Partitioning the End-to-End
QoS Budget to Domains

Quality of service (QoS) constraints for a packet flow are generally
specified for the entire path, which may traverse several domains
operated by different internet service providers (ISPs). In view of this,
and given that each provider allocates bandwidth and provides QoS
guarantees independently from the other providers, we need a way to
combine this information for the entire end-to-end path. QoS
constraints, such as the one-way delay (OWD), are typically specified
as percentiles, and in view of this, we need an expression for adding
percentiles of a number of random variables. As will be seen, we
cannot simply add percentiles arithmetically, i.e. if x; and x, are the
95th percentiles of random variables X; and X, respectively, then x; +
X, is not the 95th percentile of X; + X;. How to achieve this is the issue
addressed in this chapter.

This chapter is organized as follows. In the next section, we give
examples where an expression for adding percentiles can be useful. In
section 1.2, we present an expression for adding up percentiles of
random variables that are exponentially distributed with either the
same or different rates. The results are then extended to the more
general Coxian-2 distribution. Next, the distribution of the QoS
budget to individual providers is addressed in section 1.3. In
section 1.4, we provide an example of calculating the shortest path
using Dijkstra’s algorithm that minimizes the total percentile of a

2 Bandwidth Allocation for Video under Quality of Service Constraints

performance metric, such as delay, energy, jitter and power
attenuation of a signal. Finally, the conclusions are given in
section 1.5.

1.1. The need for adding percentiles

Let us consider a performance metric such as the response time of
a router and a web service or of a software process. Typically, we use
the average of this metric as a performance indicator. For instance, we
will say that the average time it takes for a specific web service is
2 ms. However, we all know that averages can be misleading as they
do not represent the range of values which the metric under study may
take. A percentile of the metric provides a better understanding of a
system, since the percentile statistically bounds the behavior of the
system. The gth percentile, such as the 95th percentile, of a variable X
is defined as a value below which X lies ¢% of the time.

There is a plethora of situations in practice where we have to add
percentiles of different random variables in order to calculate an
aggregate percentile. Below, we describe some examples where this
problem arises:

— response time in a web service: the execution of a web-based
service may involve several sites, each carrying out part of the service
flow. Given that each site can guarantee the 95th percentile of its own
response time, the question is what is the 95th percentile of the total
time? This end-to-end percentile can then be used in the negotiation of
the contract with the user;

— testing a large suite of software: let us consider a suite of
software components that provide a service, such as the IP multimedia
subsystem (IMS). This is the signaling protocol used to setup
multimedia sessions over the Internet Protocol (IP) network, and it is
also used in long term evolution (LTE). Testing for software
bottlenecks is standard routine before the software is released.
However, due to the complexity of IMS, it is impossible to have all
the components present in a lab. In view of this, the components that
are not available for testing are often represented by idealized

Partitioning the End-to-End QoS Budget to Domains 3

simulations that are generally built as “no-op” stubs that return results
artificially fast. As a result, the end-to-end response distribution
cannot be reliably obtained. An alternative solution is to test only
subgroups of software components at a time and obtain the percentile
of the response time for each group. The individual percentiles can
then be added in order to get an estimate of the end-to-end percentile
response time;

— QoS in multidomain routing: user traffic typically originates at a
local area network, and then it traverses an access network before
being channeled into a wide area network (WAN) or a series of
WAN:S, each operated by a different ISP, to reach its destination that
may be another access network. Time sensitive traffic, such as Voice
over IP (VoIP) and interactive video, needs to be treated by the ISPs
in such a way so that the end-to-end delay and the end-to-end jitter is
minimum. Again, the same problem arises here. Each ISP typically
guarantees the 95th percentile of the time to traverse its domain and
the jitter generated within the domain due to congestion. Based on the
individual percentiles, what guarantees can we provide for the end-to-
end delay and jitter?

— controlling the power budget: an interesting problem arises in
green data centers. Specifically, let us assume that we want to limit the
total power consumption so that 95% of the time it is less than a
power budget P. The question arises as to how this can be calculated if
we know the percentiles of the power consumption of the individual
devices or groups of devices;

—a similar problem is also encountered in cloud computing where
multiple software components run in a virtual environment on the
same blade, one component per virtual machine (VM). Each VM is
allocated a virtual central processing unit (CPU), which is a fraction of
the blade’s CPU. The hypervisor automatically monitors CPU usage
for each VM. The question here is how do we allocate the blade’s
CPU to the multiple VMs running on the same blade so that a given
percentile of the response time of each VM is satisfied while at the
same time the percentile of the overall power consumption is
bounded?

4 Bandwidth Allocation for Video under Quality of Service Constraints

1.2. Calculation of the weight function

Very little work has been done on how to add percentiles and also
how to partition a percentile to individual components. Kreifeldt and
Nah [KRE 95] reported on the error of adding and subtracting
percentiles of anthropometric dimensions in order to derive other
relevant dimensions. The work focuses particularly on Gaussian
distributions and adding/subtracting equal percentile points. The key
findings are that the error between the assumed (added/subtracted)
percentile and actual percentile depends on the percentile point, the
correlation coefficients and the standard deviation ratios of the
components. Also, the error decreases as the correlation increases
and/or the standard deviation ratio decreases. The issue of adding
percentiles was also addressed in a white paper on interprovider QoS
by the MIT Communications Futures Program [CFP 06]. The paper
addressed the issue of how to allocate the end-to-end response time,
packet loss and jitter across multiple operators. The response time was
expressed as the mean, and the jitter was expressed as a percentile of
the interarrival time at the destination. The authors proposed a method
for adding the individual operators’ jitter. As will be shown in
section 1.4, their method is grossly inaccurate.

The problem studied in this chapter can be defined as follows. Let
us consider a system consisting of n individual and independent
components, as shown in Figure 1.1, each characterized by a random
variable X;, i=1, 2, ..., n.

Component
1

Figure 1.1. Composition of n components

We assume that for each component i we know x;, the gth
percentile of a given metric of interest, such as the response time,
power consumption and jitter. We calculate x, the gth percentile of the
end-to-end metric over all the » components, by computing a weight w
with which we weigh up the arithmetic sum. We first work with

Partitioning the End-to-End QoS Budget to Domains 5

random variables that are exponentially distributed with either the
same or different rate. Then, we extend the results to the more general
Coxian-2 distribution.

1.2.1. Exponential components with identical rate parameters

We start by assuming that our metric of interest is exponentially
distributed with a probability density function (PDF): f(x) = ue™#*
and a cumulative density function (CDF): F(X) = 1 — e ™™ where u
is the rate parameter of the exponential distribution, The sequence of
the n components can then be represented by a sequence of n
exponential distributions as shown in Figure 1.2.

~((O D—= (D

Figure 1.2. 4 sequence of exponential distribution

In the case where pu, =p, =-+-=pu, =pu, the end-to-end
distribution is the well-known Erlang-n distribution. The PDF f{x),
CDF F(X) and Laplace transform f,’(s) of an Erlang distribution are
as follows:

()"
(n—1)

f(x) = pe™*

F(X)=1- Z: e—ﬂx(“i—f)l

. K\
fe(s) = (u + s)

It is of interest to examine how the gth percentile of the individual
components is related to the gqth percentile of the end-to-end
distribution. In Figure 1.3, we plotted the 80th percentile of an Erlang-
n along with the sum of the 80th percentile of the individual
exponential components, with 4 = 5. The plots are given as a function

6 Bandwidth Allocation for Video under Quality of Service Constraints

of the number of components 7, which was varied from 1 to 30.
Similar results are given for the 95th percentile with u = 1.

12

Sum of Exponential percentiles
10

——— Percentile of Erlang-n

80" percentile
(=2 =]

4=

1 3 5 7 9 1113 1517 19 21 23 25 27 29
Number of exponentials (1), u=5

Sum of Exponential percentiles
80 ——— Percentile of Erlang-n

2

95t percentile
5 3

1 3 5 7 9 11 1315 17 19 21 23 25 27 29
Number of exponentials (1), p=1

Figure 1.3. Erlang-n versus sum of n exponentials

In general, for a given value of u, the arithmetic sum of the
individual gth percentiles is greater than the gth percentile of the end-
to-end distribution, and the difference increases as n increases. Also,
the difference increases as ¢ increases. Finally, as will be shown
below, for a given value of ¢, the difference between the arithmetic
sum of the individual gth percentiles and the gth percentile of the end-
to-end distribution for each n is independent of the value of the
parameter u.

Partitioning the End-to-End QoS Budget to Domains 7

Let x.,, be the gth percentile of an exponential distribution with rate
u, notated as ., and let xz; be the gth percentile of an Erlang
distribution with n stages each with parameter x, notated as gz, Then,
from their respective CDF formulas we have

1 — e H¥ew = Gexp [11]
and
1- 3 emwnen 2B — g [1.2]

Given the values of gy, gg (Which may or may not be the same),
p and x.,, we are interested in finding out a weight function w such
that:

XErt = WXexp [13]
Equation [1.1] can be rewritten as:

—ln(l — qexp)

Xexp =
u

Hence, equation [1.3] becomes:

—ln(l - qexp)

Xgrt = W
u

Substituting x,,in equation [1.2], we have:

_l”(l - qexp))i

n-1 —In(1-qexp) (UW
e
i=0 i!

= dqErt

or

~ n=1 (—win(1 = Gexp))"
1—-gpgn = €Wln(1 exp) Zi=0 i exp

8 Bandwidth Allocation for Video under Quality of Service Constraints

or

(1 = gn) = win(1 = Gory) + tn i {2l te) [1.4]

Expression [1.4] has no analytical closed-form solution, but it can

be solved for w numerically for a given ¢ and n (e.g. using bisection or

Newton’s method). Thus, we get w, the required weight function, and

when multiplied by x..,, it gives the required value of xz,. Note that

[1.4] is not dependent on either x,,, or u. Thus for the Erlang case, the
weight w is constant for any given ¢ and n.

It should be noted here that gy, needs not be the same as g, i.€.
equation [1.4] calculates a weight for converting exponential
percentile to any Erlang percentile (and vice versa). Also, u is not
present in equation [1.4], confirming our previous observation that the
difference between the arithmetic sum of individual gth percentiles
and the gth percentile of the end-to-end distribution for each n is
independent of u.

Thus, given a fixed parameter u, equations [1.3] and [1.4] give us
an exact formula to calculate a percentile of an Erlang distribution,
given a specific percentile of the corresponding exponential
distribution. Figure 1.4 gives results for the 95th and 99th percentiles,
respectively, for g = 1, 5, 100. In each figure, we plotted x computed
using equations [1.3] and [1.4] and also using the CDF of the Erlang-
n,forn=1, 2, ..., 30. As expected, the results are identical.

1.2.2. Exponential components with different rate parameters

In the case where the rate parameters of the exponential
components are not necessarily the same, the end-to-end distribution
is a hypoexponential distribution. In general, if we have n
independently distributed exponential random variables X;, then the
random variable, X =)}/*; X;, is hypoexponentially distributed. We
note that the PDF and CDF formulas of the hypoexponential
distribution are not readily available in the literature. They can be

Partitioning the End-to-End QoS Budget to Domains 9

obtained by inverting its Laplace transform using partial fraction
expansion.

. Hq Uz u
fii(s) = ———
Upt Sl +S Uy ts
45
Erlang-n, p=1
40 + Computed Percentile
35 Erlang-n, p=5
©30 + Computed Percentile
R Erlang-n, p=100
§ 25 Computed Percentile
2.0
|_-'f'
15
10
5 M
0 ___________
1 3 5 7 9 1113 15 17 19 21 23 25 27 29
Number of exponentials (7)
50
Erlang-n, p=1
+ Computed Percentile
40 Erlang-n, p=5
o + Computed Percentile
=3 Erlang-n, p=100
§ Computed Percentile
2
520
)
- M

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Number of exponentials (1)

Figure 1.4. 95th and 99th percentiles using Erlang-n CDF
and weight function for u =1, 5, 100

10 Bandwidth Allocation for Video under Quality of Service Constraints

We have that:
fi(s) = Hillz- - Hn 1 "
* (tz = 1)z =) oo (pn — 1) 1 +8
Hilz- - Hn 1 "
(g — p2)(pz —) oo (U — o) Uz +s
Hala- - i 1

+
(U1 =) (g —) oo (U—q —) Hy +5

We observe that u, /(u, + s) is the Laplace transform of an
exponential distribution with parameter x;. Hence, we have,
Hilo- - Hn

) = =i —) =m0 ©

Hilo- - Hn

+ e ~H2X + ..
(1 = 12) (uz = ph2) - (U — 112)

Hillz- - Hn

—HnXx
" (1 —) (2 —) - Gy —) ©
or
fx) =Xk, {Hie_ﬂix 1_[11‘1=1 ”,M_ju} [1.5]
jzi)t

From equation [1.5], we can obtain the CDF of a hypoexponential
distribution. We have

FX) = ?:1{(1—6"”")1'[?:1 - } [1.6]

i Hj—Hi

The observations made earlier for Erlang distribution are also valid
for the hypoexponential distribution. In Figure 1.5, we plotted the sum
of the 95th and 99th percentile of n exponential components, where
the parameter value of each component iis y;=1i,i=1,2, ..., n, along
with the 95th percentile of the corresponding end-to-end
hypoexponential distribution.

Partitioning the End-to-End QoS Budget to Domains 11

10
9
8
7
=
5 6
(5]
5 5
o
z 4
o
3
2 Sum of Exponential percentiles
! ——— Percentile of Hypoexponential-n
0
1 2 3 4 5 6 7 8 9 10
Number of exponentials (n). u=i, i=1. 2,n
16
Sum of Exponential percentiles
14
——— Percentile of Hypoexponential-n
12
= 10
3
5 8
o,
5
2 6
4
2
0

1 2 3 4 5 6 7 8 9 10

Number of exponentials (n). u=i, =1. 2,n

Figure 1.5. Hypoexponential-n versus sum of n exponentials

It should be mentioned here that the shape of the g#h percentile of
the hypoexponential distribution depends on the value of the u
parameters.

The results of equations [1.3] and [1.4] can be easily generalized to
the hypoexponential case. First, let us consider a hypoexponential
distribution with two stages, each with parameters x; and u,
respectively. Let xy be the gth percentile of the hypoexponential

12 Bandwidth Allocation for Video under Quality of Service Constraints

distribution, notated as gy, and let x; be the gth percentile of the ith
exponential stage, i = 1, 2, notated as ¢;. The CDF is given by:

_ o—Mixy) M2 e Hexmy M1 _ 1
(1 e)Hz—ﬂ1+(1 e)Ih_#z an [7]

Now, we can find out the weight function, w, such that:
xy = w(x +x3) [1.8]
Again, the CDF of each exponential component 7 can be written as:

_—ln(1—q)
u

i
or

p = —ni-a) [1.9]

Xi

Putting the value of xy from equation [1.8] and y; from equation
[1.9] in equation [1.7], we get

. —-In(1-¢,)
)y
qy =[1—e "l % +

_ln(l_qz) _ln(l_ql)

% X [1.10]
ln(l%)

—74"(1"’2)”'(11” » X
l—e 1 !

=In(l-¢,) -In(1-g,)

X X

Given x; and q;, i = 1, 2, we can calculate the weight function, w,
using the above expression for any percentile gy of the two stage
hypoexponential. This weight, when multiplied by the sum of x; i =1,
2, gives the value of x;;

The above expression can easily be generalized to n stages, as
follows:

— _) Pk=1 %k In(1-
g=3n, {(1 _ WGP) M, x;In(1-q) (1.11]
j

- xjIn(1-q)—x;In(1-q)
#i

Partitioning the End-to-End QoS Budget to Domains 13

and
Xg=wWXr,x; [1.12]

For illustration purposes, we have set n = 6 and ¢ = 0.95, and the
parameters u; have been varied as follows. In the left graph of
Figure 1.6, we have setu, = iwy, i =1, ..., 6, and in the right graph we
have set y, = i/uy, i =2, ..., 6. InFigure 1.7, u, =i, fori =1, ..., 4, us
increases and s decreases over the same range for each successive
observation. In each figure, we plotted x computed using equations
[1.11] and [1.12] and also using the CDF of the hypoexponential
distribution.

+ Percentile using eq. 1.12

— Percentile of Hypoexponential-6

95" percentile
LFN)

0
1 2 3 4 5 6 7 8 Bl 10
Parameter values: p,; (u=i*y,;, i=l1, 2, ...,6)
60
+ Percentile using eq. 1.12
50

Percentile of Hypoexponential-6

95t percentile
[=) [F¥) 8
(=] (=)

—
o

1 2 3 4 5 6 7 8 9 10
Parameter values: p; (u;=i/u,, i=1. 2.6)

Figure 1.6. 95th percentile using hypoexponential-6 CDF and weight function

14 Bandwidth Allocation for Video under Quality of Service Constraints

4.64

4.62

4.60

4.58

»
n
L=

95 percentile
P
4

»
Ln
[=1

+ Percentile using eq. 1.12

B
e
=]

Percentile of Hypoexponential-6

o=
&

s
B

523 721 919 11,17 13,15 15,13 17.11 199 21,7 235
Parameter values: us, P (=1, 1;=2, 15=3, 1=4)

Figure 1.7. 95th percentile using hypoexponential-6 CDF and weight function

1.2.3. Two-stage Coxian

The same ideas can be applied to a more generalized distribution,
like a two-stage Coxian distribution which in turn is a special case of
the phase type distribution (PHD). Before we proceed with the
calculation of the weight w, we give a brief review of the PH and
Coxian distributions.

Consider a continuous-time Markov process with n + 1 states,
n > 1, such that the states 1, ..., n are transient states and state n + 1 is
the absorbing state. Further, the process has an initial probability of
starting in any of the n + 1 states given by the probability vector
(a, a,+1), where o is a 1xn vector. The PHD is a continuous
distribution in [0, o] of the time until the absorption state is reached in
a continuous-time finite state Markov process. This process can be
written in the form of a generator matrix as follows:

transient absorbing
Q = transient [S So
absorbing 0 0

Partitioning the End-to-End QoS Budget to Domains 15

Where S is a 2nx2n transition rate matrix and S is defined as:
So = —Sxe. O is a 1xn vector with each element set to 0, and e is an
nx; vector with each element set to 1. The pair (a,S) is called the
representation function of the PHD.

The PDF and CDF of a PHD are as follows:
f(x) = ae’*S,
F(X) =1— ae’*e

where e5* represents a matrix exponential, which is defined as:

2 A3

1
A _ _ Ak — —
€ _Zk!A TR TIS
k=0

A Coxian distribution with n stages, referred to as Coxian-n, is a
generalization of the Erlang distribution, and a special case of the
PHD.

One of the most commonly used Coxian distributions is the
Coxian-2 distribution shown in Figure 1.8. It consists of an
exponentially distributed state with rate u, followed by a second
exponentially distributed state with rate ¢, with probability a (=1 - b).

Qe

Figure 1.8. The Coxian-2 distribution

The Laplace transform of Coxian-2 is given by:

Ha) b H1
U tsu; +s uts

() =a

16 Bandwidth Allocation for Video under Quality of Service Constraints

The PDF and CDF of Coxian-2 are given by:

f(x) = buye™** + a(Me—ulx + Me—uﬂ)
Ha — M1 H1 — U2
F(X) = b(1 — %) +a{ B2 (1 —emmry 4 M1
2 — Uy — U2

—

The Coxian-2 is a special type of the PHD, and it can be described
with the rate matrix:

g = —H1 a.“1]

0 —H2

Now, let us consider a series of n Coxian-2 components connected
in tandem as shown in Figure 1.9.

Figure 1.9. 4 series of Coxian 2 distributions

The end-to-end distribution, where each component is a Coxian-
two, can be represented by a PHD with the following 2nx2n rate
matrix:

—H11 Qifin bipgy 0 0 0 0
[0 “Hi2 M1z 0 0 0 0]
0 0 —Ua1 Gallz1 Daay 0 0 |
S=| 0 0 0 —Hzz Mz 0 0 >
[0 0 0 ~Hna an/—‘nlJ
0 0 0 0 —n

and with a starting vector a =[1, 0, ..., 0] of length n.

Partitioning the End-to-End QoS Budget to Domains 17

The CDF of the PH can be solved to get the value of x
corresponding to a percentile ¢ using an analytical tool such as Matlab
and Mathematica.

Let x.,. be the gth percentile of the PHD corresponding to the n
component Coxian-2 distribution. Let x; be the gth percentile of the ith
Coxian-2 stage, i = 1, ..., n. We are looking for a weight function w
such that:

wxp T Xyt X)) = Xege

Following the same steps as in the previous section and assuming
that we know the parameters (i, up, a) of each Coxian-2 component,
we have:

0= 1 qeSwibong [1.13]
Xeze = WZ?:lxi [114]

For illustration purposes, we plotted in Figure 1.10 different
percentiles calculated from the original CDF and expression [1.14] for
n=1,2, ..., 10, where the parameters (u;, u», a) of the components
are all equal to (1, 2, 0.5). Similar results are also given in Figure 1.11,
assuming that the parameters of the ith component (1), u, a) =
(@, 21, 0.5).

99% Percentile of PH

+ Percentile using eq. 1.14

é 20 95% Percentile of PH
g + Percentile using eq. 1.14
w
= 80% Percentile of PH
é 15 Percentile using eq. 1.14 . !
S gl
310
2
3 s
+
0

1 2 3 4 5 6 7 8 9 10
Coxian-2 components (1), u;=1. u,=2. a=0.5

Figure 1.10. 95th percentile using phase-type CDF and weight function

18 Bandwidth Allocation for Video under Quality of Service Constraints

-~

w

(]

Percentile of end-to-end distribution
.

99% Percentile of PH + Percentile using eq. 1.14
1 95% Percentile of PH + Percentile using eq. 1.14
80% Percentile of PH Percentile using eq. 1.14

1 2 3 K 5 6 7 8 9 10

Coxian-2 components (1), u,=i, u,=2i, a=0.5

Figure 1.11. Percentile using phase-type CDF and weight function

1.3. Interprovider quality of service

A set of recommendations is presented in a white paper [CFP 06]
to simplify deployment of interprovider QoS for services spanning
multiple networks. Enabling QoS-based peering among various
providers is an area of open research and debate. The document
recommends standards and best practices that can help simplify the
deployment of QoS for traffic that traverses the network of various
providers.

The authors considered three network performance metrics: OWD,
one-way [P packet loss ratio (IPLR) and one-way IP packet delay
variation (IPDV) also known as jitter. Also, they defined two QoS
classes, a single-low latency service class and a best effort class. The
low latency class is suitable for applications like VolP and is
consistent with the service class definition of Y.1541 [ITU 05]. The
parameters specified in Y.1541 are as follows. The OWD is defined as
the mean one-way end-to-end delay with suggested values ranging

Partitioning the End-to-End QoS Budget to Domains 19

from 100 to 400 ms (depending on geographic distance). The IPDV is
defined as a percentile of the interarrival time of successive packets at
the destinations with suggested value of 50 ms being the 99th
percentile, and the suggested IPLR value is 1 x 10°. In order to
support time sensitive traffic with desired QoS in a multiprovider
network, the end-to-end performance metrics must be met as specified
above.

The white paper lists some best practices that, if used by a
substantial number of network providers, can accelerate the planning
and deployment of QoS-enabled networks supporting above
mentioned performance metrics. Specifically, the authors propose a
fixed allocation of the end-to-end QoS metrics to each provider. The
basic idea is that a provider should not depend on a priori knowledge
of other providers’ networks for planning his/her own network and
providing QoS guarantees.

Figure 1.12. A multidomain network

Figure 1.12 gives the multidomain network as considered in the
white paper. It consists of three concatenated core networks. In
addition, one access network and zero or one metro networks per end
are assumed. As the metro networks are not treated differently from
the core networks, as far as budget allocation is concerned, the
complete network under consideration consists of two access networks
and five core networks. This is considered as a realistic topology for
the end-to-end services.

We are particularly interested in the budgeting of the IPDV across
various segments of the network as our mathematical modeling

20 Bandwidth Allocation for Video under Quality of Service Constraints

suggests that the thresholds proposed in [CFP 06] have reasonable
room for improvement.

The first observation made by the authors about IPDV is that a
simple arithmetic division will result in more stringent requirements
than actually required to meet the end-to-end goals. This observation
is consistent with our finding in section 1.2. Also, the authors
recognized the statistical nature of IPDV, and used probabilistic
measures to allocate the metric. A major portion of the IPDV budget
is allocated to the access network, where lower link speeds mandate
more generous allocations. We agree with the analysis so far.

The thresholds proposed are as follows: the 99th percentile of the
IPDV for a core network should be less than 2 ms and the 99th
percentile of the IPDV for an access network should be less than
16 ms. It is important to mention here that these threshold values are
not calculated using a mathematical method, but they were proposed
so that they can be readily achievable in core and access networks.
Based on these thresholds, they calculated that in a network of five
core segments, the end-to-end IPDV is less than 20 ms with a
probability of 0.99994, and in a network consisting of two access and
five core segments it is less than 50 ms with a probability of 0.9998.
Below are the calculations as presented in the paper for a five core
segment network.

Prob (e2e IPDV < 20 ms) = Prob (Sum of IPDV thresholds
<20 ms) >

Prob (all 5 intervals are “Low IPDV”’) + Prob (4 out of 5 intervals
are Low IPDV and one is High IPDV) + Prob (3 out of 5 intervals are
Low IPDV and 2 are High IPDV)

= (0.99)° + (i) (0.99)*(0.00999) + @ (0.99)3(0.00999)2 = 0.99994

However, we find that the above calculations are grossly
inaccurate. [PDV is expressed as a percentile of the interarrival time

Partitioning the End-to-End QoS Budget to Domains 21

of successive packets at the destination, and as stated earlier,
percentiles cannot be added arithmetically, so the statement ‘“Prob
(e2e IPDV <20 ms) = Prob (Sum of IPDV thresholds < 20 ms)” is not
accurate mathematically.

The document states that for a five core segment network, if the
99th percentile of each core segment is less than 2 ms, then the end-to-
end IPDV is less than 20 ms with 0.99994 probability. Let us verify
the above statement assuming an Erlang model with five states. That
is, we assume that the PDF of the OWD through a core network is
exponentially distributed. Each of the exponential stages has a 99th
percentile of 2 ms. Hence, we can use results from section 1.2.1 to
calculate the weight w such that:

Xgr = WXeyp, Where Xy, = 2 ms

Using equation [1.4]:

n—1 (-win (1_‘?exp))i
il ’

In (1= Ggre) = Win (1= eyl (5155

where gz = 0.99994 and q.,, = 0.99, we calculate the weight function
to be w=4.00125, and hence: xz,= 8.0025 ms

That is, if we have a five core segment network where the 99th
percentile of each component is 2 ms, then with probability 0.99994,
the end-to-end IPDV will be less than or equal to 8.0025 ms. This is
less than half of what has been calculated in [CFP 06], i.e. 20 ms.

Also, we consider the inverse problem of calculating the 99th
percentile of the individual core component, given that the end-to-end
IPDV is less than 20 ms with 0.99994 probability. Again using
equation [1.3] with xg, = 20 and w = 4.00125, we get:

Xexp = > MS

That is, if we have a five core segment network and we want the
99.994 percentile of the end-to-end IPDV to be 20 ms, then the 99th

22 Bandwidth Allocation for Video under Quality of Service Constraints

percentile of each of the core segment should be 5 ms (instead of 2 ms
as proposed in [CFP 06]).

Next, we model a seven component network with two access and
five core networks, using a hypoexponential distribution. As proposed
in the paper, the 99th percentile of IPDV for core should be less than
2 ms and the 99th percentile of [IPDV for access should be less than
16 ms. Using equations [1.11] and [1.12], we calculate the weight
function w such that:

7

and we obtain that x; = 40.8815 ms. That is, the end-to-end IPDV
is less than equal to 40.8815 ms with probability 0.9998 (as
opposed to 50 ms calculated in [CFP 06]) thus allowing 18% more of
IPDV for a more generous allocation at the access and/or core
segments.

1.4. Single source shortest path using Dijkstra’s algorithm

The expressions obtained in section 1.2 can be directly used
in a search algorithm, like Dijkstra’s algorithm, to calculate
the shortest path in a graph that minimizes the total percentile cost
of a performance metric such as delay, energy, jitter and
power attenuation of signal. Below, we present an example to
illustrate this.

Consider the network given in Figure 1.13 where the link cost
represents the delay to reach from one node to another. We are
interested in finding the shortest/quickest path from node O to all
other nodes, i.e. the minimum spanning tree (MST) rooted at node O.
We assume the delay to be exponentially distributed.

First, we do a standard run of Dijkstra’s algorithm where the cost
of each link is the average delay to traverse the link, and the shortest
path is defined as the path with the least end-to-end average delay.

Partitioning the End-to-End QoS Budget to Domains 23

Figure 1.14 gives the MST (represented by dark lines) rooted at node
O. The average delay to reach any node from node O is given above
the node.

Figure 1.14. The minimum spanning tree using the average delay

Now, we use Dijkstra’s algorithm to combine percentile delays.
Again using Figure 1.13, we now define the per link cost to be the
95th percentile delay to traverse the link, and the shortest path is
defined as the path with the least end-to-end 95th percentile delay.
The addition of the percentiles is done using [1.11] and [1.12]. The
resultant MST is shown in Figure 1.15 (represented by dark lines).

24 Bandwidth Allocation for Video under Quality of Service Constraints

20 96.51

Figure 1.15. The minimum spanning tree using the percentile delay

Notice how the resultant MSTs present two very different routing
views of the network. For example, consider the path from O to F. If
we want to minimize the average end-to-end delay, packets from O to
F should be routed through A. This path guarantees that the average
delay will be 120 time units or less (Figure 1.14). However, if we are
concerned about minimizing the 95th percentile delay, the packets
should be routed through A—»B—E—D—G (Figure 1.15). This path,
though having a higher number of hops, guarantees that 95% of the
packets will experience delay of 96.51 time unit or less.

The preference of one view over the other depends on how service
level agreements (SLAs) are defined. If an SLA is defined in terms of
average delays, the traditional average delay MST suffices. However,
as is the case with present-day networks, for real-time
communications, statistical bounding of the delay is preferred over
simple averaging. In this case, routing based on delay percentiles
seems to be more meaningful.

1.5. Conclusions

In this chapter, we described a method to add n percentiles of
exponentially distributed random variables with or without the same
mean. This method was also extended to the case where the random

Partitioning the End-to-End QoS Budget to Domains 25

variables follow a Coxian-2 distribution. There is a plethora of
situations in practice where we have to add percentiles of different
random variables in order to calculate an aggregate percentile. We
demonstrated the usefulness of the results obtained in this chapter
through two examples. In the first example, we addressed an issue that
arose in a set of recommendations for interprovider QoS, and in the
second example we employed Dijkstra’s algorithm to find the shortest
path minimizing the end-to-end percentile delay.

