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Developing Model-Based Design 
Methods in Software Engineering 

The objective of Chapter 1 is to give an overview of the different model-based design 
methods in the domain of software engineering and of their development over the past 
three decades. We have decided to pause for a moment on the most commonly used 
language for writing models in the domain of system design today: Unified Modeling 
Language (UML). This standardized language ISO/IEC 19501:2005 [ISO 01] abstractly 
describes any system whose aim is to be applied via the implementation of a 
programming language (paying no attention to the specific programming language from 
the offset, and therefore not restricting itself to the limits of the expressiveness of this 
programming language). Once the important UML modeling concepts have been 
presented, the various advantages of this type of approach will be considered: 
modularity, reusability, portability and so on. In section 1.3.4, we will discuss system 
validation. Indeed, using design models coupled with formal validation methods for 
these models is beneficial in terms of speed and strength with regard to the certification 
of the final system. 

1.1. The history of model-based design 

From its beginnings in the 1960s, computer program 
design was unguided and left to the discretion of 
development teams. This free approach met the design needs 
of simple programs that had to be run on extremely hard to 
use hardware systems. Intellectual effort, therefore, 
principally concerned “how” to make the underlying 
electronics compute what developers wanted it to calculate. 
Thus, assembly languages were king. 
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However, university mathematicians were working on 
new and complementary approaches that considered real 
machines indeterminate elements; programs were first and 
foremost considered abstract, and they were then concretized 
manually or with tools called assemblers, linkers and 
compilers. The wide variety of possible uses foreseen for 
computer-based systems resulted in the development of a 
large number of programming languages. In 1977, Professor 
M. Halstead counted some 1,000 different languages  
[HAL 77] and excluded the countless variations and versions 
of each of these languages. 

Though the object of endless disputes between 
enthusiasts, these two approaches – university and  
industry – defended, on the one hand, by mathematicians 
and, on the other hand, by electronic engineers, have always 
been complementary. The abstraction of high-level 
languages has, therefore, democratized these new computer 
systems whose internal operations are proving to be 
extremely complex. In return, improvements to electronics 
have influenced the formalism of languages, their 
opportunities and performance.  

A new scientific era began in the late 1970s: the era of 
models. In fact, the exponential complexification of computer 
systems quickly limited humans’ ability to design programs. 
The introduction of new and more formal methods guiding 
design enabled these limits to be stretched. Thus, the 1980s 
saw the appearance (or rather the reappearance and the 
adaptation) of graphic and text languages. These languages 
describe systems in a formal way and, instead of being used 
by machines, coordinate the different participants in 
application development. 

In this new pattern of work, developers together establish 
a contractual framework for the program, its objectives and 
the principles of its internal operations. These principles are  
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translated into lines of code in one or several appropriate 
languages and are finally compiled in a binary form that the 
machine understands and executes. 

Different formalisms have been tested according to needs. 
Some are adapted to describe the structure of a computer 
program or of data, others to expose the operation state of 
the program at a given moment, others still to describe the 
succession of states through which the program passes or 
can pass. In the mid-1990s, three major object-oriented 
design methods were combined under the aegis of the Object 
Management Group and given the name Unified Modeling 
Language (UML). The UML is the focus of the following 
section. 

1.2. The Unified Modeling Language, a support for 
model-based methods 

1.2.1. The philosophy and history of the Unified 
Modeling Language 

The principle of using classes and objects rather than 
functions to model a computer program is relatively old: the 
programming language Simula [POO 87] introduced this 
concept to the computer world from 1967. In 1976, the 
programming language Smalltalk [BRI 96] built on this 
concept by generalizing its semantics. 

However, from 1983, the language C++ [STR 00] – due to 
its proximity to language C – really democratized this concept. 
The language C is in fact renowned for programming onboard 
systems because of its proximity to the hardware. It has, 
therefore, been widely used and has earned a dominant 
position in the set of programming languages. The language 
C++, therefore, appears to be the “natural” successor of the 
language C in terms of reaching a high level of complexity in 
computer programs. 
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Similarly, countless design methods have appeared to 
model computer programs via objects: Booch [BOO 93], 
Classe-Relation [DES 94], HOOD [ESA 06], Merise [TAR 83], 
OMT [RUM 90], OOSE [JAC 92], etc. A collective effort for 
normalization, led by the Object Management Group, 
resulted in the UML in 1997. In 2000, this norm was 
accepted by the ISO and was updated in 2005 [ISO 01]. This 
work combined the three most fashionable methods of the 
mid-1990s: the Booch, OMT and OOSE methods. 

Nevertheless, it is important to point out that UML is a 
norm that is still subject to certain adjustments. It has been 
in a constant state of development since its first publication 
to the present day. 

The UML enables computer programs based on the 
concept of objects to be specified, designed and developed. It 
formalizes how different artifacts associated with software 
development are written: scope statements, system and 
interface requirements, how to split the system into 
subsystems, the formalization of processes and actors, the 
structural organization of data, etc. 

The principal point of the UML is that it is a consensual 
(and normalized) language for exchanging information 
between different entities related to computer software 
development. However, the UML does not require nor specify 
any development method or any process to guide developers 
during the different phases of development. 

The UML is designed to communicate through diagrams. 
These diagrams provide a graphic visualization of the ideas 
exchanged, facilitating the comprehension of the solution or 
the solutions proposed. Formalizing diagrams and notations 
reduces ambiguities, and thus incomprehension, as well  
as any resulting programming errors. What is more, the 
UML is independent of any programming language, any 
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process and even any application domain; this helps make it 
universal. 

1.2.2. The Unified Modeling Language normalized 
diagrams 

In its normalized 2.0 version ISO/IEC 19501:2005, the 
UML defines 13 types of different diagrams that can either 
be used or not used according to the needs and requirements 
of software developers. To refresh readers’ memories, a quick 
overview of some of the most commonly used diagrams will 
be given below. In fact, countless quality books have 
provided an exhaustive and detailed description of these 
diagrams (some of these works are quoted below and are 
listed in the bibliography). 

The first type of diagram to be discussed is the most well-
known and the most used: the class diagram (an example of 
this is given in Figure 1.1). This diagram is a collection of 
static modeling elements that describe the structure (or the 
architecture) of a computer program independently from 
temporal aspects and from the dynamic of the system. The 
basic element is the class (giving the diagram its name), 
which is associated with a digital entity and a name. For 
instance, a class named “Person” can be associated with a set 
of data describing a person; a class named “Oracle” can be 
associated with functions generating predictions from 
parameters, etc. The second basic element in class diagrams 
is relationships. A relationship associates two classes and 
can even contain certain properties (noun, cardinality, 
navigation between the classes, roles of each end of the 
relationship, etc.). Other elements complete class diagrams: 
dependency relationships, packages, etc.  

Class diagrams are widely used in software development 
to structure programs, the data they process and associated 
databases. The design and analysis of class diagrams are the 
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main focus of countless works related to the UML, to the 
extent that sometimes other types of diagram are eclipsed. 

The second diagram is the object diagram. This diagram 
represents objects, i.e. concrete instances taken from classes 
at a specific time. This representation gives a more or less 
precise picture of the state of the object and its relationships 
with the other objects at a system’s “photography” or 
“snapshot” moment. It helpfully completes a class diagram 
showing how the latter can be used. Therefore, the example 
of a class diagram (Figure 1.1) represents the (simplified) 
decomposition that was adopted to implement the Secure 
Next Generation (SNG) router described in Chapter 3. This 
example can be shown as the object diagrams presented in 
Figures 1.2 and 1.3, which show two very different 
configurations of the SNG router deriving from the same 
software development. 

 

Figure 1.1. Class diagram describing the software  
structure of the SNG router 

 

Figure 1.2. Example of an object diagram deriving  
from the previous class diagram 
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Figure 1.3. Another example of an object diagram deriving from the 
previous class diagram 

 

Figure 1.4. Component diagram for the SNG router 

It would have been possible to use another type of 
diagram to represent the subsystems, the “components”, that 
constitute the SNG router. The component diagram further 
explores the structure of a system by emphasizing the “black 
box” aspect of each subsystem and of the interfaces between 
the components. This gives the diagram presented in  
Figure 1.4. Though the UML offers tools that have no effect 
on the freedom of use, in practice the component diagram is 
used to obtain a general and undetailed view of the system; 
the class diagram meanwhile is used to detail each 
subsystem and each set of data. 
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All of these diagrams are capable of describing a system: 
from an elevated, abstract point of view down to the smallest 
details. However, the diagrams are atemporal and do not 
capture the behavioral aspects of the software system. In the 
UML, behavioral aspects can be tackled using behavioral 
diagrams. 

The first diagram in this category is the activity diagram. 
Each activity in this diagram is a sequence of steps. The end 
of the execution of one activity initiates a transition that 
leads to the start of the next activity. The activity diagram 
can include conditions (conditional connection toward an 
activity or another according to the condition at the moment 
the transition is made), simultaneously initiate several 
activities or wait for their conclusion. 

 

Figure 1.5. Activity diagram for partition class Pfr4 

Each activity can be described in another activity diagram 
or using another type of diagram: the State Machine 
diagram. The latter is the direct descendent of diagrams that 
explain how finite-state automatons work. The diagram 
comprises the states and transitions (hence, its name) and 
describes how a system (objects and components) responds to 
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interactions with its environment by modeling the different 
states of the system and the transitions between the states. 

 

Figure 1.6. Example of a State Machine  
diagram derived from Pfr4 

Nevertheless, though activity and State Machine 
diagrams can specify a summarized version of program 
behavior, acquiring an understanding of the program can 
require certain logical chains to be extracted that emphasize 
interactions between entities so that, for example, use cases 
can be illustrated. The most commonly used diagram for this 
task is the sequence diagram. 

A sequence diagram is comprised of entities (objects or 
external actors, such as a human operator) that are arranged 
next to one another. The order in which they are arranged is 
not significant. Below each entity, there is a vertical line 
that represents the passing of time. Messages, shown as 
arrows, then travel from the vertical line of an entity to the 
vertical line of another entity to indicate that there is a 
communication between these entities. An example of this is 
shown in Figure 1.7. 
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Figure 1.7. Sequence diagram, used to test the SNG router 

Other types of diagram are specified by the UML norm. 
Composite structure diagrams show the relationships 
between components. In this diagram, the components are 
seen as white boxes. Deployment diagrams can show the 
physical and geographic arrangement of the entities 
comprising a complex system. Package diagrams show how 
entities and their interactions are clustered. Communication 
or collaboration diagrams are similar to sequence diagrams 
in terms of content, but they have different semantics: 
communication diagrams favor exchanging messages 
between objects, whereas sequence diagrams emphasize 
chronology. These diagrams, however, have not been used 
here so, if interested, the readers should consult the 
bibliography at the end of the book. 

There remains one final type of diagram to be introduced. 
The use case diagram shows, in a graph, the user actor of a 
system or a computer program and the actions it can take. 
The relationships between the actors and actions are then 
translated into arcs that connect the actor nodes to the 
action nodes. This diagram is useful as it enables a client, a 
specialist in their profession and novice in software 
engineering, to express their requirements to a developer, a 
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specialist in software engineering and novice in the 
professional domain of the client. Therefore, the use case 
diagrams are  commonly used to draw up a scope statement 
so that the commissioner and contractor are able to 
communicate. Figure 1.8 shows an example of this. 

 

Figure 1.8. Use case diagram for the SNG router 

We decided to discuss this diagram on its own as it is the 
only one, to our knowledge, for which no tool for the 
generation of software source code exists. In fact, all the 
other types of diagram have tools that can automatically 
generate code or offer a code skeleton or configuration files, 
etc. 

To conclude this introduction to the UML, we would like 
to point out that there are many books and websites that 
develop and discuss in detail the different features of the 
UML. In addition to the official norm [ISO 01], we would like 
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to point the reader in the direction of the following book by 
the founders of the UML [JAC 98]. 

1.2.3. The advantages of model-based design 

The decision to fuse object-oriented design methods to 
form the UML is proof of the maturity of these approaches. 
Indeed, the concept of objects – tested since the dawn of 
computer science – has proven effective for managing 
complex polymorphic software development and is in a 
perpetual state of development. The classic functional 
approach (that consists of decomposing a system into 
functions and subfunctions) has proven to be harder to 
implement on a large scale and difficult to maintain over the 
mid and long-term. Therefore, the software industry turned 
to objects, which are more easily manipulated, maintained 
and reused over time. 

Model-based design has, therefore, become a guarantee of 
the undeniable levels of effectiveness that are seen today. 
The UML acts as a support: it provides different views of the 
system via structural and behavioral diagrams that put the 
important aspects of the software or the solution to be 
produced into perspective. Normalized and with clearly 
specified semantics, the UML enables developers and the 
users and commissioners of the software to communicate 
with ease. 

Object languages have had decades to become stable, and 
they are currently widely approved. The aeronautical world, 
however, remained cautious about object languages that 
were initially deemed to be too “young” and immature, and 
therefore potentially too dangerous to use. The qualification 
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of the compilers1, which is practically mandatory at the 
highest level of software certification, therefore prevented 
object approaches from entering the world of aeronautical 
software development. That said, in 2012 the DO-332  
[DO 12c], entitled Software Considerations in Airborne 
Systems and Equipment Certification, was published. This 
document specifies the certification process for software using 
object-oriented languages and its application henceforth. 

However, communication is not the only use of modeling 
languages such as the UML. Indeed, its strong semantics 
enables developers to use models and tools to generate and 
validate source code. In the 1970s, compilers grew in 
popularity and quickly became an essential tool in 
programmers’ toolkits, next to linkers and assemblers. In a 
similar manner, code generators deriving from UML models 
or models in other languages are, in turn, growing in 
popularity and becoming essential. 

We will call these code generators “transformers” to 
differentiate them from the “compilers” that are also 
generators: compilers generate binary code from the source 
code in programming languages, such as the language C; 
transformers generate source code in languages such as the 
language C from – often graphic – models, such as UML 
models. As such, the transformer  compiler  assembler  
linker chain of tools enables the construction of computer 
software to be automated. 

1.3. Formal model-based validation techniques 

Models are able to describe entire software solutions with 
precision. All or part of the software code can, therefore, be 

                         
1 The qualification of a compiler is an optional procedure during the 
certification of an aeronautical software. The aim of the qualification is to 
reduce the number of steps involved in the verification of software artifacts. 
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generated in an intermediary language (the language C, C++, 
Ada, etc.) from these models. Initial models are also precise 
enough to verify and validate (or invalidate) certain software 
properties. 

Indeed, at an early phase, models are able to verify 
whether the software or some of its functions could get stuck 
(no undesirable infinite loop), whether numeric calculations 
risk failure (the hardware limits of integer coding have not 
overflowed) and whether some states are specified although 
they are inaccessible (such states and their associated codes 
are said to be “dead”). 

The methods for verifying these properties in underlying 
software models can be classified into three categories and 
will be described below: Model Checking, formal theorem 
proving and code assertion methods. 

Whichever method is used, the verification tool outputs 
three possible results: a verified-and-validated property, a 
false property (this result may potentially be accompanied 
with the counter-example that has invalidated the property) 
and a neither-validated-nor-invalidated property (when the 
verification takes too much time or cannot conclude due to 
insufficient data). 

1.3.1. Model Checking 

The first of these methods, Model Checking, consists of 
establishing the set of states through which the program can 
pass and then browsing this set to validate the property to be 
verified. 

Let us, for example, consider the following algorithm (in 
the Pascal language) for the retrieval of an integer in a table 
of two integers between 1 and 3. 
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1 : Function Search_integer 
    (N_to_to_search : 1..4;  
    Tab : array [1.. 2] of 1..3) 
   : boolean ; 
2 : Var i : integer; 
3 :     F : boolean; 
4 : Begin 
5 :  F := FALSE; 
6 :  If F Then 
7 :   i := 5; 
8 :  For i := 1 to 2 do 
9 :   If Tab[i] = N_to_to_search then 
10:    F := TRUE; 
11:  Search_integer := F; 
12: End; 

Algorithm 1.1. Algorithm for the retrieval of an integer in a table 

In this simple example, the Model Checking tool will, in 
the first step, construct the set of states. At initialization, 
there are 36 possible states (four possible states for 
N_to_to_search x 3² for Tab, the states resulting from the 
initial values of i and F will not be counted in this example). 
Then the different executions of this function are made in 
such a way that each of these states is followed by the 
activation of another state (corresponding to the next 
instruction) and so on, until the end of the function, as 
represented in Figure 1.9. 

In the second step, the Model Checking tool is, therefore, 
able to verify that: 

– all the initial states lead to the final state and either 
return as TRUE or FALSE (the algorithm never “gets stuck” 
in an endless loop); 

– F can take no other value than FALSE and TRUE; 

– i only takes values 1 and 2, whichever succession of 
states the function passes through. There is, therefore, never  
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an operation that results in the capacities offered by the 
integer type being surpassed; 

– line 7 is dead code: indeed, branching line 6 never leads 
to line 7, regardless of the initial state of the function; 

– the initial states with N_to_to_search = 4 always lead to 
the function result being FALSE. 

Though simplistic, this function shows the limits of some 
Model Checking tools. Indeed, an exhaustive analysis of the 
set of possible states in this function would lead to a 
combinatorial explosion in cases where the table is larger in 
size and has “wider” bounds for the data contained in the 
integer Tab table (Algorithm 1.1). For instance, in a table of 
16 cells that each contain a byte, there are 2130 possible 
initial states (still excluding the states of F and i), therefore, 
of the order of 1039 states. 

 

Figure 1.9. Partial view of the states of this function 
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However, it is possible for this function to group certain 
states together. Therefore, if N_to_to_search = 4, then the 
processing executed on a cell of the integer Tab table is 
identical for any value other than 4. For the branching of 
line 9, the cell Tab[i] = 1, = 2, = 3, = 5, = 6, etc. can, therefore, 
be grouped together. 

In the same way, the initial state of F has no importance 
because at line 5 F is FALSE. Therefore, the Model Checking 
tool can use a specific value – “whichever” – for F while the 
state graph for this function is being constructed. The initial 
state is not duplicated because there is no need to  
process the initial states F=FALSE and F=TRUE  
differently. Grouping in this way enables the size of the  
state graph for function to be drastically reduced and  
the combinatorial explosion phenomenon to be compensated 
for. 

A good Model Checking tool, therefore, maintains the most 
reduced space of states possible during construction so that it 
can verify the properties in a reasonable time. It is worth 
pointing out that what is understood to be a “reasonable” 
execution, as a human parameter, varies from one software 
project to another and in practice can range from seconds to 
months. 

Model Checking tools use the space of states of a function. 
This space can be represented in a UML state machine 
diagram. Similarly, some Model Checking tools take a UML 
state machine diagram as input and directly validate 
properties on this diagram. Therefore, the state machine 
model, which is used by developers to design functions and 
automatically generate part of the software source code, also 
serves to validate this source code. 
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1.3.2. Formal theorem proving 

In addition to Model Checking methods, the academic 
community has focused on another line of research that 
seeks to guarantee the properties of software modules. This 
line consists of extracting a theorem from the module and 
formally validating this theorem, hence its name “formal 
theorem proving”. 

It is, therefore, possible to extract the following theorem 
from the function of the previous example: |= (i>0) /\ (i<3). 
The function and theorem to be proved are given to the 
verification tool and the tool sends back its results (in this 
example “validated” because the variable i only concretely 
takes the values 1 and 2). 

Formal theorem proving complements Model Checking: 
some properties that are unverifiable with one of the 
methods are sometimes trivial to verify with the other and 
vice versa. 

Internally, formal proving algorithms are often complex 
algorithms that rewrite the property to show the equivalence 
of this property joined to the input data with the result. 

In the same way that UML state machine diagrams are 
similar to Model Checking, it is possible to provide UML 
class diagrams annotated with Object Constraint Language 
(OCL) and possibly the source code of the property as input 
for the formal theorem proving tool. The tool then validates 
or invalidates the property. OCL provides constraint 
expressions on elements and entities in the diagram. For 
more information on and quality examples of this language, 
please consult Chapter 4. 

Other formal theorem proving approaches consist of 
initially writing theorems, abstracts and then successively 
refining them so that after several iterations the source code 
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is written. This source code is concrete and can be compiled 
and then executed on a real machine. The formal proving 
tool, therefore, guarantees the equivalence between the 
theorem, all successive refinements and the source code. 
These approaches use text languages such as Coq [BER 14] 
and B [ABR 96]. Following the publication of DO-333  
[DO 12d] in 2012, which relates to the certification of 
software using formal methods, these formal methods can be 
used for development in aeronautics. Nevertheless, these 
approaches differ to those applied to the framework of the 
SNG router case study that will be presented later. They, 
therefore, fall beyond the scope of this book. 

1.3.3. Code assertion 

The third and final category of formal methods that 
guarantee the aeronautical software is working correctly is 
code assertion. While Model Checking and theorem proving 
both chiefly arise from academia, in the 1990s industry was 
calling on academics for solutions to validate code without 
the need to rewrite models nor to develop the same piece of 
software from scratch. 

The chosen solution involves adding properties to be 
validated by directly annotating the software’s source code. 
These properties are written in the source code comments so 
that the execution of the compiler remains unchanged. These 
properties adhere to a specific formalism recognized by the 
tool that formally validates the properties to be verified. This 
tool does not modify the code: validations are realized in a 
static manner without dynamically executing the code on the 
real system. In terms of terminology, this is the static 
analysis of the source code.  

For commonly verified properties, preconditions, 
postconditions and invariance clauses are added to the 
function to be validated, in accordance with Hoare’s 1969 
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logic model [HOA 69]. Preconditions are data that are 
provided to the verification tool to guide it in its evaluation 
and inform it of the state of the environment of the function. 
Likewise, invariance clauses indicate what the function 
should not modify. Finally, the tool formally verifies that the 
set of preconditions, invariance clauses and the code of the 
function to be tested systematically imply the set of 
postconditions. If this is not the case, the property is 
invalidated. The tool indicates this to the tester and shows 
him or her the reasons it failed. 

The formalism that is typically used to constrain source 
code in language C is ACSL [MOY 08 and BAU 09], 
ANSI/ISO C Specification Language. This formalism can be 
verified using an automatic tool such as Frama-C [FRA 13]. 
Internally, this tool exploits a set of modules to realize the 
abstract interpretation of the code and then formal theorem 
proving and Model Checking (the last two have been 
presented in the previous sections). 

Code assertion approaches have, therefore, enabled 
industry to become familiar with formal method concepts 
and to integrate tools, such as Model Checking and theorem 
proving codes, more serenely. This approach is an interface 
somewhere between pure computer science developed in an 
academic setting and application-based computer science 
arising from the immediate needs of industry. 

1.3.4. Applying for certification for complex systems 

Unlike object technologies, which were for a long time 
officially ignored by aeronautical certification institutions, 
formal methods were quickly addressed in international 
certification norms. 

Indeed, in 1992 the publication of DO-178B [DO 92] 
explicitly authorized the use of formal methods. However, 
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the concision of this authorization (just two paragraphs 
addressed the use of formal methods) raised countless 
questions about the methods to be implemented and the 
procedures for validating the use of formal methods for 
aeronautical software. Industry, therefore, favored other 
methods, such as exhaustive tests, which were judged more 
likely to convince certification agents of the innocuity of 
avionic software. 

Consequently, until 2012, certification agents only had a 
few judicial examples of aeronautical applications validated 
by formal methods at their disposal. The committee that 
worked on DO-178C [DO 11], therefore, involved scientific 
experts in formal methods to expand this point in the new 
version of the standards. So in 2012, DO-333 [DO 12d] was 
published, an appendix to DO-178C that relates to the use of 
formal methods for the certification of aeronautical software. 

The use of formal methods offers a myriad of 
opportunities, ranging from the validation of the software to 
each stage of its development, primarily the testing phase. 
Exhaustive tests are always limited by the performance of 
the computers testing the software and the complexity of the 
software. Indeed, the latter are becoming increasingly 
complex because computer systems are calling for ever 
increasing numbers of functions, there are new interactions 
between systems that were previously isolated from each 
other and the quantity and variety of the input data of 
software is growing. 

Whether it is by Model Checking, formal proving or code 
assertion, formal methods give a formally (and often 
automatically) verifiable proof. This rapid and synthetic proof 
replaces “classic” software testing and thereby modifies the 
workload of testers who are transformed from developers of 
long tests into developers of short properties to be tested.  
DO-333 instructs development teams and certification bodies 
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on which manual verification stages can be completed and 
even entirely replaced by formal automatic methods. 

Concretely, the shift from manual tests to automatic tests 
by formal methods comes back to a shift from manual code to 
model-generated code. Manually written artifacts (whether 
they be operational code or tests) must be validated by reviews 
and/or tools that have themselves been manually validated. 
Automatically generated artifacts (whether they are code 
generated from a model or the result of a model-based property 
validation) are permitted on the condition that the generator 
has been previously evaluated, i.e. it has been manually 
reviewed and validated. This intellectual step initially comes 
with a significant cost, but this is outweighed by additional 
benefits: reuse and automating the generation of proofs that 
are provided to aeronautical certification agents. 

An original method of software prototyping based on 
model-based design techniques will be presented in the 
remainder of this book. The method also uses powerful 
formal verification methods for the certification of the 
complex systems produced. A concrete example of an 
onboard aeronautical system will illustrate how these new 
techniques enable both the development and validation of 
the produced system to be accelerated, while sticking to 
acceptable design and development costs. 


