is only a
question of a few years.

The virtualization of networking equipment means we can replace
the hardware routers with software routers, and do the same for any
other piece of hardware that could be made into software, such as
switches, LSRs (Label Switching Routers), firewalls, diverse and
varied boxes, DPI (Deep Packet Inspection), SIP servers, IP-PBXs,
etc. These new machines are superior in a number of ways. To begin
with, one advantage is their flexibility. Let us look at the example
given in Figure 1.1, where three hardware routers have been integrated
in software form on a single server. The size of the three virtual
routers can change depending on their workload. The router uses little
resources at night-time when there is little traffic, and very large at
peak times in order to be able to handle all the traffic.

Physical router

Ha rdware machme e

Software router

Figure 1.1. Virtualization of three routers. For a color version of
the figure, see www.iste.co.uk/pujolle/software.zip

Virtualization 3

Energy consumption is another argument in favor of virtualization.
Whilst, to begin with, consumption would rise because we are adding
an extra piece of software (the hypervisor), it is possible to share the
resources more effectively, and move those resources, grouping them
together on physical machines, and put other machines, which have
become idle, on standby.

A physical machine can accommodate virtual machines if, as
mentioned above, we add a hypervisor, which is a software program
that enables multiple virtual machines to run simultaneously. In actual
fact, they only appear to run simultaneously at a macroscopic scale.
Examined more closely, at the microscopic scale, we see that the
virtual machines are executed sequentially one after the other. In the
context of virtual servers, this serial execution is not a problem. In the
area of networks, it may become a problem for real-time applications,
which require a very short response time. Each virtual machine’s
processing time must be sufficiently short to give the impression that
all the virtual machines are being executed in parallel. Figure 1.2
illustrates the architecture of virtualization.

A

£

Dom0 NOS NOS: Network Operating System

Hypervisor

Figure 1.2. A virtualized machine. For a color version of the
figure, see www.iste.co.uk/pujolle/software.zip

4 Software Networks

The hypervisor is a virtual machine monitor (VMM), which is often
open source. Hypervisors operate on standard hardware platforms. In
addition to the VMM, running directly on the physical hardware, the
architecture generally comprises a number of domains running
simultaneously, as we have seen, on top of the hypervisor, called virtual
machines. Each virtual machine may have its own operating system and
applications. The VMM controls access to the hardware from the
various domains, and manages the sharing of the resources between the
different domains. Thus, one of the VMM’s main tasks is to isolate the
different virtual machines, so that the execution of one virtual machine
does not affect the performances of the others.

All peripheral drivers are kept in an isolated domain specific to
them. Known as “domain zero” (dom0), it offers a reliable and
effective physical support. Dom0 has special privileges in comparison
to other domains, known as “user domains” (domU) and, for example,
has unfettered access to the hardware of the physical machine. User
domains have virtual drivers, and operate as though they have direct
access to the hardware. However, in reality, those virtual driver
communicate with the domO in order to access the physical hardware.

The hypervisor virtualizes a single physical network interface,
de-multiplexing the incoming packets from the physical interface to
the user domains and, conversely, multiplexing the outgoing packets
generated by those user domains. In this procedure, known as
virtualization of the network input/output, the domain O directly
accesses the input/output peripherals, using their native drivers, and
performs input/output operations on behalf of the domUs.

The wuser domains employ virtual input/output peripherals,
controlled by virtual drivers, to ask the domO for access to the
peripheral. Each user domain has its own virtual network interfaces,
known as foreground interfaces, which are required for network
communications. The background interfaces are created in the domo,
corresponding to each foreground interface in a user domain, and act
as proxy for the virtual interfaces in the dom0. The foreground and
background interfaces are connected to one another via an
input/output channel, which uses a zero-copy mechanism to match the
physical page containing the packet and the target domain. Thus, the

Virtualization 5

packets are exchanged between the background and foreground
interfaces. The foreground interfaces are perceived by the operating
systems, working on the user domains, as real interfaces. However,
the background interfaces in the dom0 are connected to the physical
interface and to one another via a virtual network bridge. It is the
default architecture, called “bridge mode”, used for instance by
the Xen hypervisor, which was certainly one of the first to appear.
Thus, both the input/output channel and the network bridge establish a
path for communication between the virtual interfaces created in the
user domains and the physical interface.

1.1. Software networks

Virtual machines, in turn, can be used to create virtual networks,
which are also known as software networks. For this purpose, we need
to link virtual machines together in the same way as we would connect
different physical machines. Of course, the communication links must
be shared between the different software networks. A set of software
networks is represented in Figure 1.3.

Hardware equipment

Software network E

Figure 1.3. A set of software networks. For a color version of the
figure, see www.iste.co.uk/pujolle/software.zip

6 Software Networks

Each software network may have its own architecture and its own
characteristics. One software network could be devoted to a VolP
service, another to IP-TV, a third to a highly-secure application, a
fourth to channeling professional applications, a fifth for
asynchronous applications such as electronic messaging, etc. We
could, in fact, practically create a software network for each user. The
personalized software network is set up at the moment when the user
connects. It is eliminated when the user signs out. However, this
solution does not scale up, and today we are limited to a number of
software networks suited to the hardware capacity of the underlying
physical infrastructure. Each software network receives resources
allocated to it on the basis of the user demands.

It should be noted that, in general, the virtual nodes are found in
datacenters, which may be of varying size and importance: enormous
central datacenters, regional datacenters, local datacenters and small
datacenters such as femto-datacenters. We shall come back later on to
the choices which may be made in this field.

One of the characteristics of software networks is that the virtual
machines can be migrated from one physical machine to another. This
migration may be automated based on whether a node is overloaded or
out of order.

In the physical nodes which support the software networks, we can
add other types of virtual machines such as firewalls, SIP servers for
VoIP, ADSL router, etc. The networks themselves, as stated above,
may obey a variety of different protocol architectures such as
TCP/1IPv4, UDP/IPv4, IPv6, MPLS, Ethernet Carrier Grade, TRILL,
LISP, etc.

Isolation is, of course, a crucial property, because it is essential to
prevent a problem on one software network from having repercussions
for the other networks. The handover of streams from one software
network to another must take place via a secure gateway outside of the
data plane. This is absolutely necessary to prevent contamination
between networks, such as a complete shutdown for a network
attacked by a distributed denial of service (DDOS).

Virtualization 7

1.2. Hypervisors

Clearly, virtualization needs hardware, which can be standard. We
speak of commodity hardware, with open specifications, produced
en masse to achieve particularly low prices. There are various ways
of placing virtual machines on physical equipment, and they
can be classified into three broad categories, as shown in Figures 1.4
to 1.6.

Anplicati Applicati

Dom0 NOS

Drivers || Driver$ |[|Drivers

Hypervisor

Figure 1.4. Para-virtualization. For a color version of the figure, see
www.iste.co.uk/pujolle/software.zip

A para-virtualization hypervisor, also called “bare metal”, is a
program which is executed directly on a hardware platform. This
platform is able to support guest operating systems with their drivers.
The classic hypervisors in this category include Citrix Xen Server
(open source), VMware vSphere, VMware ESX, Microsoft Hyper-V
Server, Bare Metal and KVM (open source). These programs are also
known as type-1 hypervisors.

The second category of hypervisor, or type 2, is a program which is
executed within a different operating system. A guest operating

8 Software Networks

system is executed above the hardware and requires an emulator to be
executed on the host operating system. The guest operating systems
are unaware that they are virtualized, so they do not require any
modifications. Examples of this type of virtualization would include
Microsoft Virtual PC, Microsoft Virtual Server, Parallels Desktop,
Parallels Server, Oracle VM Virtual Box (free), VMware Fusion,
VMware Player, VMware Server, VMware Workstation and QEMU
(open source).

NOS

Domo Driverg [Driverg |[Driver

Emulator

Host operating system

Figure 1.5. Virtualization by emulation. For a color version of the
figure, see www.iste.co.uk/pujolle/software.zip

The third type leaves behind the previous hypervisor systems,
running several machines simultaneously as shown in Figure 1.6. We
tend to speak of an isolator. An isolator is a program which isolated
the execution of the applications in an environment, called the context,
or indeed the zones of execution. Thus, the isolator is able to run the
same application multiple times in a multi-instance mode. This
solution performs very well, because it does not cause any overload,
but the environments are more difficult to isolate.

Virtualization 9

Dom0

Isolator

Host Operating System

Figure 1.6. Virtualization by execution zones. For a color version of
the figure, see www.iste.co.uk/pujolle/software.zip

In summary, this last solution facilitates the execution of the
applications in execution zones. In this category, we can cite the
examples of Linux-Vserver, chroot, BSD Jail and Open VZ.

Software networks have numerous properties which are novel in
comparison to hardware networks. To begin with, we can easily move
virtual machines around, because they are simply programs. Thus, we
can migrate a router from one physical node to another. Migration
may occur when a physical node begins to fail, or when a node is
overloaded, or for any other reason decided upon in advance.
Migration of a node does not actually involve transporting the whole
of the code for the machine, which would, in certain cases, be rather
cumbersome and time-consuming. In general, the program needing to
be transported is already present in the remote node, but it is idle.
Therefore, we merely need to begin running the program and send it
the configuration of the node to be moved. This requires the
transmission of relatively little data, so the latency before the migrated
machine starts up is short. In general, we can even let both machines
run at once, and change the routing so that the data only flow through
the migrated node, and we can then shut down the first router.

10 Software Networks

More generally, we carry out what is known as urbanization: we
migrate the virtual machines to different physical machines until we
obtain optimal performance. Urbanization is greatly used for
optimization in terms of energy consumption or workload distribution,
but also to optimize the cost of the software networks or to make the
network highly reliable or resilient. For example, in order to optimize
energy consumption, we need to bring together the virtual machines
on shared nodes and switch off all the nodes which are no longer
active. In actual fact, these machines would not be shut down but
rather placed on standby, which does still consume a small amount of
energy, but only a very small amount. The major difficulty with
urbanization arises when it is necessary to optimize all operational
criteria, because they are often incompatible — e.g. optimizing
consumption and performance at the same time.

A very important characteristic is isolation: the software networks
must be isolated from one another, so that an attack on one network
does not affect the other networks. Isolation is complex, because
simultaneously, we need to share the common resources and be sure
that, at all times, each network has access to its own resources,
negotiated at the time of establishment of the software network. In
general, a token-based algorithm is used. Every virtual device on
every software network receives tokens according to the resources
attributed to it. For example, for a physical node, ten tokens might be
distributed to network 1, five tokens to network 2 and one token to
network 3. The networks spend their tokens on the basis of certain
tasks performed, such as the transmission of n bytes. At all times, each
device can have its own tokens and thus have a minimum data rate,
determined when the resources were allocated. However, a problem
arises if a network does not have packets to send, because then it does
not spend its tokens. A network may have all of its tokens when the
other networks have already spent all of theirs. In this case, so as not
to immobilize the system, we allocate negative tokens to the other two
networks, which can then surpass the usage rate defined when their
resources were allocated. When the sum of the remaining tokens less
the negative tokens is equal to zero, then the machine’s basic tokens
are redistributed. This enables us to maintain isolation whilst still
sharing the hardware resources. In addition, we can attach a certain

Virtualization 11

priority to a software network whilst preserving the isolation, by
allowing that particular network to spend its tokens as a matter of
priority over the other networks. This is relative priority, because each
network can, at any moment, recoup its basic resources. However, the
priority can be accentuated by distributing any excess resources to the
priority networks, which will then always have a token available to
handle a packet. Of course, isolation requires other characteristics of
the hypervisors and the virtualization techniques, which we shall not
discuss in this book.

Virtualization needs to be linked to other features in order to fully
make sense. SDN (Software-Defined Networking) is one of the
paradigms strongly linked to virtualization, because it involves the
uncoupling of the physical part from the control part. The control part
can be virtualized and deported onto another machine, which enables
us, for example, to have both a far great processing power than on the
original machine, and also a much larger memory available.

1.3. Virtual devices

All devices can be virtualized, with the exception of those which
handle the reception of terrestrial and wireless signals, such as
electromagnetic signals or atmospheric pressure. For example, an
antenna or thermometer could not be replaced by a piece of software.
However, the signal received by that antenna or thermometer can be
processed by a virtual machine. A sensor picking up a signal can
select an appropriate virtual machine to process the signal in order to
achieve a result that is appropriate for the demand. The same antenna
might, for example, receive signals from a Wi-Fi terminal but also
signals from a 4G terminal. On the basis of the type of signal, an
initial virtual machine determines which technology is being used, and
sends the signal to the virtual machine needed for its processing. This
is known as SDR (Software-Defined Radio), which is becoming
increasingly widely used, and enables us to delocalize the processing
operation to a datacenter.

The networking machines which we know can always be
virtualized, either completely or at least partially: the processing part,

12 Software Networks

the control part and the management part. Thus, today, we can
uncouple a physical machine which, in the past, was unique, into
several different machines — one of them physical (e.g. a transceiver
broadcasting along a metal cable) and the others virtual. One of the
advantages of this uncoupling is that we can deport the virtual parts
onto other physical machines for execution. This means that we can
adapt the power of the resources to the results we wish to obtain.
Operations originating on different physical machines can be
multiplexed onto the same software machine on a single physical
server. This solution helps us to economize on the overall cost of the
system, but also on the energy expended, by grouping together the
necessary power using a single machine that is much more powerful
and more economical.

Today, all legacy machines in the world of networking have either
been virtualized already or are in the process of being virtualized —
Nodes-B for processing the signals from 3G, 4G and soon 5G mobile
networks, HLRs and VLRs, routers, switches, different types of
routers/switches such as those of MPLS, firewalls, authentication or
identity-management servers, etc. In addition, these virtual machines
can be partitioned so they execute on several physical machines in
parallel.

We can appreciate the importance of the Cloud and associated
datacenters, because they are placed where the processing power is
available at a relatively low cost, as is the memory space needed to
store the virtual machines and a whole range of information pertaining
to the networks, clients and processing algorithms. The tendency with
server virtualization is to focus on huge datacenters, but with the help
of distribution, we are seeing smaller and smaller datacenters.

1.4. Conclusion

Virtualization is the fundamental property of the new generation of
networks, where we make the move from hardware to software.
Whilst there is a noticeable reduction in performance at the start, it is
compensated by more powerful, less costly physical machines.
Nonetheless, the opposite move to virtualization is crucial: that of

Virtualization 13

concretization, i.e. enabling the software to be executed on
reconfigurable machines so that the properties of the software are
retained and top-of-the-range performances can again be achieved.

Software networks form the backbone of the new means of data
transport. They are agile, simple to implement and not costly. They
can be modified or changed at will. Virtualization also enables us to
uncouple functions and to use shared machines to host algorithms,
which offers substantial savings in terms of resources and of qualified
personnel.

