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Partitioning the End-to-End  
QoS Budget to Domains 

Quality of service (QoS) constraints for a packet flow are generally 
specified for the entire path, which may traverse several domains 
operated by different internet service providers (ISPs). In view of this, 
and given that each provider allocates bandwidth and provides QoS 
guarantees independently from the other providers, we need a way to 
combine this information for the entire end-to-end path. QoS 
constraints, such as the one-way delay (OWD), are typically specified 
as percentiles, and in view of this, we need an expression for adding 
percentiles of a number of random variables. As will be seen, we 
cannot simply add percentiles arithmetically, i.e. if x1 and x2 are the 
95th percentiles of random variables X1 and X2, respectively, then x1 + 
x2 is not the 95th percentile of X1 + X2. How to achieve this is the issue 
addressed in this chapter. 

This chapter is organized as follows. In the next section, we give 
examples where an expression for adding percentiles can be useful. In 
section 1.2, we present an expression for adding up percentiles of 
random variables that are exponentially distributed with either the 
same or different rates. The results are then extended to the more 
general Coxian-2 distribution. Next, the distribution of the QoS 
budget to individual providers is addressed in section 1.3. In  
section 1.4, we provide an example of calculating the shortest path 
using Dijkstra’s algorithm that minimizes the total percentile of a  
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performance metric, such as delay, energy, jitter and power 
attenuation of a signal. Finally, the conclusions are given in  
section 1.5. 

1.1. The need for adding percentiles 

Let us consider a performance metric such as the response time of 
a router and a web service or of a software process. Typically, we use 
the average of this metric as a performance indicator. For instance, we 
will say that the average time it takes for a specific web service is  
2 ms. However, we all know that averages can be misleading as they 
do not represent the range of values which the metric under study may 
take. A percentile of the metric provides a better understanding of a 
system, since the percentile statistically bounds the behavior of the 
system. The qth percentile, such as the 95th percentile, of a variable X 
is defined as a value below which X lies q% of the time.  

There is a plethora of situations in practice where we have to add 
percentiles of different random variables in order to calculate an 
aggregate percentile. Below, we describe some examples where this 
problem arises: 

– response time in a web service: the execution of a web-based 
service may involve several sites, each carrying out part of the service 
flow. Given that each site can guarantee the 95th percentile of its own 
response time, the question is what is the 95th percentile of the total 
time? This end-to-end percentile can then be used in the negotiation of 
the contract with the user; 

– testing a large suite of software: let us consider a suite of 
software components that provide a service, such as the IP multimedia 
subsystem (IMS). This is the signaling protocol used to setup 
multimedia sessions over the Internet Protocol (IP) network, and it is 
also used in long term evolution (LTE). Testing for software 
bottlenecks is standard routine before the software is released. 
However, due to the complexity of IMS, it is impossible to have all 
the components present in a lab. In view of this, the components that 
are not available for testing are often represented by idealized  
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simulations that are generally built as “no-op” stubs that return results 
artificially fast. As a result, the end-to-end response distribution 
cannot be reliably obtained. An alternative solution is to test only 
subgroups of software components at a time and obtain the percentile 
of the response time for each group. The individual percentiles can 
then be added in order to get an estimate of the end-to-end percentile 
response time;  

– QoS in multidomain routing: user traffic typically originates at a 
local area network, and then it traverses an access network before 
being channeled into a wide area network (WAN) or a series of 
WANs, each operated by a different ISP, to reach its destination that 
may be another access network. Time sensitive traffic, such as Voice 
over IP (VoIP) and interactive video, needs to be treated by the ISPs 
in such a way so that the end-to-end delay and the end-to-end jitter is 
minimum. Again, the same problem arises here. Each ISP typically 
guarantees the 95th percentile of the time to traverse its domain and 
the jitter generated within the domain due to congestion. Based on the 
individual percentiles, what guarantees can we provide for the end-to-
end delay and jitter? 

– controlling the power budget: an interesting problem arises in 
green data centers. Specifically, let us assume that we want to limit the 
total power consumption so that 95% of the time it is less than a 
power budget P. The question arises as to how this can be calculated if 
we know the percentiles of the power consumption of the individual 
devices or groups of devices;  

– a similar problem is also encountered in cloud computing where 
multiple software components run in a virtual environment on the 
same blade, one component per virtual machine (VM). Each VM is 
allocated a virtual central processing unit (CPU), which is a fraction of 
the blade’s CPU. The hypervisor automatically monitors CPU usage 
for each VM. The question here is how do we allocate the blade’s 
CPU to the multiple VMs running on the same blade so that a given 
percentile of the response time of each VM is satisfied while at the 
same time the percentile of the overall power consumption is 
bounded? 
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1.2. Calculation of the weight function 

Very little work has been done on how to add percentiles and also 
how to partition a percentile to individual components. Kreifeldt and 
Nah [KRE 95] reported on the error of adding and subtracting 
percentiles of anthropometric dimensions in order to derive other 
relevant dimensions. The work focuses particularly on Gaussian 
distributions and adding/subtracting equal percentile points. The key 
findings are that the error between the assumed (added/subtracted) 
percentile and actual percentile depends on the percentile point, the 
correlation coefficients and the standard deviation ratios of the 
components. Also, the error decreases as the correlation increases 
and/or the standard deviation ratio decreases. The issue of adding 
percentiles was also addressed in a white paper on interprovider QoS 
by the MIT Communications Futures Program [CFP 06]. The paper 
addressed the issue of how to allocate the end-to-end response time, 
packet loss and jitter across multiple operators. The response time was 
expressed as the mean, and the jitter was expressed as a percentile of 
the interarrival time at the destination. The authors proposed a method 
for adding the individual operators’ jitter. As will be shown in  
section 1.4, their method is grossly inaccurate. 

The problem studied in this chapter can be defined as follows. Let 
us consider a system consisting of n individual and independent 
components, as shown in Figure 1.1, each characterized by a random 
variable Xi, i = 1, 2, …, n. 

 

Figure 1.1. Composition of n components 

We assume that for each component i we know xi, the qth 
percentile of a given metric of interest, such as the response time, 
power consumption and jitter. We calculate x, the qth percentile of the 
end-to-end metric over all the n components, by computing a weight w 
with which we weigh up the arithmetic sum. We first work with 
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random variables that are exponentially distributed with either the 
same or different rate. Then, we extend the results to the more general 
Coxian-2 distribution. 

1.2.1. Exponential components with identical rate parameters 

We start by assuming that our metric of interest is exponentially 
distributed with a probability density function (PDF):  
and a cumulative density function (CDF): , where μ 
is the rate parameter of the exponential distribution. The sequence of 
the n components can then be represented by a sequence of n 
exponential distributions as shown in Figure 1.2. 

 

Figure 1.2. A sequence of exponential distribution 

In the case where , the end-to-end 
distribution is the well-known Erlang-n distribution. The PDF f(x), 
CDF F(X) and Laplace transform of an Erlang distribution are 
as follows: 

 

 

 

It is of interest to examine how the qth percentile of the individual 
components is related to the qth percentile of the end-to-end 
distribution. In Figure 1.3, we plotted the 80th percentile of an Erlang-
n along with the sum of the 80th percentile of the individual 
exponential components, with μ = 5. The plots are given as a function 
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of the number of components n, which was varied from 1 to 30. 
Similar results are given for the 95th, percentile with μ = 1. 

 

Figure 1.3. Erlang-n versus sum of n exponentials 

In general, for a given value of μ, the arithmetic sum of the 
individual qth percentiles is greater than the qth percentile of the end-
to-end distribution, and the difference increases as n increases. Also, 
the difference increases as q increases. Finally, as will be shown 
below, for a given value of q, the difference between the arithmetic 
sum of the individual qth percentiles and the qth percentile of the end-
to-end distribution for each n is independent of the value of the 
parameter μ.  
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Let xexp be the qth percentile of an exponential distribution with rate 
μ, notated as qexp, and let xErl be the qth percentile of an Erlang 
distribution with n stages each with parameter μ, notated as qErl. Then, 
from their respective CDF formulas we have  

      [1.1] 

and 

                                           [1.2] 

Given the values of qexp, qErl (which may or may not be the same), 
μ and xexp, we are interested in finding out a weight function w such 
that: 

 [1.3]              

Equation [1.1] can be rewritten as: 

 

Hence, equation [1.3] becomes: 

 

Substituting xErl in equation [1.2], we have: 

 

or 
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or 

 [1.4] 

Expression [1.4] has no analytical closed-form solution, but it can 
be solved for w numerically for a given q and n (e.g. using bisection or 
Newton’s method). Thus, we get w, the required weight function, and 
when multiplied by xexp, it gives the required value of xErl. Note that 
[1.4] is not dependent on either xexp or . Thus for the Erlang case, the 
weight w is constant for any given q and n. 

It should be noted here that qexp needs not be the same as qErl, i.e. 
equation [1.4] calculates a weight for converting exponential 
percentile to any Erlang percentile (and vice versa). Also, μ is not 
present in equation [1.4], confirming our previous observation that the 
difference between the arithmetic sum of individual qth percentiles 
and the qth percentile of the end-to-end distribution for each n is 
independent of μ. 

Thus, given a fixed parameter μ, equations [1.3] and [1.4] give us 
an exact formula to calculate a percentile of an Erlang distribution, 
given a specific percentile of the corresponding exponential 
distribution. Figure 1.4 gives results for the 95th and 99th percentiles, 
respectively, for μ = 1, 5, 100. In each figure, we plotted x computed 
using equations [1.3] and [1.4] and also using the CDF of the Erlang-
n, for n = 1, 2, ..., 30. As expected, the results are identical.  

1.2.2. Exponential components with different rate parameters 

In the case where the rate parameters of the exponential 
components are not necessarily the same, the end-to-end distribution 
is a hypoexponential distribution. In general, if we have n 
independently distributed exponential random variables Xi, then the 
random variable, , is hypoexponentially distributed. We 
note that the PDF and CDF formulas of the hypoexponential 
distribution are not readily available in the literature. They can be  
 



Partitioning the End-to-End QoS Budget to Domains     9 

obtained by inverting its Laplace transform using partial fraction 
expansion. 

 

 

Figure 1.4. 95th and 99th percentiles using Erlang-n CDF  
and weight function for μ =1, 5, 100 
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We have that: 

 

 

We observe that  /(  + s) is the Laplace transform of an 
exponential distribution with parameter μi. Hence, we have, 

 

 

 

or 

 [1.5] 

From equation [1.5], we can obtain the CDF of a hypoexponential 
distribution. We have 

 [1.6] 

The observations made earlier for Erlang distribution are also valid 
for the hypoexponential distribution. In Figure 1.5, we plotted the sum 
of the 95th and 99th percentile of n exponential components, where 
the parameter value of each component i is μi = i, i = 1, 2, …, n, along 
with the 95th percentile of the corresponding end-to-end 
hypoexponential distribution.  
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Figure 1.5. Hypoexponential-n versus sum of n exponentials 

It should be mentioned here that the shape of the qth percentile of 
the hypoexponential distribution depends on the value of the μ 
parameters.  

The results of equations [1.3] and [1.4] can be easily generalized to 
the hypoexponential case. First, let us consider a hypoexponential 
distribution with two stages, each with parameters 1 and 2 
respectively. Let xH be the qth percentile of the hypoexponential 
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distribution, notated as qH, and let xi be the qth percentile of the ith 
exponential stage, i = 1, 2, notated as qi. The CDF is given by: 

 [1.7] 

Now, we can find out the weight function, w, such that: 

 [1.8] 

Again, the CDF of each exponential component i can be written as: 

 

or 

 [1.9] 

Putting the value of xH from equation [1.8] and μi from equation 
[1.9] in equation [1.7], we get 
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 [1.10] 

Given xi and , i = 1, 2, we can calculate the weight function, w, 
using the above expression for any percentile qH of the two stage 
hypoexponential. This weight, when multiplied by the sum of xi, i  = 1, 
2, gives the value of xH. 

The above expression can easily be generalized to n stages, as 
follows: 

 [1.11] 
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and 

 [1.12] 

For illustration purposes, we have set n = 6 and q = 0.95, and the 
parameters  have been varied as follows. In the left graph of  
Figure 1.6, we have set  = i 1, i  = 1, …, 6, and in the right graph we 
have set  = i/ 1, i  = 2, …, 6. In Figure 1.7,   = i, for i  = 1, ..., 4, μ5 
increases and μ6 decreases over the same range for each successive 
observation. In each figure, we plotted x computed using equations 
[1.11] and [1.12] and also using the CDF of the hypoexponential 
distribution. 

 

Figure 1.6. 95th percentile using hypoexponential-6 CDF and weight function 
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Figure 1.7. 95th percentile using hypoexponential-6 CDF and weight function 

1.2.3. Two-stage Coxian 

The same ideas can be applied to a more generalized distribution, 
like a two-stage Coxian distribution which in turn is a special case of 
the phase type distribution (PHD). Before we proceed with the 
calculation of the weight w, we give a brief review of the PH and 
Coxian distributions. 

Consider a continuous-time Markov process with n + 1 states,  
n  1, such that the states 1, ..., n are transient states and state n + 1 is 
the absorbing state. Further, the process has an initial probability of 
starting in any of the n + 1 states given by the probability vector  
( , n+1), where  is a 1xn vector. The PHD is a continuous 
distribution in [0, ] of the time until the absorption state is reached in 
a continuous-time finite state Markov process. This process can be 
written in the form of a generator matrix as follows: 
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Where S is a 2nx2n transition rate matrix and is defined as: 
. O is a 1xn vector with each element set to 0, and e is an 

nx1 vector with each element set to 1. The pair  is called the 
representation function of the PHD. 

The PDF and CDF of a PHD are as follows:  

 

e 

where  represents a matrix exponential, which is defined as:  

 

A Coxian distribution with n stages, referred to as Coxian-n, is a 
generalization of the Erlang distribution, and a special case of the 
PHD.  

One of the most commonly used Coxian distributions is the 
Coxian-2 distribution shown in Figure 1.8. It consists of an 
exponentially distributed state with rate 1, followed by a second 
exponentially distributed state with rate 2 with probability a (= 1 - b).  

 

Figure 1.8. The Coxian-2 distribution 

The Laplace transform of Coxian-2 is given by:  
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The PDF and CDF of Coxian-2 are given by: 

 

 

The Coxian-2 is a special type of the PHD, and it can be described 
with the rate matrix: 

  

Now, let us consider a series of n Coxian-2 components connected 
in tandem as shown in Figure 1.9. 

 

Figure 1.9. A series of Coxian 2 distributions 

The end-to-end distribution, where each component is a Coxian- 
two, can be represented by a PHD with the following 2nx2n rate  
matrix: 

, 

and with a starting vector  = [1, 0, …, 0] of length n.  
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The CDF of the PH can be solved to get the value of x 
corresponding to a percentile q using an analytical tool such as Matlab 
and Mathematica. 

Let xe2e be the qth percentile of the PHD corresponding to the n 
component Coxian-2 distribution. Let xi be the qth percentile of the ith 
Coxian-2 stage, i = 1, ..., n. We are looking for a weight function w 
such that: 

w (x1 + x2 + … + xn) = xe2e 

Following the same steps as in the previous section and assuming 
that we know the parameters (μ1, μ2, a) of each Coxian-2 component, 
we have: 

 [1.13] 

 [1.14] 

For illustration purposes, we plotted in Figure 1.10 different 
percentiles calculated from the original CDF and expression [1.14] for 
n = 1, 2, …, 10, where the parameters (μ1, μ2, a) of the components 
are all equal to (1, 2, 0.5). Similar results are also given in Figure 1.11, 
assuming that the parameters of the ith component (μ1, μ2, a) =  
(i, 2i, 0.5). 

 

Figure 1.10. 95th percentile using phase-type CDF and weight function 
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Figure 1.11. Percentile using phase-type CDF and weight function  

1.3. Interprovider quality of service 

A set of recommendations is presented in a white paper [CFP 06] 
to simplify deployment of interprovider QoS for services spanning 
multiple networks. Enabling QoS-based peering among various 
providers is an area of open research and debate. The document 
recommends standards and best practices that can help simplify the 
deployment of QoS for traffic that traverses the network of various 
providers.  

The authors considered three network performance metrics: OWD, 
one-way IP packet loss ratio (IPLR) and one-way IP packet delay 
variation (IPDV) also known as jitter. Also, they defined two QoS 
classes, a single-low latency service class and a best effort class. The 
low latency class is suitable for applications like VoIP and is 
consistent with the service class definition of Y.1541 [ITU 05]. The 
parameters specified in Y.1541 are as follows. The OWD is defined as 
the mean one-way end-to-end delay with suggested values ranging  
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from 100 to 400 ms (depending on geographic distance). The IPDV is 
defined as a percentile of the interarrival time of successive packets at 
the destinations with suggested value of 50 ms being the 99th 
percentile, and the suggested IPLR value is 1 × 10-3. In order to 
support time sensitive traffic with desired QoS in a multiprovider 
network, the end-to-end performance metrics must be met as specified 
above. 

The white paper lists some best practices that, if used by a 
substantial number of network providers, can accelerate the planning 
and deployment of QoS-enabled networks supporting above 
mentioned performance metrics. Specifically, the authors propose a 
fixed allocation of the end-to-end QoS metrics to each provider. The 
basic idea is that a provider should not depend on a priori knowledge 
of other providers’ networks for planning his/her own network and 
providing QoS guarantees.  

 

Figure 1.12. A multidomain network 

Figure 1.12 gives the multidomain network as considered in the 
white paper. It consists of three concatenated core networks. In 
addition, one access network and zero or one metro networks per end 
are assumed. As the metro networks are not treated differently from 
the core networks, as far as budget allocation is concerned, the 
complete network under consideration consists of two access networks 
and five core networks. This is considered as a realistic topology for 
the end-to-end services.  

We are particularly interested in the budgeting of the IPDV across 
various segments of the network as our mathematical modeling  
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suggests that the thresholds proposed in [CFP 06] have reasonable 
room for improvement.  

The first observation made by the authors about IPDV is that a 
simple arithmetic division will result in more stringent requirements 
than actually required to meet the end-to-end goals. This observation 
is consistent with our finding in section 1.2. Also, the authors 
recognized the statistical nature of IPDV, and used probabilistic 
measures to allocate the metric. A major portion of the IPDV budget 
is allocated to the access network, where lower link speeds mandate 
more generous allocations. We agree with the analysis so far.  

The thresholds proposed are as follows: the 99th percentile of the 
IPDV for a core network should be less than 2 ms and the 99th 
percentile of the IPDV for an access network should be less than  
16 ms. It is important to mention here that these threshold values are 
not calculated using a mathematical method, but they were proposed 
so that they can be readily achievable in core and access networks. 
Based on these thresholds, they calculated that in a network of five 
core segments, the end-to-end IPDV is less than 20 ms with a 
probability of 0.99994, and in a network consisting of two access and 
five core segments it is less than 50 ms with a probability of 0.9998. 
Below are the calculations as presented in the paper for a five core 
segment network.  

Prob (e2e IPDV < 20 ms)  Prob (Sum of IPDV thresholds  
< 20 ms)  

Prob (all 5 intervals are “Low IPDV”) + Prob (4 out of 5 intervals 
are Low IPDV and one is High IPDV) + Prob (3 out of 5 intervals are 
Low IPDV and 2 are High IPDV) 

 

However, we find that the above calculations are grossly 
inaccurate. IPDV is expressed as a percentile of the interarrival time  
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of successive packets at the destination, and as stated earlier, 
percentiles cannot be added arithmetically, so the statement “Prob  
(e2e IPDV < 20 ms)  Prob (Sum of IPDV thresholds < 20 ms)” is not 
accurate mathematically.  

The document states that for a five core segment network, if the 
99th percentile of each core segment is less than 2 ms, then the end-to-
end IPDV is less than 20 ms with 0.99994 probability. Let us verify 
the above statement assuming an Erlang model with five states. That 
is, we assume that the PDF of the OWD through a core network is 
exponentially distributed. Each of the exponential stages has a 99th 
percentile of 2 ms. Hence, we can use results from section 1.2.1 to 
calculate the weight w such that: 

xErl = wxexp, where xexp = 2 ms 

Using equation [1.4]: 

, 

where qErl = 0.99994 and qexp = 0.99, we calculate the weight function 
to be w = 4.00125, and hence: xErl = 8.0025 ms 

That is, if we have a five core segment network where the 99th 
percentile of each component is 2 ms, then with probability 0.99994, 
the end-to-end IPDV will be less than or equal to 8.0025 ms. This is 
less than half of what has been calculated in [CFP 06], i.e. 20 ms. 

Also, we consider the inverse problem of calculating the 99th 
percentile of the individual core component, given that the end-to-end 
IPDV is less than 20 ms with 0.99994 probability. Again using 
equation [1.3] with xErl = 20 and w = 4.00125, we get: 

xexp = 5 ms 

That is, if we have a five core segment network and we want the 
99.994 percentile of the end-to-end IPDV to be 20 ms, then the 99th  
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percentile of each of the core segment should be 5 ms (instead of 2 ms 
as proposed in [CFP 06]). 

Next, we model a seven component network with two access and 
five core networks, using a hypoexponential distribution. As proposed 
in the paper, the 99th percentile of IPDV for core should be less than  
2 ms and the 99th percentile of IPDV for access should be less than  
16 ms. Using equations [1.11] and [1.12], we calculate the weight 
function w such that: 

 

and we obtain that xH = 40.8815 ms. That is, the end-to-end IPDV  
is less than equal to 40.8815 ms with probability 0.9998 (as  
opposed to 50 ms calculated in [CFP 06]) thus allowing 18% more of 
IPDV for a more generous allocation at the access and/or core 
segments. 

1.4. Single source shortest path using Dijkstra’s algorithm 

The expressions obtained in section 1.2 can be directly used  
in a search algorithm, like Dijkstra’s algorithm, to calculate  
the shortest path in a graph that minimizes the total percentile cost  
of a performance metric such as delay, energy, jitter and  
power attenuation of signal. Below, we present an example to 
illustrate this. 

Consider the network given in Figure 1.13 where the link cost 
represents the delay to reach from one node to another. We are 
interested in finding the shortest/quickest path from node O to all 
other nodes, i.e. the minimum spanning tree (MST) rooted at node O. 
We assume the delay to be exponentially distributed. 

First, we do a standard run of Dijkstra’s algorithm where the cost 
of each link is the average delay to traverse the link, and the shortest 
path is defined as the path with the least end-to-end average delay.  
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Figure 1.14 gives the MST (represented by dark lines) rooted at node 
O. The average delay to reach any node from node O is given above 
the node. 

 

Figure 1.13. The network under study  

 

Figure 1.14. The minimum spanning tree using the average delay 

Now, we use Dijkstra’s algorithm to combine percentile delays. 
Again using Figure 1.13, we now define the per link cost to be the 
95th percentile delay to traverse the link, and the shortest path is 
defined as the path with the least end-to-end 95th percentile delay. 
The addition of the percentiles is done using [1.11] and [1.12]. The 
resultant MST is shown in Figure 1.15 (represented by dark lines). 
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Figure 1.15. The minimum spanning tree using the percentile delay  

Notice how the resultant MSTs present two very different routing 
views of the network. For example, consider the path from O to F. If 
we want to minimize the average end-to-end delay, packets from O to 
F should be routed through A. This path guarantees that the average 
delay will be 120 time units or less (Figure 1.14). However, if we are 
concerned about minimizing the 95th percentile delay, the packets 
should be routed through A B E D G (Figure 1.15). This path, 
though having a higher number of hops, guarantees that 95% of the 
packets will experience delay of 96.51 time unit or less.  

The preference of one view over the other depends on how service 
level agreements (SLAs) are defined. If an SLA is defined in terms of 
average delays, the traditional average delay MST suffices. However, 
as is the case with present-day networks, for real-time 
communications, statistical bounding of the delay is preferred over 
simple averaging. In this case, routing based on delay percentiles 
seems to be more meaningful. 

1.5. Conclusions 

In this chapter, we described a method to add n percentiles of 
exponentially distributed random variables with or without the same 
mean. This method was also extended to the case where the random  
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variables follow a Coxian-2 distribution. There is a plethora of 
situations in practice where we have to add percentiles of different 
random variables in order to calculate an aggregate percentile. We 
demonstrated the usefulness of the results obtained in this chapter 
through two examples. In the first example, we addressed an issue that 
arose in a set of recommendations for interprovider QoS, and in the 
second example we employed Dijkstra’s algorithm to find the shortest 
path minimizing the end-to-end percentile delay. 

 



 

 


