Basic Concepts in Optimization
and Graph Theory

1.1. Introduction

An optimization problem is a formal specification of a set
of proposals related to a specific framework that includes one
or numerous decision makers, one or several objectives to be
achieved and a set of structural constraints. Optimization has
been practiced in numerous fields of study as it provides a
primary tool for modeling and solving complex and hard
constrained problems. After the 1960s, integer programming
formulations and approximate approaches have received
considerable attention as useful tools for solving optimization
problems. Depending on the problem structure and its
complexity, appropriate solution approaches were proposed to
generate appropriate solutions in a reasonable computation
time. Several optimization studies are formulated as a
problem whose goal is to find the best solution, which
corresponds to the minimum or maximum value of a
single-objective function. The challenge of solving
combinatorial problems lies in their computational
complexity since most of them are non-deterministic
polynomial-time (NP)-hard [GAR 79]. This complexity can
mainly be expressed in terms of the relationship between the

2 Graph-related Optimization and Decision Support Systems

search space and the difficulty of finding a solution. The
search space in combinatorial optimization problems is
discrete and multidimensional. @ The higher the
dimensionality, the larger the search space, and the harder
the problem. The remainder of this chapter is organized as
follows. In section 1.2, we highlight the terminology adopted
throughout this book. Section 1.3 deals with the
mathematical structure of an optimization problem and
enumerates its main variants. Section 1.4 illustrates the
previously announced principles by a didactic example.
Section 1.5 outlines the main features of an optimization
problem.

1.2. Notation

We present in the following the major symbols used for
defining an optimization problem:

Symbols Description
n the number of decision variables
k the number of objectives
= (z1,...,7,)" the vector of decision variables
C(p,n) the cost matrix
the matrix of constraints
B Resources limitations
Eo The set of efficient solutions in the objective space
Ep The set of efficient solutions in the decision space

1.3. Problem structure and variants

Assuming the linearity of an optimization problem, its

mathematical modeling is outlined as follows:
Maz p.x [1.1]
St.Ax < B [1.2]
reX [1.3]

Basic Concepts in Optimization and Graph Theory 3

where 2 = (21,...,7,)7 denotes the vector of decision
variables, p, b and A are constant vectors and matrix of
coefficients, respectively.

Many variants of this formulation can be pointed out:

— Continuous linear programming (CLP): The optimization
model [1.1]-[1.3] is a CLP if the decision variables are
continuous. For continuous linear optimization problems,
efficient exact algorithms such as the simplex-type method
[BUR 12] or interior point methods exist [ANS 12].

— Integer linear programming (ILP): The optimization
model [1.1]-[1.3] is an ILP if X is the set of feasible integer
solutions (i.e. decision variables are discrete). This class
of models is very important as many real-life applications
are modeled with discrete variables since their handled
resources are indivisible (as cars, machines and containers).
A large number of combinatorial optimization problems can
be formulated as ILPs (e.g. packing problems, scheduling
problems and traveling salesman) in which the decision
variables are discrete and the search space is finite. However,
the objective function and constraints may take any form
[PAP 82].

— Mixed integer programming (MIP): The optimization
model [1.1]-[1.4] is called MIP, when the decision variables
are both discrete and continuous. Consequently, MIP
models generalize the CLP and ILP models. MIP problems
have improved dramatically of late with the wuse of
advanced optimization techniques such as relaxations and
decomposition approaches, branch-and-bound, and cutting
plane algorithms when the problem sizes are small [GAR 12,
WAN 13, COO 11]. Metaheuristics are also a good candidate
for larger instances. They can also be used to generate good
lower or upper bounds for exact algorithms and improve their
efficiency.

4 Graph-related Optimization and Decision Support Systems

1.4. Features of an optimization problem

Optimization problems can be classified in terms of the
nature of the objective function and the nature of the
constraints. Special forms of the objective function and the
constraints give rise to specialized models that can efficiently
model the problem under study. From this point of view,
various types of optimization models can be highlighted:
linear and nonlinear, single and multiobjective optimization
problems, and continuous and combinatorial programming
models. Based on such features, we have to define the
following points:

— The number of decision makers: if one decision maker
(DM) is involved, the problem dealt with is an optimization
problem; otherwise we are concerned with a game that can
be cooperative or non-cooperative, depending on the DMs’
standpoints.

— The number of objectives: it determines the nature of the
solution to be generated. If only one objective is addressed
in the decision problem, the best solution corresponds to
the optimal solution. However, if more than one objective is
considered, we went to generate a set of efficient solutions that
correspond to some trade-offs between the objectives under
study.

—The linearity: when both the objective(s) and the
constraints are linear, the optimization problem is said to
be linear. In that case, specific solution approaches can be
adapted as the simplex method. Otherwise, the problem is
nonlinear in which case the resolution becomes more complex
and the decision space is not convex.

—The nature of the decision variables: if the decision
variables are integer, we deal with a combinatorial
optimization problem.

Basic Concepts in Optimization and Graph Theory 5

1.5. A didactic example

Let us consider the following optimization problem
involving two decision variables x; and x5. We show in this
illustrative example how the solution changes in terms of the
nature of the decision variables that can be either continuous
or binary and the number of objectives £ = 1, 2. Hence, four
optimization problems follow:

k=1 k=2
Max 2x1 + x2
S.t. 5x1 + 7Tx2 < 100
z1,22 2 0 z1 — 3z < 80
z >0
Max 2x1 + x2
1 + dxa

S.t. bx1 + 7Txo < 100

=1 1 — 3z2 < 80
z>0
4
Ep = {(20,0), (0,14.285)}
40 14.285
Eo = {(2()) (71.428)}
Max 2x1 + x2
St. bz + Txg < 100

T1,x2 € {0, 1}

1 — 3z < 80
z € {0,1}

Mazx

2x1 + w2

(z1,22) = (1,1)
z(x) =3

z1 + 52
S.t. 5z + Txzo < 100
1 — 3r2 < 80

z € 40,1}
4
Ep ={(1,1)}

Eo:{(z)}

As previously mentioned, the resolution of the
single-objective optimization problem yields to the finding of
the optimal solution that varies depending on the nature of
the decision variables. However, if a second objective is
added, the resolution generates a set of Pareto-optimal
solutions, as it is the case for k& = 2.

6 Graph-related Optimization and Decision Support Systems

1.6. Basic concepts in graph theory

A graph G is defined as a couple of sets G = (V, E): a vertex
set V' and an edge set E.

— The vertex set states all involved entities that model the
original problem.

— The edge set is an exhaustive enumeration of all possible
connections between two vertices. If e = {z,y} is an edge, we
say “r is adjacent to y”. A graph can also contain a loop whose
endpoints are equal. Based on such features, we can point out
numerous types connections in a graph:

- Simple edge: a connection between two vertices x and y
such that = # y. It is modeled as a set of two nodes {z, y}.

- Oriented edge: an edge represented by a couple of
vertices (x,y).

- Multiple edges: numerous edges having the same pair
of vertices.

- Loop: an edge whose endpoints are equal.

a bo

d c

Figure 1.1. An example of a graph withn =4 and e =5

A simple graph is a graph that contains neither loops nor
multiple edges. Simple graphs can be directed as shown in
Figure 1.2(a), undirected as is the case of Figure 1.2(b) or/and
weighted as shown in Figure 1.2(c). A weighted graph can
designate a road network where each edge is labeled by the

Basic Concepts in Optimization and Graph Theory 7

distance between the corresponding vertices. Weights can
also express the traveling cost between two adjacent vertices.

a _;b a b Ia. 10 b I
™ N >
. N
. 45 _5 20
‘ L .
d cld cld c

(a) (b) (c)
Figure 1.2. Types of simple graphs

1.6.1. Degree of a graph

The degree of a vertex z in a graph G, denoted by dg(,), is
the number of edges where x is one of their endpoints. Note

ey deg(a)
that e = 2=V 290,

1.6.2. Matrix representation of a graph

An alternative representation of a graph is the matrix
representation A that designates the adjacency matrix. It is a
symmetric square matrix of order n if the graph is
undirected. If the graph is weighted, the matrix reports the
distances’ values if the corresponding vertices are adjacent
and O elsewhere. Table 1.1 corresponds to the matrix
representations of graphs (a), (b) and (c) of Figure 1.2. The
matrix representation is adopted mainly for handling a
routing problem for which a shortest path has to be
generated using the extracted adjacency matrix A.

8 Graph-related Optimization and Decision Support Systems

Graph (a) (b) (c)
0110 0111 0 10 5 45

Matric|| 0010 1010 10 0 20 0

arxit ooo01 1101 520 0 19
1000 1010 45 0 19 0

Table 1.1. Matrix representation of simple graphs

1.6.3. Connected graphs

A graph G is said to be connected if there exists at least a
path between each pair of vertices x and y:

Ve,y € Vdapath:x — ... =y [1.4]

We can note that a basic result related to connected graphs
is the following:

If e < n — 1, then G is not connected [1.5]

Based on equation [1.5], we can clearly understand that if
e > n—1, G can be either connected or not. In fact, if we observe
the graph of Figure 1.3, condition e > n — 1 holds, but the

et

graph is not connected. Whenever a graph is connected, we can
speak about finding shortest paths between pairs of vertices.
Routing problems address such topics that are mainly about
minimizing the number of vehicles used and determining the
shortest itinerary for each vehicle. An itinerary can be either
a circuit as is the case of the basic vehicle routing problem or a
path when we speak about the open vehicle routing problem.

1.6.4. Itineraries in a graph

When trying to choose the most cost-efficient solution, we
should handle a weighted graph.

Basic Concepts in Optimization and Graph Theory 9

d c f

g

Figure 1.3. A non-connected graph with n =7 and e = 8

A path is a succession of adjacent edges that starts from
a predefined source = and ends at a destination y such that
x # y. For an optimization problem, we generally speak about
the least cost path.

A circuit is a path that starts and ends at the same vertex
(z = y). The traveling salesman problem is the most famous
optimization problem that tries to generate the least cost
Hamiltonian circuit (a circuit that runs through all vertices of
the graph) in the graph under study. Figure 2.1 reports a
weighted connected graph with 7 vertices and 12 edges where
the vertices correspond to the cities and the edges are direct
routes weighted by their corresponding distances. The
following are examples of itineraries:

Itinerary Detail Distance
Path PN AN ELN 67
90 24
ea—c—e 114

. 0, 4512, 2490
Circuit ea—b—e—f5c—=al8l

90 57 , 10
ea—c—b—a 157

1.6.5. Tree graphs

A tree T is a connected graph that does not contain any
circuit. The vertex set V' contains:

10 Graph-related Optimization and Decision Support Systems

78

d 10 f 15 g

Figure 1.4. A connex plutot connected graph with n = 7 and e = 12

—intermediates nodes or branches: x is an intermediate
node if dp(z) > 2;

—leaves: x is a leave if dp(z) = 1.

A graph T'= (V, E) is a tree if:

— there exists only one path between each pair of vertices.
This can be explained by the fact that 7' should not contain
any circuit;

— e =n — 1. This result can be proved by induction:

Basis of induction:

The unit tree with n = 1 does not contain any edge { Zf 3

Thus, the equality e = n — 1 holds. Induction step:

Given a tree T with e = n — 1, if we increment the number
of edges, three cases follow:

- n remains the same: the new edge links two existing
vertices. The graph obtained is not a tree as it will give rise to
a circuit.

-n/ +— n + 1: the new vertex becomes a new leaf. In the
sequel, the new graph 7" with n’ vertices and ¢’ edges remains
T'is connex

a tree as
e=n+1

Basic Concepts in Optimization and Graph Theory 11

—n +— n + 2: the new edge is a disconnected component,
hence, the graph obtained is not connected = It is not a tree

Figure 1.5. A tree T with n =1

To sum up the above proof, when adding an edge to a tree,
we should add exactly one vertex.

1.6.6. The bipartite graphs

— A graph G is said to be bipartite if the the vertex set
can be split into two separate subsets A and B such that:

-ANB =0
-AUB=V;
- Blz,y} € Elr € Aand y € B.

A and B are disjoint sets of V' such that vertices within a
subset are not adjacent.

L]

‘o

g

Figure 1.6. A bipartite graph withn =T7and e =5

12 Graph-related Optimization and Decision Support Systems

— A complete bipartite graph connects all nodes of the first
vertex set A to all nodes of the vertex set B. This yields to a
total number of edges accounting to:

e =|A| x |B| [1.6]

Bipartite graphs are used to model packing problems such
as the knapsack problem, the bin packing and their variants.

1.7. Conclusion

In this chapter, we discussed various aspects of an
optimization problem and the main concepts of graph theory.
We addressed the key issues to consider when solving a
combinatorial optimization problem. The main optimization
models for the decision-making were introduced as they
provide tools for making optimal and promising decisions.
Indeed, optimization models are closely linked to their
mathematical formulation as an objective function and a set
of system constraints, and hence the definition of the feasible
space. The complexity theory and the optimization methods
are linked in such a way that the choice of the solution
method often depends on the problem complexity. In the case
of problems in class P, a polynomial algorithm can be used.
However, for NP-hard problems, two possibilities can be
adopted. While exact methods are used for finding the
optimal solution for small-sized problems, approximate
methods are efficient for large-size instances.

The different definitions and concepts provided in this
chapter are the foundation of the theoretical and applicative
contributions to be evoked in the subsequent chapters of this
book.

