
1

Developing Model-Based Design
Methods in Software Engineering

The objective of Chapter 1 is to give an overview of the different model-based design
methods in the domain of software engineering and of their development over the past
three decades. We have decided to pause for a moment on the most commonly used
language for writing models in the domain of system design today: Unified Modeling
Language (UML). This standardized language ISO/IEC 19501:2005 [ISO 01] abstractly
describes any system whose aim is to be applied via the implementation of a
programming language (paying no attention to the specific programming language from
the offset, and therefore not restricting itself to the limits of the expressiveness of this
programming language). Once the important UML modeling concepts have been
presented, the various advantages of this type of approach will be considered:
modularity, reusability, portability and so on. In section 1.3.4, we will discuss system
validation. Indeed, using design models coupled with formal validation methods for
these models is beneficial in terms of speed and strength with regard to the certification
of the final system.

1.1. The history of model-based design

From its beginnings in the 1960s, computer program
design was unguided and left to the discretion of
development teams. This free approach met the design needs
of simple programs that had to be run on extremely hard to
use hardware systems. Intellectual effort, therefore,
principally concerned “how” to make the underlying
electronics compute what developers wanted it to calculate.
Thus, assembly languages were king.

CO
PYRIG

HTED
 M

ATERIA
L

2 Rapid Prototyping of Software for Avionics Systems

However, university mathematicians were working on
new and complementary approaches that considered real
machines indeterminate elements; programs were first and
foremost considered abstract, and they were then concretized
manually or with tools called assemblers, linkers and
compilers. The wide variety of possible uses foreseen for
computer-based systems resulted in the development of a
large number of programming languages. In 1977, Professor
M. Halstead counted some 1,000 different languages
[HAL 77] and excluded the countless variations and versions
of each of these languages.

Though the object of endless disputes between
enthusiasts, these two approaches – university and
industry – defended, on the one hand, by mathematicians
and, on the other hand, by electronic engineers, have always
been complementary. The abstraction of high-level
languages has, therefore, democratized these new computer
systems whose internal operations are proving to be
extremely complex. In return, improvements to electronics
have influenced the formalism of languages, their
opportunities and performance.

A new scientific era began in the late 1970s: the era of
models. In fact, the exponential complexification of computer
systems quickly limited humans’ ability to design programs.
The introduction of new and more formal methods guiding
design enabled these limits to be stretched. Thus, the 1980s
saw the appearance (or rather the reappearance and the
adaptation) of graphic and text languages. These languages
describe systems in a formal way and, instead of being used
by machines, coordinate the different participants in
application development.

In this new pattern of work, developers together establish
a contractual framework for the program, its objectives and
the principles of its internal operations. These principles are

Developing Model-Based Design Methods in Software Engineering 3

translated into lines of code in one or several appropriate
languages and are finally compiled in a binary form that the
machine understands and executes.

Different formalisms have been tested according to needs.
Some are adapted to describe the structure of a computer
program or of data, others to expose the operation state of
the program at a given moment, others still to describe the
succession of states through which the program passes or
can pass. In the mid-1990s, three major object-oriented
design methods were combined under the aegis of the Object
Management Group and given the name Unified Modeling
Language (UML). The UML is the focus of the following
section.

1.2. The Unified Modeling Language, a support for
model-based methods

1.2.1. The philosophy and history of the Unified
Modeling Language

The principle of using classes and objects rather than
functions to model a computer program is relatively old: the
programming language Simula [POO 87] introduced this
concept to the computer world from 1967. In 1976, the
programming language Smalltalk [BRI 96] built on this
concept by generalizing its semantics.

However, from 1983, the language C++ [STR 00] – due to
its proximity to language C – really democratized this concept.
The language C is in fact renowned for programming onboard
systems because of its proximity to the hardware. It has,
therefore, been widely used and has earned a dominant
position in the set of programming languages. The language
C++, therefore, appears to be the “natural” successor of the
language C in terms of reaching a high level of complexity in
computer programs.

4 Rapid Prototyping of Software for Avionics Systems

Similarly, countless design methods have appeared to
model computer programs via objects: Booch [BOO 93],
Classe-Relation [DES 94], HOOD [ESA 06], Merise [TAR 83],
OMT [RUM 90], OOSE [JAC 92], etc. A collective effort for
normalization, led by the Object Management Group,
resulted in the UML in 1997. In 2000, this norm was
accepted by the ISO and was updated in 2005 [ISO 01]. This
work combined the three most fashionable methods of the
mid-1990s: the Booch, OMT and OOSE methods.

Nevertheless, it is important to point out that UML is a
norm that is still subject to certain adjustments. It has been
in a constant state of development since its first publication
to the present day.

The UML enables computer programs based on the
concept of objects to be specified, designed and developed. It
formalizes how different artifacts associated with software
development are written: scope statements, system and
interface requirements, how to split the system into
subsystems, the formalization of processes and actors, the
structural organization of data, etc.

The principal point of the UML is that it is a consensual
(and normalized) language for exchanging information
between different entities related to computer software
development. However, the UML does not require nor specify
any development method or any process to guide developers
during the different phases of development.

The UML is designed to communicate through diagrams.
These diagrams provide a graphic visualization of the ideas
exchanged, facilitating the comprehension of the solution or
the solutions proposed. Formalizing diagrams and notations
reduces ambiguities, and thus incomprehension, as well
as any resulting programming errors. What is more, the
UML is independent of any programming language, any

Developing Model-Based Design Methods in Software Engineering 5

process and even any application domain; this helps make it
universal.

1.2.2. The Unified Modeling Language normalized
diagrams

In its normalized 2.0 version ISO/IEC 19501:2005, the
UML defines 13 types of different diagrams that can either
be used or not used according to the needs and requirements
of software developers. To refresh readers’ memories, a quick
overview of some of the most commonly used diagrams will
be given below. In fact, countless quality books have
provided an exhaustive and detailed description of these
diagrams (some of these works are quoted below and are
listed in the bibliography).

The first type of diagram to be discussed is the most well-
known and the most used: the class diagram (an example of
this is given in Figure 1.1). This diagram is a collection of
static modeling elements that describe the structure (or the
architecture) of a computer program independently from
temporal aspects and from the dynamic of the system. The
basic element is the class (giving the diagram its name),
which is associated with a digital entity and a name. For
instance, a class named “Person” can be associated with a set
of data describing a person; a class named “Oracle” can be
associated with functions generating predictions from
parameters, etc. The second basic element in class diagrams
is relationships. A relationship associates two classes and
can even contain certain properties (noun, cardinality,
navigation between the classes, roles of each end of the
relationship, etc.). Other elements complete class diagrams:
dependency relationships, packages, etc.

Class diagrams are widely used in software development
to structure programs, the data they process and associated
databases. The design and analysis of class diagrams are the

6 Rapid Prototyping of Software for Avionics Systems

main focus of countless works related to the UML, to the
extent that sometimes other types of diagram are eclipsed.

The second diagram is the object diagram. This diagram
represents objects, i.e. concrete instances taken from classes
at a specific time. This representation gives a more or less
precise picture of the state of the object and its relationships
with the other objects at a system’s “photography” or
“snapshot” moment. It helpfully completes a class diagram
showing how the latter can be used. Therefore, the example
of a class diagram (Figure 1.1) represents the (simplified)
decomposition that was adopted to implement the Secure
Next Generation (SNG) router described in Chapter 3. This
example can be shown as the object diagrams presented in
Figures 1.2 and 1.3, which show two very different
configurations of the SNG router deriving from the same
software development.

Figure 1.1. Class diagram describing the software
structure of the SNG router

Figure 1.2. Example of an object diagram deriving
from the previous class diagram

Developing Model-Based Design Methods in Software Engineering 7

Figure 1.3. Another example of an object diagram deriving from the
previous class diagram

Figure 1.4. Component diagram for the SNG router

It would have been possible to use another type of
diagram to represent the subsystems, the “components”, that
constitute the SNG router. The component diagram further
explores the structure of a system by emphasizing the “black
box” aspect of each subsystem and of the interfaces between
the components. This gives the diagram presented in
Figure 1.4. Though the UML offers tools that have no effect
on the freedom of use, in practice the component diagram is
used to obtain a general and undetailed view of the system;
the class diagram meanwhile is used to detail each
subsystem and each set of data.

8 Rapid Prototyping of Software for Avionics Systems

All of these diagrams are capable of describing a system:
from an elevated, abstract point of view down to the smallest
details. However, the diagrams are atemporal and do not
capture the behavioral aspects of the software system. In the
UML, behavioral aspects can be tackled using behavioral
diagrams.

The first diagram in this category is the activity diagram.
Each activity in this diagram is a sequence of steps. The end
of the execution of one activity initiates a transition that
leads to the start of the next activity. The activity diagram
can include conditions (conditional connection toward an
activity or another according to the condition at the moment
the transition is made), simultaneously initiate several
activities or wait for their conclusion.

Figure 1.5. Activity diagram for partition class Pfr4

Each activity can be described in another activity diagram
or using another type of diagram: the State Machine
diagram. The latter is the direct descendent of diagrams that
explain how finite-state automatons work. The diagram
comprises the states and transitions (hence, its name) and
describes how a system (objects and components) responds to

Developing Model-Based Design Methods in Software Engineering 9

interactions with its environment by modeling the different
states of the system and the transitions between the states.

Figure 1.6. Example of a State Machine
diagram derived from Pfr4

Nevertheless, though activity and State Machine
diagrams can specify a summarized version of program
behavior, acquiring an understanding of the program can
require certain logical chains to be extracted that emphasize
interactions between entities so that, for example, use cases
can be illustrated. The most commonly used diagram for this
task is the sequence diagram.

A sequence diagram is comprised of entities (objects or
external actors, such as a human operator) that are arranged
next to one another. The order in which they are arranged is
not significant. Below each entity, there is a vertical line
that represents the passing of time. Messages, shown as
arrows, then travel from the vertical line of an entity to the
vertical line of another entity to indicate that there is a
communication between these entities. An example of this is
shown in Figure 1.7.

10 Rapid Prototyping of Software for Avionics Systems

Figure 1.7. Sequence diagram, used to test the SNG router

Other types of diagram are specified by the UML norm.
Composite structure diagrams show the relationships
between components. In this diagram, the components are
seen as white boxes. Deployment diagrams can show the
physical and geographic arrangement of the entities
comprising a complex system. Package diagrams show how
entities and their interactions are clustered. Communication
or collaboration diagrams are similar to sequence diagrams
in terms of content, but they have different semantics:
communication diagrams favor exchanging messages
between objects, whereas sequence diagrams emphasize
chronology. These diagrams, however, have not been used
here so, if interested, the readers should consult the
bibliography at the end of the book.

There remains one final type of diagram to be introduced.
The use case diagram shows, in a graph, the user actor of a
system or a computer program and the actions it can take.
The relationships between the actors and actions are then
translated into arcs that connect the actor nodes to the
action nodes. This diagram is useful as it enables a client, a
specialist in their profession and novice in software
engineering, to express their requirements to a developer, a

Developing Model-Based Design Methods in Software Engineering 11

specialist in software engineering and novice in the
professional domain of the client. Therefore, the use case
diagrams are commonly used to draw up a scope statement
so that the commissioner and contractor are able to
communicate. Figure 1.8 shows an example of this.

Figure 1.8. Use case diagram for the SNG router

We decided to discuss this diagram on its own as it is the
only one, to our knowledge, for which no tool for the
generation of software source code exists. In fact, all the
other types of diagram have tools that can automatically
generate code or offer a code skeleton or configuration files,
etc.

To conclude this introduction to the UML, we would like
to point out that there are many books and websites that
develop and discuss in detail the different features of the
UML. In addition to the official norm [ISO 01], we would like

12 Rapid Prototyping of Software for Avionics Systems

to point the reader in the direction of the following book by
the founders of the UML [JAC 98].

1.2.3. The advantages of model-based design

The decision to fuse object-oriented design methods to
form the UML is proof of the maturity of these approaches.
Indeed, the concept of objects – tested since the dawn of
computer science – has proven effective for managing
complex polymorphic software development and is in a
perpetual state of development. The classic functional
approach (that consists of decomposing a system into
functions and subfunctions) has proven to be harder to
implement on a large scale and difficult to maintain over the
mid and long-term. Therefore, the software industry turned
to objects, which are more easily manipulated, maintained
and reused over time.

Model-based design has, therefore, become a guarantee of
the undeniable levels of effectiveness that are seen today.
The UML acts as a support: it provides different views of the
system via structural and behavioral diagrams that put the
important aspects of the software or the solution to be
produced into perspective. Normalized and with clearly
specified semantics, the UML enables developers and the
users and commissioners of the software to communicate
with ease.

Object languages have had decades to become stable, and
they are currently widely approved. The aeronautical world,
however, remained cautious about object languages that
were initially deemed to be too “young” and immature, and
therefore potentially too dangerous to use. The qualification

Developing Model-Based Design Methods in Software Engineering 13

of the compilers1, which is practically mandatory at the
highest level of software certification, therefore prevented
object approaches from entering the world of aeronautical
software development. That said, in 2012 the DO-332
[DO 12c], entitled Software Considerations in Airborne
Systems and Equipment Certification, was published. This
document specifies the certification process for software using
object-oriented languages and its application henceforth.

However, communication is not the only use of modeling
languages such as the UML. Indeed, its strong semantics
enables developers to use models and tools to generate and
validate source code. In the 1970s, compilers grew in
popularity and quickly became an essential tool in
programmers’ toolkits, next to linkers and assemblers. In a
similar manner, code generators deriving from UML models
or models in other languages are, in turn, growing in
popularity and becoming essential.

We will call these code generators “transformers” to
differentiate them from the “compilers” that are also
generators: compilers generate binary code from the source
code in programming languages, such as the language C;
transformers generate source code in languages such as the
language C from – often graphic – models, such as UML
models. As such, the transformer compiler assembler
linker chain of tools enables the construction of computer
software to be automated.

1.3. Formal model-based validation techniques

Models are able to describe entire software solutions with
precision. All or part of the software code can, therefore, be

1 The qualification of a compiler is an optional procedure during the
certification of an aeronautical software. The aim of the qualification is to
reduce the number of steps involved in the verification of software artifacts.

14 Rapid Prototyping of Software for Avionics Systems

generated in an intermediary language (the language C, C++,
Ada, etc.) from these models. Initial models are also precise
enough to verify and validate (or invalidate) certain software
properties.

Indeed, at an early phase, models are able to verify
whether the software or some of its functions could get stuck
(no undesirable infinite loop), whether numeric calculations
risk failure (the hardware limits of integer coding have not
overflowed) and whether some states are specified although
they are inaccessible (such states and their associated codes
are said to be “dead”).

The methods for verifying these properties in underlying
software models can be classified into three categories and
will be described below: Model Checking, formal theorem
proving and code assertion methods.

Whichever method is used, the verification tool outputs
three possible results: a verified-and-validated property, a
false property (this result may potentially be accompanied
with the counter-example that has invalidated the property)
and a neither-validated-nor-invalidated property (when the
verification takes too much time or cannot conclude due to
insufficient data).

1.3.1. Model Checking

The first of these methods, Model Checking, consists of
establishing the set of states through which the program can
pass and then browsing this set to validate the property to be
verified.

Let us, for example, consider the following algorithm (in
the Pascal language) for the retrieval of an integer in a table
of two integers between 1 and 3.

Developing Model-Based Design Methods in Software Engineering 15

1 : Function Search_integer
 (N_to_to_search : 1..4;
 Tab : array [1.. 2] of 1..3)
 : boolean ;
2 : Var i : integer;
3 : F : boolean;
4 : Begin
5 : F := FALSE;
6 : If F Then
7 : i := 5;
8 : For i := 1 to 2 do
9 : If Tab[i] = N_to_to_search then
10: F := TRUE;
11: Search_integer := F;
12: End;

Algorithm 1.1. Algorithm for the retrieval of an integer in a table

In this simple example, the Model Checking tool will, in
the first step, construct the set of states. At initialization,
there are 36 possible states (four possible states for
N_to_to_search x 3² for Tab, the states resulting from the
initial values of i and F will not be counted in this example).
Then the different executions of this function are made in
such a way that each of these states is followed by the
activation of another state (corresponding to the next
instruction) and so on, until the end of the function, as
represented in Figure 1.9.

In the second step, the Model Checking tool is, therefore,
able to verify that:

– all the initial states lead to the final state and either
return as TRUE or FALSE (the algorithm never “gets stuck”
in an endless loop);

– F can take no other value than FALSE and TRUE;

– i only takes values 1 and 2, whichever succession of
states the function passes through. There is, therefore, never

16 Rapid Prototyping of Software for Avionics Systems

an operation that results in the capacities offered by the
integer type being surpassed;

– line 7 is dead code: indeed, branching line 6 never leads
to line 7, regardless of the initial state of the function;

– the initial states with N_to_to_search = 4 always lead to
the function result being FALSE.

Though simplistic, this function shows the limits of some
Model Checking tools. Indeed, an exhaustive analysis of the
set of possible states in this function would lead to a
combinatorial explosion in cases where the table is larger in
size and has “wider” bounds for the data contained in the
integer Tab table (Algorithm 1.1). For instance, in a table of
16 cells that each contain a byte, there are 2130 possible
initial states (still excluding the states of F and i), therefore,
of the order of 1039 states.

Figure 1.9. Partial view of the states of this function

Developing Model-Based Design Methods in Software Engineering 17

However, it is possible for this function to group certain
states together. Therefore, if N_to_to_search = 4, then the
processing executed on a cell of the integer Tab table is
identical for any value other than 4. For the branching of
line 9, the cell Tab[i] = 1, = 2, = 3, = 5, = 6, etc. can, therefore,
be grouped together.

In the same way, the initial state of F has no importance
because at line 5 F is FALSE. Therefore, the Model Checking
tool can use a specific value – “whichever” – for F while the
state graph for this function is being constructed. The initial
state is not duplicated because there is no need to
process the initial states F=FALSE and F=TRUE
differently. Grouping in this way enables the size of the
state graph for function to be drastically reduced and
the combinatorial explosion phenomenon to be compensated
for.

A good Model Checking tool, therefore, maintains the most
reduced space of states possible during construction so that it
can verify the properties in a reasonable time. It is worth
pointing out that what is understood to be a “reasonable”
execution, as a human parameter, varies from one software
project to another and in practice can range from seconds to
months.

Model Checking tools use the space of states of a function.
This space can be represented in a UML state machine
diagram. Similarly, some Model Checking tools take a UML
state machine diagram as input and directly validate
properties on this diagram. Therefore, the state machine
model, which is used by developers to design functions and
automatically generate part of the software source code, also
serves to validate this source code.

18 Rapid Prototyping of Software for Avionics Systems

1.3.2. Formal theorem proving

In addition to Model Checking methods, the academic
community has focused on another line of research that
seeks to guarantee the properties of software modules. This
line consists of extracting a theorem from the module and
formally validating this theorem, hence its name “formal
theorem proving”.

It is, therefore, possible to extract the following theorem
from the function of the previous example: |= (i>0) /\ (i<3).
The function and theorem to be proved are given to the
verification tool and the tool sends back its results (in this
example “validated” because the variable i only concretely
takes the values 1 and 2).

Formal theorem proving complements Model Checking:
some properties that are unverifiable with one of the
methods are sometimes trivial to verify with the other and
vice versa.

Internally, formal proving algorithms are often complex
algorithms that rewrite the property to show the equivalence
of this property joined to the input data with the result.

In the same way that UML state machine diagrams are
similar to Model Checking, it is possible to provide UML
class diagrams annotated with Object Constraint Language
(OCL) and possibly the source code of the property as input
for the formal theorem proving tool. The tool then validates
or invalidates the property. OCL provides constraint
expressions on elements and entities in the diagram. For
more information on and quality examples of this language,
please consult Chapter 4.

Other formal theorem proving approaches consist of
initially writing theorems, abstracts and then successively
refining them so that after several iterations the source code

Developing Model-Based Design Methods in Software Engineering 19

is written. This source code is concrete and can be compiled
and then executed on a real machine. The formal proving
tool, therefore, guarantees the equivalence between the
theorem, all successive refinements and the source code.
These approaches use text languages such as Coq [BER 14]
and B [ABR 96]. Following the publication of DO-333
[DO 12d] in 2012, which relates to the certification of
software using formal methods, these formal methods can be
used for development in aeronautics. Nevertheless, these
approaches differ to those applied to the framework of the
SNG router case study that will be presented later. They,
therefore, fall beyond the scope of this book.

1.3.3. Code assertion

The third and final category of formal methods that
guarantee the aeronautical software is working correctly is
code assertion. While Model Checking and theorem proving
both chiefly arise from academia, in the 1990s industry was
calling on academics for solutions to validate code without
the need to rewrite models nor to develop the same piece of
software from scratch.

The chosen solution involves adding properties to be
validated by directly annotating the software’s source code.
These properties are written in the source code comments so
that the execution of the compiler remains unchanged. These
properties adhere to a specific formalism recognized by the
tool that formally validates the properties to be verified. This
tool does not modify the code: validations are realized in a
static manner without dynamically executing the code on the
real system. In terms of terminology, this is the static
analysis of the source code.

For commonly verified properties, preconditions,
postconditions and invariance clauses are added to the
function to be validated, in accordance with Hoare’s 1969

20 Rapid Prototyping of Software for Avionics Systems

logic model [HOA 69]. Preconditions are data that are
provided to the verification tool to guide it in its evaluation
and inform it of the state of the environment of the function.
Likewise, invariance clauses indicate what the function
should not modify. Finally, the tool formally verifies that the
set of preconditions, invariance clauses and the code of the
function to be tested systematically imply the set of
postconditions. If this is not the case, the property is
invalidated. The tool indicates this to the tester and shows
him or her the reasons it failed.

The formalism that is typically used to constrain source
code in language C is ACSL [MOY 08 and BAU 09],
ANSI/ISO C Specification Language. This formalism can be
verified using an automatic tool such as Frama-C [FRA 13].
Internally, this tool exploits a set of modules to realize the
abstract interpretation of the code and then formal theorem
proving and Model Checking (the last two have been
presented in the previous sections).

Code assertion approaches have, therefore, enabled
industry to become familiar with formal method concepts
and to integrate tools, such as Model Checking and theorem
proving codes, more serenely. This approach is an interface
somewhere between pure computer science developed in an
academic setting and application-based computer science
arising from the immediate needs of industry.

1.3.4. Applying for certification for complex systems

Unlike object technologies, which were for a long time
officially ignored by aeronautical certification institutions,
formal methods were quickly addressed in international
certification norms.

Indeed, in 1992 the publication of DO-178B [DO 92]
explicitly authorized the use of formal methods. However,

Developing Model-Based Design Methods in Software Engineering 21

the concision of this authorization (just two paragraphs
addressed the use of formal methods) raised countless
questions about the methods to be implemented and the
procedures for validating the use of formal methods for
aeronautical software. Industry, therefore, favored other
methods, such as exhaustive tests, which were judged more
likely to convince certification agents of the innocuity of
avionic software.

Consequently, until 2012, certification agents only had a
few judicial examples of aeronautical applications validated
by formal methods at their disposal. The committee that
worked on DO-178C [DO 11], therefore, involved scientific
experts in formal methods to expand this point in the new
version of the standards. So in 2012, DO-333 [DO 12d] was
published, an appendix to DO-178C that relates to the use of
formal methods for the certification of aeronautical software.

The use of formal methods offers a myriad of
opportunities, ranging from the validation of the software to
each stage of its development, primarily the testing phase.
Exhaustive tests are always limited by the performance of
the computers testing the software and the complexity of the
software. Indeed, the latter are becoming increasingly
complex because computer systems are calling for ever
increasing numbers of functions, there are new interactions
between systems that were previously isolated from each
other and the quantity and variety of the input data of
software is growing.

Whether it is by Model Checking, formal proving or code
assertion, formal methods give a formally (and often
automatically) verifiable proof. This rapid and synthetic proof
replaces “classic” software testing and thereby modifies the
workload of testers who are transformed from developers of
long tests into developers of short properties to be tested.
DO-333 instructs development teams and certification bodies

22 Rapid Prototyping of Software for Avionics Systems

on which manual verification stages can be completed and
even entirely replaced by formal automatic methods.

Concretely, the shift from manual tests to automatic tests
by formal methods comes back to a shift from manual code to
model-generated code. Manually written artifacts (whether
they be operational code or tests) must be validated by reviews
and/or tools that have themselves been manually validated.
Automatically generated artifacts (whether they are code
generated from a model or the result of a model-based property
validation) are permitted on the condition that the generator
has been previously evaluated, i.e. it has been manually
reviewed and validated. This intellectual step initially comes
with a significant cost, but this is outweighed by additional
benefits: reuse and automating the generation of proofs that
are provided to aeronautical certification agents.

An original method of software prototyping based on
model-based design techniques will be presented in the
remainder of this book. The method also uses powerful
formal verification methods for the certification of the
complex systems produced. A concrete example of an
onboard aeronautical system will illustrate how these new
techniques enable both the development and validation of
the produced system to be accelerated, while sticking to
acceptable design and development costs.

