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Background and System Model

In this first chapter, some basics regarding the
propagation channel and the wireless transmission of an
orthogonal frequency division multiplexing (OFDM) signal
are recalled. Moreover, a brief state of the art of the pilot
aided channel estimation methods is provided. Although the
latter cannot be exhaustive, it covers some relevant
techniques, in particular in an OFDM context.

1.1. Channel model

1.1.1. The multipath channel

The transmission channel (or propagation channel) is the
environment situated between the transmitting and the
receiving antennas. Whether an indoor or outdoor
environment is considered, the signal transmitted over the
channel suffers from some perturbations of different kinds:
reflection, diffraction or diffusion. These phenomena are due
to obstacles in the propagation environment, like buildings or
walls. Besides, the transmitter, the receiver or both of them
may be in motion, which induces Doppler effect.

In certain contexts, the transmitter and the receiver are in
line of sight (LOS), so the channel is not destructive for the
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2 MMSE-based Algorithm for Joint Signal Detection

signal. On the contrary, in non-line of sight (NLOS)
transmissions, the signal goes through several paths before
reaching the receiving antenna. In that case, the propagation
environment is called a multipath channel, and is
mathematically written as a sum of weighted delayed Dirac
impulses δ(τ):

h(t, τ) =

L−1∑
l=0

hl(t)δ(τ − τl), [1.1]

where the channel impulse response (CIR) h(t, τ) depends on
the number of paths L, the complex gains hl and the delays τl.
In this work, we will instead take an interest in NLOS
transmissions. The channel frequency response (CFR) is
obtained from [1.1] by means of the Fourier transform (FT)
operation denoted by FT :

H = FTτ (h)

H(t, f) =
L−1∑
l=0

hl(t)e
−2jπfτl, [1.2]

where the subscript in FT(.) denote the variable on which the
Fourier transform is processed. Figure 1.1 illustrates this
relationship ((a): h(t, τ), and (b): H(t, f)). We can observe that
the FT is made on the delay τ , which makes the frequency
response H(t, f) a time-varying function. When the channel
does not vary, it is called static, and when the variations are
very slow, the channel is called quasi-static. In this book, we
will assume the latter scenario.

1.1.2. Statistics of the channel

1.1.2.1. Rayleigh channel

As numerous natural phenomena, the transmission
channel is subject to random variations. Therefore, the
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instantaneous CIR [1.1] and CFR [1.2] are not sufficient to
completely describe the channel. It becomes relevant to use
the statistical characterization of the CIR and the CFR to
study this random process.

a) Impulse response h(t, τ)
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b) Frequency response H(t, f)

Figure 1.1. Illustration of a time-varying impulse response h(t, τ)
and a frequency response H(t, f) of a multipath channel. For a color

version of the figure, see www.iste.co.uk/savaux/mmse.zip

In an NLOS transmission, due to the channel, the signal
comes from all possible directions at the receiving antenna
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that is assumed to be isotropic. Thus, each delayed version of
the received signal is considered as an infinite sum of random
components. By applying the central limit theorem, h(t) is
then a zero-mean Gaussian complex process whose gain |h(t)|
follows a Rayleigh distribution [PAT 99] pr,Ray(r) of variance
σ2
h = E{|h(t)|2}:

pr,Ray(r) =
r

σ2
h

e
−r2

2σ2h , [1.3]

where r is a positive real value. The probability density
function (PDF) of the phase of a Rayleigh process follows a
uniform distribution, noted pφ,Ray(θ):

∀θ ∈ [−π, π], pφ,Ray(θ) =
1

2π
. [1.4]

The Rayleigh channel model is very frequently used,
particularly in theoretical studies, since it is relatively close
to reality, and the literature on Rayleigh distribution is very
extensive. For these reasons, Rayleigh channels are
considered all along this work. However, it does not cover all
the possible scenarios: in a LOS context, the direct path adds
a constant component to the previous model. In that case,
|h(t)| follows a Rice distribution, which is described in
[RIC 48]. More recently, the Weibull model [WEI 51] has been
proposed in order to describe real channel measurements
with more accuracy. Nakagami model [NAK 60], later
generalized in [YAC 00] by the κ − μ distribution, is also a
global model from which Rayleigh’s and Rice’s are particular
cases.

1.1.2.2. WSSUS model
The channel being a time-frequency varying random

process, it is relevant to characterize it through its first and
second-order statistic moments. According to Bello’s work
[BEL 63], let us assume a wide sense stationary uncorrelated
scattering (WSSUS) model, defined as follows:
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– WSS: each path hl(t) in [1.1] is a zero mean Gaussian
complex process, i.e. E{hl(t)} = 0, ∀t, with E{.} the
statistical expectation. Consequently, the mean of each path is
independent from the time variations. Furthermore, the time
correlation function rhl(t1, t2) = E{hl(t1)h∗

l (t2)} can be only
written with the difference Δt = t1 − t2, i.e.

rhl(t1, t2) = rhl(Δt). [1.5]

Each path hl(t) of the channel is then wide sense stationary.

– US: the paths are uncorrelated, so for l1 �= l2, we have

E{hl1(t)h∗
l2(t)} = 0. [1.6]

This model is used in the following to apply the proposed
detection and channel estimation algorithm. However, it does
not necessarily match the reality, so we will also study the
performance of the proposed method under channel model
mismatch, particularly in Chapter 3.

Let us also define two very useful statistical functions that
characterize the channel along the delay and the frequency
axes:

– The intensity profile Γ(τ). A commonly used model is the
decreasing exponential [EDF 98, STE 99, FOE 01].

– The frequency correlation function of the channel
RH(Δf ), whose expression will be detailed later.

These two functions are linked by Fourier transform:

Γ = FT−1
Δf

(RH)

⇔ RH = FTτ (Γ). [1.7]

Figure 1.2 depicts the decreasing intensity profile and the
real and imaginary parts of the frequency correlation function.
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a) Channel Intensity profile Γ(τ).

b) Frequency Correlation Function R (Δ ).

Figure 1.2. Link between the channel intensity profile and the
frequency correlation function
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1.2. Transmission of an OFDM signal

When combined with a channel coding, the transmission of
data using a frequency multiplexing is very robust against
the frequency selective channels, in comparison with
single-carrier modulations [SCO 99, DEB]. The use of
orthogonal subcarriers has been proposed since the 1950s, in
particular for military applications, but the acronym OFDM
appeared in the 1980s, when the evolution of the technology
of semiconductors enabled a great development of the
implementation of complex algorithms, especially the
algorithms based on large size FFT/IFFT. This kind of
modulation is now used in a large number of wired and
wireless transmission standards.

1.2.1. Continuous representation

In the continuous formalism, the baseband OFDM signal is
written as:

s(t) =
∑
n∈Z

sn(t) =

√
1

Ts

∑
n∈Z

M−1∑
m=0

Cm,nΠ(t − nTs)e
2jπmFst, [1.8]

where sn(t) is the nth OFDM symbol, Π(t) is the rectangular
function of duration Ts as

Π(t) =

{
1 if −Ts

2 ≤ t < Ts
2

0 else,
[1.9]

where Fs = 1
Ts

is the subcarrier spacing, M is the number of
subcarriers such as, if we denote by B the bandwidth, we
have Fs = B/M . The scalar Cm,n with m = 0, 1, ...,M − 1 are
the information symbols coming from a set Ω of a given
constellation, such as the binary phase shift keying (BPSK)
or the four-quadrature amplitude modulation (4-QAM). The
different subcarriers of the OFDM symbols are orthogonally
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arranged, thus, no interference occurs in the frequency
domain (see Figure 1.3). The received signal u(t) is the
convolution of s(t) and h(t), plus the white Gaussian noise
denoted by w(t). In the frequency domain, due to the Fourier
transform property, the convolution becomes a simple
product:

u(t) = (h 	 s)(t) + w(t) [1.10]
FT
=⇒ U(f) = H(f).C(f) + W (f). [1.11]

So as to cancel the intersymbol interferences (ISIs) due to
the delayed paths of the channel, the solution consists of
adding a guard interval (GI) at the head of each OFDM
symbol. If the GI length is greater than the maximum delay
of the channel, it contains all the interferences from the
previous symbol, and the GI removal cancels the ISI. In the
following, let us assume that the GI is a cyclic prefix, i.e. the
end of each OFDM symbol is copied at its head. As noted
later, in addition to the ISI cancellation, the use of a CP gives
a cyclic structure to the OFDM symbols. Let us denote by TCP
the duration of the CP.

Figure 1.3 shows the effects of the channel on the OFDM
signal in the time and the frequency domains. Figure 1.3(a)
illustrates, in the time domain, the ISI cancellation due to
the CP removal. The frequency orthogonality is displayed in
Figure 1.3(b). The robustness of the OFDM against the
multipath channel lies in the fact that, by considering a
sufficiently small intercarrier spacing Fs, one can assume
that the channel is flat on each subcarrier. Consequently, a
simple division per subcarrier is processed to recover the data
that has been transmitted. As a matter of fact, this property
is ensured when the receiver is perfectly synchronized with
the signal. That will be assumed in most of the further
developments. However, we will study the effect of a
synchronization mismatch on the performance of the
proposed detector.
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a) ISI cancellation thanks to the cyclic prefix.

b) Frequency orthogonality between
subcarriers, and effect of the channel
frequency response.

Figure 1.3. Time and frequency properties of the
OFDM with cyclic prefix. For a color version of the figure,

see www.iste.co.uk/savaux/mmse.zip

1.2.2. Discrete representation

The orthogonal parallel subcarriers of the OFDM signal
naturally leads to a discrete representation of the signal.
Moreover, we perform a digital signal processing, and the
discrete version of the FT, called discrete Fourier transform
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(DFT), allows a generation of the OFDM symbols with a low
computation cost. Note that, when the DFT size is a power of
two, a fast Fourier transform (FFT) algorithm can be
performed. In the discrete formalism, the use of the CP
transforms the linear convolution [1.11] into a cyclic
convolution [PEL 80] and, after the CP removal, the nth

received OFDM symbol is then given by

un =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0,n 0 · · · · · · hL−1,n · · · h1,n

h1,n h0,n 0
. . . . . . . . . ...

... . . . . . . . . . . . . hL−1,n

hL−1,n
. . . . . . h0,n 0

. . . 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0
0 · · · 0 hL−1,n · · · h1,n h0,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

s0,n
s1,n

...

...
sM−1,n

⎞
⎟⎟⎟⎟⎟⎟⎠
+ wn

= hnsn + wn, [1.12]

where hn is the M × M circulant matrix of the channel, sn is
the M × 1 vector containing the samples of the symbol sn(t),
and wn is the noise vector of size M×1. The circulant matrices
are diagonalizable in the Fourier basis (see [GRA 06, CON]),
whose matrix F is given by

F =
1√
M

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 ω ω2 · · · ω(M−1)

1 ω2 ω4 · · · ω2(M−1)

...
...

... . . . ...
1 ω(M−1) ω2(M−1) · · · ω(M−1)2

⎞
⎟⎟⎟⎟⎟⎠ , [1.13]

with ω = e−
2jπ
M . It can be noticed that F is an orthonormal

matrix, i.e. FFH = I, where I is the identity matrix and H

is the Hermitian transpose (or conjugate transpose). To get
the frequency samples of the received signal, we calculate the
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DFT of un by Un = Fun. The matrix hn being diagonal in the
Fourier basis, we simplify to get:

Un = FhnFHFsn + Wn

= FhnFHCn + Wn

= HnCn + Wn, [1.14]

where Cn = Fsn is the M × 1 vector containing the data Cm,n.
The diagonal matrix Hn is composed of the samples Hm,n of
the frequency response that is the DFT of the CIR:

Hm,n =
L−1∑
l=0

hl,ne
−2jπfmβlτs

=
L−1∑
l=0

hl,ne
−2jπm

Mβl, [1.15]

where fm = m
Mτs

and βl =
τl
τs

sampled versions of f and τl, with
τs the sampling time. Since Hn is a diagonal matrix, it is usual
to find an equivalent expression to [1.14]:

Un = HnCn + Wn

⇔ Un = CnHn + Wn, [1.16]

where Cn is the diagonal matrix containing the samples of the
vector Cn. Moreover, each sample of Un can be written as a
simple scalar factor

Um,n = Hm,nCm,n + Wm,n. [1.17]

This shows that if the CP is well sized, it fully cancels the
ISI and each transmitted symbol Cm,n is only corrupted by
the channel frequency coefficient Hm,n and the noise Wm,n.
This expression is widely exploited for the channel
estimation, which will be discussed further in this work.
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1.2.3. Discrete representation under synchronization

mismatch

In [1.14], the receiver is supposed to be synchronized with
the transmitted signal. In practice, the observation window of
the receiver may not match the OFDM symbol, as illustrated
in Figure 1.4. We then define δ the time shift. In that case, we
rewrite the transmission equation [1.14] by taking into
account the interference I(δ) induced by δ:

Un = HnCn + I(δ) + Wn, [1.18]

where I(δ) is the sum of an intercarrier interference term Ic(δ)
and an ISI term Is(δ). The former is due to the loss of the
cyclic property implying a loss of orthogonality between the
subcarriers; the latter is due to the several samples coming
from the adjacent OFDM symbols.

Figure 1.4. Synchronization mismatch δ between the
received signal and the observation window

Although the receiver will be considered to be perfectly
synchronized with the signal in Chapter 2, the
synchronization mismatch will be taken into account to
characterize the detector performance in Chapter 3.

1.3. Pilot symbol aided channel and noise estimation

1.3.1. The pilot arrangements

Among the wide range of channel and noise estimation
techniques, we here focus on the one called “pilot symbol
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aided method” (PSAM) or “data aided estimation” (DAE). The
pilots are particular subcarriers whose gain, phase and
arrangement in the OFDM frame are known from the
transmitter and the receiver. The pilot pattern depends on
the time and frequency selectivity of the channel. As recalled
in [OZD 07], in order to capture all the variations of the
channel, the pilot gaps over the frequency axis Dp and the
time axis Dt must respect the Nyquist sampling theorem:

Dp ≤ 1

τL−1Fs
, [1.19]

and

Dt ≤ 1

2fD,maxTs
, [1.20]

where fD,max is the maximum Doppler frequency. Figure 1.5
shows two usually considered arrangements in theoretical
studies: (a) the block-type arrangement (also called preamble)
and (b) the comb-type arrangement. The first arrangement is
adapted to quasi-static channels with high-frequency
selectivity. On the contrary, the comb-type arrangement (2) is
used when the channel is time selective and with a
low-frequency selectivity. Since we consider quasi-static
channel, we will use the block-type pilot pattern.

In practical applications, such as in digital TV
transmission with the digital video broadcasting-terrestrial
(DVB-T) [ETS 04] standard, digital radio with the digital
radio mondiale (DRM) [ETS 09] standard, or Wi-Fi [IEE 07],
scattered pilots are rather considered. In that case, less
subcarriers are dedicated to the channel estimation, which
improves the data rate compared to the patterns of
Figure 1.5, with almost the same performance.
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a) Block-type arrangement

b) Comb-type arrangement

Figure 1.5. Two possible pilot arrangements in the OFDM frame
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Whatever the pattern, we can see in Figure 1.5 that if the
channel is known on the pilot tones’ position, an interpolation
is required to estimate the channel on all the positions of the
time and frequency lattice. Some of channel estimation
techniques are presented below.

1.3.2. Channel estimation

In the following, the developments are performed on a
preamble scheme, although the results remain valid if the
tones are sparsely distributed in the OFDM frame. First we
detail the least square (LS) and the linear minimum mean
square error (LMMSE) methods, because they are the most
used and studied, and the technique proposed in this work is
based on LMMSE. Second, we cover some of usual other
techniques. For a clarity purpose, the subscript n is removed
in the further equations.

1.3.2.1. LS estimation

The LS criterion aims to minimize the cost function JLS
that is defined as the square absolute value of the difference
between the vector of the received signal U and the product of
the transmitted signal vector C by a diagonal matrix D whose
coefficients have to be optimized. Then we get the estimation
Ĥ
LS

= Dopt. The cost function is first expressed as

JLS = |U − DC|2. [1.21]

Let us define the optimal matrix Dopt = Ĥ
LS

, where Ĥ
LS

is
the LS estimation of the CFR. After some mathematical
developments, minimizing JLS leads to

ĤLS
m =

Um

Cm
= Hm +

Wm

Cm
, [1.22]
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namely, in a matrix form:

Ĥ
LS

= UC−1 = H + WC−1. [1.23]

From [1.23], it can be seen that the LS estimation is very
sensitive to the noise level. To reduce the sensitivity to the
noise, [BIG 04] proposes the scaled LS (SLS) estimator, in
which Ĥ

LS
is multiplied by a coefficient γ, which is chosen

such as the mean square error E{||H − γĤ
LS ||2F } is

minimized, with ||.||F the Frobenius norm1

1.3.2.2. LMMSE estimation

The LMMSE aims to minimize the cost function defined by
the mean square error of the error vector H − DU, as shown
in [KAY 03b]:

JLMMSE = E{||H − DU||2F }, [1.24]

where D is the matrix whose coefficients have to be optimized.
The LMMSE channel estimation is then given by Ĥ

LMMSE
=

DoptU. The development of [1.24] yields:

Ĥ
LMMSE

= DoptU

= RH(RH + (CCH)−1σ2I)−1C−1U

= RH(RH + (CCH)−1σ2I)−1Ĥ
LS

, [1.25]

where RH = E{HHH} is the channel covariance matrix.
LMMSE is, by definition, the optimal estimator in the sense
of the mean square error. However, we notice in [1.25] that
LMMSE has two main drawbacks: first, LMMSE is far more
complex than LS, due to the matrix inversion and

1 The matrix Frobenius norm of a matrix A is defined by ||A||F =√
tr(AAH).
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multiplication. Second, LMMSE requires the second-order
moments of the channel RH and of the noise σ2, which are a
priori unknown. The algorithm detailed in this book has been
originally proposed to address this latter drawback, by
iteratively estimating the noise level and the channel by
means of the MMSE criterion.

1.3.2.3. Other estimation techniques

Due to the LS estimator, the noisy CFR is obtained on the
pilot tones. In numerous cases, an interpolation is then
required to estimate the channel on the whole subcarriers of
the time and frequency lattice. A very wide range of
estimation methods is described in the literature, so it is
impossible to draw up an exhaustive list, but around 20 of the
most used techniques are described in [HSI 98, JAF 00,
MOR 01, COL 02, SHE 06, DON 07]. Among them, we will
cite the 2D Wiener filter, described in [HOE 97], which is the
generalized form of the optimal LMMSE estimator over the
two-dimensions time and frequency. However, its practical
implementation is limited by its very high computation cost.
Far more simple, the interpolated fast Fourier transform
(iFFT) (do not mistake for inverse FFT) [SCH 92, LE 07] is a
very usual interpolation method in signal processing. After
having performed the LS estimation on the pilot subcarriers,
the estimated CIR is computed by means of an IFFT. Then,
some zeros are added at the end of the estimated IR vector
(zero padding) and finally, an FFT is done to get the
estimated CFR. As mentioned in [SCH 92], the iFFT channel
estimation suffers from the leakage that is induced in the
adjacent channel. Another usual estimator, called maximum
likelihood (ML) and described in [KAY 03a, ABU 08], aims to
minimize the cost function JML:

JML = ln(p(Un|Hn, Cn, σ
2)), [1.26]

where p(Un|Hn, Cn, σ
2) is the conditional PDF of the received

signal. As indicated in [WIE 06], in the case of a preamble,
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maximizing JML is exactly equivalent to minimizing JLS in
[1.21]. ML becomes very useful when the number of pilots is
lower than the FFT size, even though, in that case, the
maximization of JML has a very high calculation cost. To
reduce this complexity, the expectation-maximization (EM)
algorithm was originally proposed in 1977 by Dempster et al.
in [DEM 77]. This is an iterative algorithm whose
performance tends to that of the MLs when the iterations
number increases.

Some interpolation methods based on polynomials are also
commonly used in practical implementations. Indeed, they
are more simple than the previous methods, and do not
require any knowledge of the channel or signal statistics. In
particular, we can cite:

– The nearest-neighbor (NN) interpolation is the most
simple as it uses a polynomial of degree zero. Thus, for a
given frequency position f near a pilot position fp, the NN
interpolator is expressed by:

Ĥ(f) = Ĥ(fp). [1.27]

Despite its simplicity, it is obvious that this method is only
adapted for channel that are very weakly selective.

– The linear interpolation uses polynomials of degree one.
Thus, for a value f ∈ [fp, fp+δf ], where δf is the gap
between two consecutive pilots, the estimated channel Ĥ(f)
is expressed by

Ĥ(f) = Ĥ(fp) + (f − fp)
Ĥ(fp+δf)− Ĥ(fp)

fp+δf − fp
. [1.28]

In the same way as the NN interpolation, this method is
not accurate when the channel is highly frequency selective.

– The polynomial interpolation consists of approximating
the channel H(f) by a polynomial of degree P − 1, with P
the number of pilot tones in an OFDM symbol. If a Lagrange
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polynomial basis {L0,L1, ...,LP−1} is used, the interpolated
channel is written as:

Ĥ(f) =

P−1∑
p=0

Lp(f)Ĥ(fp). [1.29]

The polynomial interpolation with Lagrange basis is
limited by the Runge effect that results in a divergence of the
estimated values between the nodes fp when P increases. A
solution consists of splitting the whole interval into several
consecutive intervals containing four nodes. An interpolation
of degree three is then applied in each subinterval. This
solution, called piecewise cubic interpolation, is widely used.
However, the interpolated channel considering the whole
bandwidth B is not continuous, since cubic polynomials are
concatenated. To get a continuous function, it is possible
to perform the interpolation method called spline. This
technique, using a Hermite polynomial basis, imposes a
condition on the first derivative of the interpolated function
that makes it continuous on each node.

1.3.3. Noise variance estimation

In addition to the multipath channel, the noise is one of
the main source of disturbance for the transmitted signal.
The noise is often characterized either by its power (or
variance), or by the signal-to-noise ratio (SNR), i.e. by
comparison with the signal level. This measurement can then
be used for the design of the transmitter and the receiver. For
instance, at the transmitter side, the constellation type and
its size can be updated according to the SNR level [KEL 00].
At the receiver side, many algorithms such as the
turbo-decoder [SUM 98] or the LMMSE channel estimation
(see [1.25], [VAN 95]) require the knowledge of the SNR. We
are particularly interested by the latter application in this
work, since the estimator in Chapter 2 iteratively estimates
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the channel and the noise variance by means of the MMSE
criterion.

The SNR estimation methods are commonly based on three
elementary steps:

1) The noise variance estimation σ̂2 is first performed.

2) An estimation of the transmitted signal power P̂s is
achieved.

3) The SNR, noted ρ is finally obtained by ρ̂ = P̂s/σ̂
2.

Alternatively, the steps (2) and (3) are sometimes replaced
by the following processing:

2) The second-order moment of the received signal is
estimated by M̂2 = P̂s + σ̂2.

3) the SNR is estimated by ρ̂ = M̂2/σ̂
2 − 1.

The main difference between the techniques of the
literature lies in the way to estimate σ2. A wide range of
usual methods are described in [PAU 00, LI 02, REN 05].
Among them, the second- and fourth-order moment (M2M4)
estimator is first mentioned in [BEN 67]. Its principle is to
estimate the second-order moment of the received signal Um

as M2 = E{UmU∗
m} = Ps + σ2 on the one hand, and the

fourth-order moment M4 = E{(UmU∗
m)

2} = P 2
s + 4Psσ

2 + 2σ4

on the other hand. Then, the signal and the noise powers
estimations are deduced by:

P̂s =

√
2M̂2

2 − M̂4 [1.30]

σ̂2 = M̂2 −
√

2M̂2
2 − M̂4. [1.31]

In [REN 05], an alternative M2M4 method is proposed,
using a new definition of the fourth order moment
M ′

4 = E{(Re(Um)
2 + Im(Um)

2)2}, where Re(.) and Im(.)
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denote the real part and the imaginary part of a complex
number, respectively. The advantages of the M2M4 lie in the
facts that it does not require any channel estimation and that
it has a low complexity. However, its efficiency is degraded if
the channel is frequency selective.

The ML estimator, whose developments are given in
[KAY 03b] for the noise variance estimation, supposes the
channel to be known, or requires a high complexity, as
previously mentioned. The minimum mean square error
(MMSE) estimator

σ̂2 =
1

M
E{||U − CH||2F }, [1.32]

from which the method that is proposed in this work is
derived, also requires the CFR, which is practically replaced
by its estimated value. Thus, the performance of the MMSE
estimation depends on the channel estimation. References
such as [PAU 00, BOU 03, XU 05a] only derive a theoretical
expression of the MMSE in which the channel is supposed to
be known, but the authors do not propose any practical
solution to reach it.

These usual methods can be derived in the OFDM context,
as it is done by the authors of [XU 05a]. If, in addition, a
frequency selective channel is considered, the literature
proposes two strategies for the SNR estimation. The first
strategy uses the previously cited methods, and requires a
channel estimation. In the second strategy, the estimation of
the CFR is avoided [BOU 03, REN 09]. In [BOU 03], the
author proposes a method for a 2× 2 multi input multi output
(MIMO) configuration that features a two pilot-symbols
preamble and assumes that the channel coefficients are
invariant over two consecutive carriers. Following a similar
scheme, [REN 09] also proposes a preamble-based method
using two pilot symbols for the the noise variance estimation.
The received symbols in the preamble are then expressed by



22 MMSE-based Algorithm for Joint Signal Detection

Un = CnHn + Wn and Un+1 = Cn+1Hn+1 + W=1, where
Cn+1Hn+1 is supposed to be equal to CnHn. Thus, the channel
estimation is avoided because the noise variance is simply
estimated by:

σ̂2 =
1

2
E{||Un − Un+1||2}. [1.33]

Although it is an efficient method, its main drawback is the
loss of data rate due to the need of a preamble composed of
two pilots. This is especially the case if a preamble must be
regularly inserted, as in the case of time-varying channels. In
[XU 05b], the SNR is estimated by means of the properties
of the channel covariance matrix. As presented in section 1.1,
the channel has a length L. Thus, its covariance matrix has L
non-null eigenvalues from which M2 is estimated and M − L
null eigenvalues from which σ2 is estimated. This method is
limited by the channel insufficient statistics, which degrades
the estimation performance.

1.4. Work motivations

This work focuses on the MMSE-based channel and noise
variance estimation. As has been mentioned, LMMSE is the
optimal channel estimator in the sense of the mean square
error, but it requires the second-order moments of the
channel and the noise to be performed (see [1.25]). However,
these parameters are usually unknown at the receiver and
must be estimated. The solution detailed in this work consists
of feeding the LMMSE estimation by the optimal MMSE
estimated noise level [1.32]. To best match the unknown
CFR, we propose to replace it by its LMMSE estimated value,
so it clearly appears that one estimation feeds the other
estimation. As a result, it seems natural to propose an
iterative algorithm for the joint estimation of the noise
variance and the channel. Since we suppose no a priori CSI
at the receiver, this algorithm is valid for communications
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systems such as Wi-Fi or LTE, and for broadcast systems
such as DRM/DRM+ [ETS 09] or DVB-T [ETS 04] as well.

In addition to the joint noise and channel estimation, it is
possible to use the proposed estimator to measure the noise
level in a free band, by keeping exactly the same structure.
Thus, according to a given detection test, the algorithm
enables the receiver to determine if a user is in a band or not.
The two different uses of the technique, estimator and
detector are described in Chapters 2 and 3, respectively.


