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State of the Art: Discrete
Element Modeling

1.1. Introduction

As mentioned in the previous chapter, in conjunction with
the accelerating progress in computer science and software
technology, the final decades of the 20th Century have seen
an explosion of powerful numerical methods which can be
classified into discrete methods (DMs) and continuum
methods (CMs). These methods have been used over the
years to simulate a wide variety of mechanical problems at
different scales. Typically, four scales can be distinguished in
the context of numerical simulation:

– the nanoscopic (or atomic) scale (∼ 10−9 m), where
phenomena related to the behavior of electrons become
significant. At this scale, the interaction between particles
(electrons, atoms, etc.) is directly dictated by their quantum
mechanical (QM) state;

– the microscopic scale (∼ 10−6 m), where phenomena
related to the behavior of atoms are considered. The
interaction between atoms is governed by empirical
interatomic potentials, which are generally derived from
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2 Discrete Element Method to Model 3D Continuous Materials

QM computations. Classic Newtonian mechanics is used to
compute the displacements and rotations of atoms;

– the mesoscopic scale (∼ 10−4 m), where phenomena
related to lattice defects are considered. At this scale, the
atomic degrees of freedom are not explicitly treated, and only
larger scale entities (clusters of atoms, clusters of molecules,
etc.) are considered. The interaction between particles is also
described by classic Newtonian mechanics;

– the macroscopic scale (∼ 10−2 m), where macroscopic
phenomena which can be described by continuum mechanics
are considered. At this scale, the studied physical systems are
regarded as continua, whose associated behavior is described
by constitutive laws.

Typically, the DMs cover the first three scales. At these
scales, the length scale of interest is at the same order of
magnitude as the discontinuity spacing, which makes
inappropriate the application of traditional CMs. Otherwise,
additional handling is required to correctly reproduce
phenomena associated with discontinuities like strain
localization at crack initiation. At the macroscopic scale, most
of the interesting materials can be treated as continua even
though they consist of discrete grains at smaller scales. CMs
can therefore be used without remorse at this scale. However,
it is often rewarding to model such materials as
discontinuous by DMs because new knowledge can be gained
about their macroscopic behavior when their microscopic
mechanisms are understood. The need to model these
materials as discontinuous is even more rooted when they are
characterized by complex nonlinear mechanical behaviors
that cannot easily be described by traditional continuum
theories, e.g. anomalous behavior of silica glass [JEB 13b].
This reflects the tremendous diversity of problems to which
discrete element modeling can be applied and the
ever-increasing availability of DMs. Section 1.2 gives a
bird’s-eye view of these methods, in order to position the one
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that is used in this book; the reader can refer to
[DON 09, JIN 07, JEB 14] for more detail. The common
feature of these methods is that the studied material is
modeled by a set of discrete elements, which can be of
different shape and size. These elements interact with each
other by contact laws and/or cohesive bonds whose type is
directly dictated by the physics of the material being
modeled. Knowing forces and torques applied on the discrete
elements, displacements and rotations can be computed using
the Newton’s second law. For practical purposes, it would be
often beneficial to express these results in terms of
homogeneous macroscopic variables (e.g. strains and
stresses). This allows us, for example, to compare the
numerical results with experimental ones. Several techniques
have been developed to assess macroscopic quantities from
the discrete variables (e.g. force, displacement, etc.). The
most commonly used techniques are detailed in section 1.4.

1.2. Classification of discrete methods

According to the analysis scale, the DMs most commonly
used in numerical simulation can be classified into three
classes: quantum mechanical (or ab initio) methods (QMMs),
atomistic methods (AMs) and mesoscopic DMs (MDMs)
(Figure 1.1).

Figure 1.1. Characteristic length scales and time
scales for numerical methods
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1.2.1. Quantum mechanical methods

The QMMs are used for material simulation at the atomic
scale (∼ 10−9 m), in which the electrons are the players
(Figure 1.1). The molecules are treated as collections of nuclei
and electrons whose interaction is directly dictated by their
QM state, without any reference to “chemical bonds”. These
methods all ultimately stem from the Schrödinger equation
first brought to light in 1925. The fully time-dependent form
of this equation for a single particle p (e.g. electron) is
expressed as:

[
− h̄

2mp

(∇2 +Φ(rp, t)
)]

Ψ(rp, t) = ih̄
∂Ψ(rp, t)

∂t
[1.1]

where mp and rp are, respectively, the mass and position
vector of the particle of interest, t designates the time, Φ is an
external field (e.g. elecrostatic potential), ∇2 is the Laplacian,
h̄ is Plank’s constant divided by 2π, i is the square root of −1
and Ψ is the wave function which characterizes the particle
motion. In fact, the wave function Ψ can properly be obtained
for all the particles within a system, which, for crystalline
materials, is actually reduced to the primitive unit cell
because of translational symmetry. However, equation [1.1]
needs this function to be expressed for individual particles.
To get around this, the technique most commonly used is to
write the overall wave function as a product of single-particle
wave functions (the Slater determinant) and then to recast
the underlying Schrödinger equation in terms of these
functions. Solving this equation gives the particle motions,
which in turn give the molecular structure and energy among
other observables, as well as information about bonding. The
challenge in developing QMMs is that such an equation can
be solved exactly only for few problems, e.g. one-electron
system (the hydrogen atom), and approximations need to be
made. The approximation commonly used is the so-called
“Hartree–Fock” which consists of replacing the “correct”
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description of particle (electron) motions by a picture in
which the particles behave essentially as independent bodies.
Several other approximations can be found in the literature.
These approximations constitute the main difference between
QMMs. Examples of these methods are quantum Monte
Carlo (QMC) [FOU 01] and quantum chemistry (QC)
[SZA 89]. These methods allow us to treat electrons explicitly
and accurately, which makes them very accurate but
computationally too demanding to handle more than a few
tens of electrons. Other QMMs are density-functional theory
(DFT) and local density approximation (LDA)
[HOH 64, PAY 92]. In these approaches, the primary
Schrödinger equation is expressed in terms of particle density
rather than the wave functions. Although they are less
accurate than QMC or QC, these methods can be readily
applied to systems containing several hundred atoms for
static properties. Dynamic simulations with DFT and LDA
are usually limited to timescales of a few picoseconds.

Overall, the QM methods are generally very accurate since
they hold out the possibility of performing simulations
without need for prior tuning. However, they are extremely
expensive and can only be applied on very small domains a
few nanometers in size. Indeed, they deal with electrons in a
system and, even if some of the electrons are ignored (as in
the semi-empirical approaches), a large number of particles
must still be considered.

1.2.2. Atomistic methods

The AMs are used for material simulation at the
microscopic scale (∼ 10−6 m), where atoms are the players
(Figure 1.1). These methods ignore the electronic motions and
compute the energy of a system as a function of the atomic
positions only. This way to compute energy derives its
legitimacy from the Born–Oppenheimer approximation,
which postulates that the electrons adjust to the new atomic



6 Discrete Element Method to Model 3D Continuous Materials

positions much faster than the atomic nuclei. The interaction
laws between particles (atoms) can be described by empirical
interatomic potentials that encapsulate the effects of bonding
(mediated by electrons) between them. These potentials may
depend on the distance between particles, angles between
bonds, angles between planes, etc. Equation [1.2] gives the
general form of these potentials:

Φ(r1, r2, ..., rN) =
∑

pΦ1(rp) +
∑

p
∑

q, q > pΦ2(rp, rq)

+
∑

p
∑

q, q > p
∑

m, m > qΦ3(rp, rq, rm)

+ ... [1.2]

where rp is the position vector of a particle (atom) p, N is the
total number of particles, Φ1 is the one-particle part of Φ (due
to external field or boundary conditions) and Φ2 and Φ3 are,
respectively, the two-particle and three-particle parts of Φ
due to interaction between particles. The interatomic
potentials may include several parameters which can be
obtained by calibration using experimental data or from QM
calculations. When only Φ2 parts are present, the associated
Φ is called the pair potential, e.g. Hard sphere potential and
Lennard–Jones potential. The Hard sphere potential
(Figure 1.2a) is the simplest part (without any cohesive
interaction) and is generally used in the theoretical
investigation of some idealized problems:

Φ(lpq) =

{∞ for lpq ≤ l0
0 for lpq > l0

[1.3]

where lpq = ‖rq − rp‖ is the distance between two particles p
and q and l0 is the cutoff distance. The Lennard–Jones
potential (Figure 1.2b) is more complex and more realistic to
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model some physical interactions, such as the van der Waals
interaction in inert gases and molecular systems:

Φ(lpq) = 4ε

[( σ

lpq

)12 −
( σ

lpq

)6
]
= ε

[(
lm
lpq

)12

− 2

(
lm
lpq

)6
]

[1.4]

where ε is the depth of the potential well (the region
surrounding the potential minimum), σ is the finite distance
at which the interparticle potential is zero and lm is the
distance at which the potential reaches its minimum. Several
papers providing the Lennard–Jones parameters for some
molecular systems can be found in the literature
[ASH 76, HAL 75]. The pair interatomic potentials are
currently the most commonly used because of their simplicity
and their relatively good ability to model several molecular
systems. However, in some complex problems, more
sophisticated many-body potentials (including Φ3 and higher
terms) are required to correctly reproduce the involved
interaction mechanisms. Knowing the interatomic potential
Φ, the loadings acting on the particles (atoms) can be
obtained. Then, Newton’s second law can be applied to find
the motions of these particles. This is the key idea of the
AMs. Examples of these methods are molecular mechanics
(statics) (MM) [HEH 03], molecular dynamics (MD)
[ALD 57, ALD 59] and MC [MET 49], which are widely used
in molecular simulation.

Although they are less accurate than the QMMs, the AMs
are relatively inexpensive (compared to QMMs) and are able
to provide insight into atomic processes involving
considerably large systems of up to 109 atoms [ABR 02].
Nevertheless, dynamic simulation with AM methods is
generally limited to timescales of a few nanoseconds, which
can be crippling for the simulation of realistic mechanical
problems.
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(a) Hard sphere potential

(b) Lennard–Jones potential

Figure 1.2. Examples of pair potentials

1.2.3. Mesoscopic discrete methods

To overcome the timescale limitations of the QMMs and
the AMs, another generation of DMs has been developed:
MDMs. The MDM methods can be used for material
simulation at the mesoscopic scale (∼ 10−4 m), where lattice
defects such as dislocations, crack propagation and other
microstructural elements are the players. At this scale, the
system is too small to be regarded as a continuum and too
large to be simulated effectively using QMMs or AMs. More
accurately, the mesoscopic scale can be defined as an
intermediate scale at which the microscopic phenomena (e.g.
particle motions) can be assumed in mechanical equilibrium,
but cannot be described by continuum mechanics. The MDMs
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can broadly be regarded as a generalization of the AMs,
where more complex interaction laws are used. These
interaction laws are usually derived by calibration or from
phenomenological theories that encompass the effects of
interactions between atoms. In MDMs, the atomic degrees of
freedom are not explicitly treated and only larger-scale
particles are modeled. Originally, this class of methods was
developed to model movements within granular materials in
rock mechanics [CUN 71]. Subsequent works have extended
this class to study damage in various geometricals such as
concrete [HEN 04b] and rocks [BOB 09]. More recently,
attempts to apply this class of method on continuous
materials (continua), such as ceramics [TAN 09] and glasses
[AND 13, JEB 13b, JEB 13a, AND 12b], have emerged. In
these attempts, the continuum is also modeled by an
agglomerate of discrete elements (particles or nodes) which
interact via bilateral cohesive links to ensure the material
cohesion. Different cohesive links are tested according to the
physical properties of the studied material. Figure 1.3
illustrates an example of a continuum modeled by the MDM
method. As will be seen in Chapter 2, the application of
MDMs methods in modeling of continua must respect certain
geometric and mechanical rules.

(a) Relaxing state (b) Loading state

Figure 1.3. MDM modeling of a continuum. For a color version of
the figure, see www.iste.co.uk/jebahi/discrete.zip



10 Discrete Element Method to Model 3D Continuous Materials

Nowadays, the MDMs present an alternative method to
study realistic complex problems, for which continuity
assumption is not valid, or problems with discontinuities that
cannot easily be treated by CMs, such as cracking behavior of
silica glass [AND 13, JEB 13b, JEB 13a, AND 12b]. The
benefits of these methods have attracted several researchers,
and consequently, several variations of MDMs have been
developed. These variations can be divided into four
categories as shown in Figure 1.4. The fundamental concepts
of each one are briefly recalled hereafter.

Figure 1.4. Classification of mesoscopic discrete methods (MDMs)

1.2.3.1. Lattice methods

In lattice models, a solid is modeled by a set of nodes
connected with truss or beam elements [SCH 92a, SCH 92b]
(Figure 1.5). Typically, nodes have neither masses nor
volumes (they do not occupy volumes). Solving a mechanical
problem with this class of DMs is based on the construction of
a global stiffness matrix K from the local connection
properties. Knowing this matrix, the displacements u and
rotations θ at the nodes can be obtained for static analysis by
solving:

KX = b [1.5]

where X is the vector of the problem unknowns which
includes both displacements and rotations of all the nodes
and b is the loading vector which includes forces and torques
in the beams. Both regular and irregular lattices were
studied. Originally, the lattice models were used to represent
elastic continuum; the equivalence was established for both
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truss [HRE 41] and beam [SCH 96] elements. Later on,
obvious enhancements, such as brittle beam failure, were
introduced. Lattice models nicely show the emergence of
relatively complex structural behaviors, although fairly
simple formulas are used to describe the governing local
processes.

Figure 1.5. 2D regular triangular lattice of beams
(inspired by [SCH 92a])

Lattice models have shown a great ability to model
fracture in continuous materials. Schlangen et al. [SCH 97]
pointed out that using beam elements (forces and torques are
considered), the crack pattern is quite close to the
experimentally observed pattern. The same authors [SCH 97]
emphasized the importance of the beam torques, without
which the crack behavior may be entirely unacceptable. The
major drawback of these models is that the nodes do not have
volumes, which can cause numerical problems related to
crack closure in postfracture stage. To circumvent this
problem, Ibrahimbegovic et al. [IBR 03] have proposed to
associate fictitious equivalent volumes with the nodes, based
on the spatial Voronoï decomposition. However, this solution
is generally time-consuming, especially in the case of large
three-dimensional (3D) problems.
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1.2.3.2. Smooth contact particle methods

This class of methods is very close to the first discrete
approach proposed in the literature by Cundall and Strack
[CUN 71, CUN 79]: distinct (discrete) element method
(DEM). Contrary to lattice models, particle models consider
elements with masses and volumes in interaction through
contact laws. These elements often have a disk shape (in
two-dimensional (2D)) or spherical shape (in 3D): only one
parameter (the radius) is required to determine the geometry
of elements and there is only one possible contact easily
detectable between them. Consequently, computer memory
requirements and processing time are minimized with these
element shapes, even when a relatively large number of
elements are used. Nevertheless, discs and spheres can roll or
rotate easily. This does not reflect the expected behavior for
several materials, for example, in the case of large shear
processes. To solve this problem, more complex shapes such
as ellipses [TIN 93], ellipsoids [LIN 97], polygons [ISS 92]
and polyhedra [CUN 88] were proposed in the literature to
provide more flexibility for element characterization in
particle models.

Basically, the associated algorithm involves two stages. In
the first stage, interaction forces are computed when
elements slightly interpenetrate each other. This
force-interpenetration formulation is generally referred to as
a “smooth contact” method or “force–displacement” method.
Actually, the interpenetration between discrete elements,
which makes no mechanical sense, represents the relative
deformation of the surface layers. In the second stage,
Newton’s second law is applied to determine the acceleration
of each element, which is then integrated, using “dynamic
explicit” schemes, to find the new velocities and positions of
elements. This process is repeated until the simulation is
achieved.
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Figure 1.6. 2D smooth contact particle model

1.2.3.3. Non-smooth contact particle models

Despite the great success of the smooth contact particle
models to simulate a wide variety of complex systems, there
are cases for which they are less appropriate:

– in systems where the typical duration of a collision
is much shorter than the mean time between successive
collisions of a particle. Therefore, the pairwise collisions of
particles may be considered as instantaneous events;

– in systems where the contact laws between particles
cannot easily be determined as a function of the relative
position, velocity and orientation; however, information about
postcollision velocities is accessible from the precollision
conditions (e.g. by using experimental techniques);

– in systems where the particles are very rarely in contact
with more than one other particle.

To allow a better investigation of such systems, another
class of DMs has been developed. This class provides an
alternative approach based on a “non-smooth” formulation of
mutual exclusion and dry friction between elements [JEA 99,
LUD 96, MOR 94]. It introduces the notion of non-smooth
(irregular) contact between elements which is, at present, the
subject of several studies. Interpenetration between elements
is prevented: no elastic contact laws are used between them.
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Mainly, two classes of numerical integrators exist for non-
smooth contact methods; both of them are of the “dynamic
implicit” type: the event-driven integrators, also referred to
as the event-driven method (EDM) [LUD 96], and the time-
stepping integrators, also referred to as the contact dynamics
method (CDM) [JEA 99, MOR 94]. In EDM, a collision or
“event” occurs when two rigid elements touch each other and
the postcollisional and angular velocities are prescribed by
a collision operator [RAP 80]. Despite being very accurate,
the event-driven integrators treat only one force at a time.
Therefore, they are not well adapted for problems with many
simultaneous contacts, as often encountered in mechanics.
To overcome this limitation, Jean and Moreau [JEA 99,
MOR 88] have developed the CDM which has a specialized
numerical scheme for problems with many contacts. The
governing equations are expressed as differential inclusions
(multivalued differential equations) and the accelerations are
replaced by velocity jumps. In the generic CDM algorithm,
an iterative process is used to compute forces and velocities.
This process consists of solving a single contact problem with
all other contacts kept constant, and iteratively updating the
forces until a convergence criterion is fulfilled. Two basic
kinematic constraints are used between elements in the CDM
formulation:

– the Signorini conditions which state that the normal force
fn is repulsive when the elements are in contact (distance
between them is zero), and fn = 0 otherwise. To deal with
persistent contacts, fn is reset to zero when no relative velocity
exists between elements in contact;

– Coulomb’s friction law, which relates the sliding particle
velocities and the friction forces ft.

These kinematic constraints can also be complemented by
a “rolling friction” constraint which introduces a moment
resistance [BRA 02]. Within the CDM, the time resolution is
much larger than the collision characteristic time (unlike in
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the case of smooth contact approaches). Therefore, the time
step represents a unit of time during which collisions can
occur, causing velocity jumps. Although CDM has
successfully been used for several geomechanical problems
[DON 09], it is much more difficult to implement than the
DMs based on smooth contact. Also, the prediction of the
contact forces and particle velocities in the following time
step from the current configuration is very problematic and is
currently the subject of several studies.

The non-smooth contact models are generally used to
study quasi-static problems or problems with relatively low
dynamic effects. This class of methods is perfectly suitable to
study mechanical problems of granular mechanics. However,
in the case of continuous media, the use of models based on
regular or “smooth” interaction laws seems to be
advantageous since the elasticity is naturally taken into
account by these interaction laws.

1.2.3.4. Hybrid lattice-particle models

As seen earlier, the features and advantages of the lattice
and particle models are largely complementary. Indeed, the
particle methods cannot correctly model a continuum using a
simple disk of spherical elements, especially when significant
shear effects are involved. This problem can be solved using
cohesive beams between elements, such as in lattice models.
On the other hand, particle methods can correctly deal with
crack closure in postfracture stage, since elements have their
own volumes. However, additional treatment must be made
to simulate this phenomenon by using lattice models.
Therefore, it would be beneficial to combine these models, in
order to strengthen their advantages and overcome their
drawbacks. This idea has attracted a strong research effort
which has given rise to the class of hybrid lattice-particle
methods. This class merges the main features of the
combined models, i.e. by considering sphere elements
connected with cohesive beams [GRI 01] (Figure 1.7).



16 Discrete Element Method to Model 3D Continuous Materials

Figure 1.7. 2D hybrid lattice-particle model

1.3. Discrete element method for continuous materials

As seen in the previous section, the DMs are classified into
three classes: QMMs, AMs and MDMs. The first two classes
are adapted for very fine-scale problems for which continuum
description is not possible. Application of these classes to
study continuous materials whose scale of interest is much
greater than the interatomic distance is extremely
time-consuming or even crippling. The MDMs are used to
study the problems at the mesoscopic scale which is the scale
of interest for most of the complex phenomena that are
encountered in continuum simulation, but cannot correctly be
treated by CMs. Compared to QMMs and AMs, these
methods are relatively inexpensive and seem to be the most
adapted to simulate continuous materials. Mainly, four
categories of MDMs can be distinguished. The category of
non-smooth contact methods is based on a non-smooth
formulation between particles. This formulation can be
perfectly adapted for granular materials; however, it is
inappropriate to study continuous materials. In effect, the
use of models based on regular or “smooth” interaction laws
seems to be advantageous for these materials since their
mechanical behavior can naturally be taken into account by
the smooth interaction laws. Except for the non-smooth
contact methods, all MDM categories present this feature (of
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smooth interaction between particles) and seem a priori
candidates to model continuous materials. Among them, the
category of hybrid lattice-particle methods has practically all
the advantages of the MDM categories with regard to
continuum simulation, while alleviating their drawbacks.
The use of a DM in this category to model continua is thereby
justified. Specifically, this book focuses on the variation of
DMs recently developed by André et al. [AND 12b,
AND 13, JEB 13b, TER 13, JEB 13a]. This method models a
continuum by a set of spherical particles linked by 3D
cohesive beams. The main specificities and features of this
method will be detailed later.

1.4. Discrete-continuum transition: macroscopic
variables

In the framework of discrete element modeling, results of a
mechanical problem are given in terms of forces and torques
acting on particles, and their corresponding displacements
and rotations. However, in order to compare these results
with macroscopic experiments or theories, it is useful to
assess macroscopic quantities from these results. This is the
subject of several works which aim to establish a
correspondence with continuum theories by computing
macroscopic tensorial quantities, e.g. stress tensor σ and
strain tensor ε, as well as other scalar properties, e.g. bulk
and shear moduli [GOD 86, KRU 96, LIA 97]. These
macroscopic quantities can even be applied to enrich some
criteria used in discrete element modeling. As will be shown
in Chapter 4, fracture criteria based on a stress tensor allow
us to reproduce the cracking mechanisms much better than
the traditional criteria based on the forces or displacements.
The major challenge in obtaining these quantities is that, in
some variations of DMs, the particles have additional degrees
of freedom (rotations) which are not taken into account in
classical continuum theories. To account for rotation effects,
it is necessary to develop a consistent size-dependent
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continuum theory able to account for the microstructure of
materials. This theory must span many scales and, of course,
reduce to classical theories for the macroscopic scale. More
accurately, new length-related measures of deformation, such
as the curvature tensor, are needed in a more complete
continuum theory. As a result, this theory also requires us to
introduce the notion of couple stress which was originally
proposed by Voigt in 1887 [VOI 87]. Several attempts have
been developed in the literature to establish such a theory
[TOU 62, CHE 01, LEO 02, HAD 11, COS 09]. However,
these attempts, with their numerous difficulties, fall far short
of providing a solid formulation workable in practice
[ERI 68, MIN 62, HAD 11].

In the remainder of this section, approaches used to
compute stress and strain tensors will be briefly reviewed,
while remaining within the framework of classic continuum
theories. The contribution of couple stress will then be
ignored in this review. Furthermore, the phenomena related
to the kinematics of the particles and having no equivalent in
continuum will not be considered. This does not mean
ignoring the particle rotations, only phenomena associated
with no dissipated or stocked energy are ignored, e.g. loss
contact or rolling without sliding. According to several papers
[CAI 95, MOR 97, AND 13, BAG 06, CAM 09], these
approaches lead in a first approximation to an acceptable
estimate of these tensors. For the sake of clarity, unless there
is a need for index form, equations in the following will be
given in matrix form. Moreover, tensors will be replaced by
their corresponding matrices in the equations.

1.4.1. Stress tensor for discrete systems

Within the framework of classic continuum theories, the
most commonly used definition of stress in DMs is the virial
stress. This stress, also called system-level stress, is based on
a generalization of the virial theorem of Clausius developed
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in 1870 for gas pressure. In the original definition
[MCL 74, TSA 79, SWE 83], the average virial stress over a
volume V around a particle p is given by:

Π̄ =
1

V

⎛
⎝−mp u̇p ⊗ u̇p +

1

2

∑
q �=p

lpq ⊗ fpq

⎞
⎠ [1.6]

where mp is the mass of p, u̇p is the velocity of p (material
time derivative of the displacement up, u̇p = dup/dt),
lpq = rq − rp is the vector linking the centers of particles p and
q, rp is the position vector of p, fpq is the force applied on p by
particle q, “⊗” denotes the tensor product and the summation
runs over all the particles in V . The sign convention for solid
mechanics is used in the virial stress relation [1.6], i.e. the
stress is negative in compression and positive in extension.
This relation includes two parts. The first part depends on
the mass and velocity (or in some versions the fluctuations of
velocity) of the particles, reflecting that the mass transfer
through a fixed spatial surface causes mechanical stress on
this surface. The second part depends on the interparticle
forces and particle positions, providing a continuum measure
for the internal mechanical interactions between particles.

The virial stress as defined in [1.6] has widely been used in
the past to compute an equivalent to Cauchy stress in
discrete systems. Recently, Zhou [ZHO 03] has demonstrated
that, contrary to what was believed by some investigators,
this quantity is not a measure for the mechanical forces
between material points and cannot be regarded as a
measure of mechanical stress in any sense. The lack of
physical significance is both at the microscopic level (particle
level) and macroscopic level (system level). This author has
shown that only the second part of the virial stress can be
identified with the Cauchy stress. The details of the proof can
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be found in [ZHO 03]. Therefore, the average stress in a
region of volume V as given by Zhou is:

σ̄ =
1

2V

∑
p

∑
q �=p

lpq ⊗ fpq [1.7]

Originally, expressions [1.6] and [1.7] were developed for
MD where the interparticle forces are derived from a
functional Φ (e.g. Lennard–Jones potential [1.4]) as follows:

fpq =
∂Φ(lpq)

∂lpq
lpq

lpq
[1.8]

where lpq = ‖lpq‖ represents the distance between particles
p and q. In this instance, expressions [1.6] and [1.7] lead to
symmetric tensors. However, this cannot be generalized to all
DMs. To analyze the symmetry of the stress tensor [1.7] for
the general case, the approach proposed by Chapuis [CHA 76]
for quasi-static analysis can be used.

For quasi-static study, the resultant torque on a particle p
must vanish:∑

q �=p

lpq ∧ fpq = 0 [1.9]

which is equivalent to:
∑
q �=p

lpqi fpq
j − lpqj fpq

i = 0, ∀ i, j ∈ [1..3] [1.10]

Therefore,∑
q �=p

lpq ⊗ fpq =
∑
q �=p

fpq ⊗ lpq [1.11]

If the volume V , in which the stress tensor is computed,
includes all the particles of the studied system (i.e. the volume



State of the Art: Discrete Element Modeling 21

boundary does not cut any particle), equation [1.9] is true for
each of these particles. Therefore, the following relation can
be obtained:∑

p

∑
q �=p

lpq ⊗ fpq =
∑
p

∑
q �=p

fpq ⊗ lpq [1.12]

which proves the symmetry of the stress tensor given by [1.7].
However, if some particles are cut by the boundary of the
considered volume, equation [1.9] is not valid for these
particles. In this case, the symmetry of the stress tensor [1.7]
is not guaranteed. However, if the volume V is large enough,
the number of particles cut by the volume boundary is small
with respect to the total number of particles in V . The
associated stress tensor can therefore be considered as
symmetric [CAI 95, MOR 97].

For dynamic study, the above analysis can also be followed
when the particle forces are symmetrically applied around
each particle center (as in regular assemblies). In this case,
no particle torques are induced on the particles, and then
equation [1.9] remains valid. If the particle forces are not
highly unsymmetrical, the corresponding stress tensor can be
assumed to be symmetric. Otherwise, the symmetric part of
[1.7] can be used to compute an approximated stress tensor in
discrete systems [AND 13, JEB 13b]:

σ̄ =
1

2V

∑
p

∑
q �=p

1

2
(pq ⊗ fpq + fpq ⊗ lpq) [1.13]

1.4.2. Strain tensor for discrete systems

The micromechanical interpretation of a strain tensor in
discrete systems has been the subject of strong scientific
interest in recent years. Consequently, several approaches
have been proposed to this end. All these approaches are
based on the assumption of small displacements of the
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particles. Most of them are derived either from equivalent
continuum computations or using best-fit methods. A brief
review of the approaches commonly used is given hereafter;
the reader is referred to [BAG 06, CAM 09] for more details.
Only 3D domains are considered in this review, but almost all
the reviewed approaches can also be used for 2D analysis. Let
ΩD denote the discrete region (made up of N particles) in
which the strain tensor would be computed.

1.4.2.1. Equivalent continuum strains

These microstructural strains are based on the equivalent
continuum technique. The discrete region ΩD is replaced by
an equivalent continuous domain, to which a displacement
field is assigned such that the displacements of the
continuum nodes (associated with the equivalent continuous
domain) are equal to those of the particle centers. The strain
tensor can then be determined from the gradient of this field,
and expressed in terms of the particle displacements and the
geometrical characteristics of the discrete model. Several
approaches based on this technique can be found in the
literature [BAG 93, BAG 96, KUH 99, CAM 00, KRU 03,
KRU 96], some of which are studied and compared in
[CAM 09, BAG 06]. The main difference between them lies in
the way in which the equivalent continuum is defined. One
particular approach is that suggested by Bagi
[BAG 93, BAG 96], which can be regarded as a generalization
of the first approach developed by Rothenburg in his PhD
dissertation in 1980 for 2D analysis [ROT 80]. This approach
is valid for 2D and 3D systems with arbitrary convex shape.
Only particle displacements are considered in such an
approach (particle rotations are ignored). The continuous
domain is constructed from the discrete system using a kind
of “space cell”, which is defined as tetrahedra (triangles in
2D) formed by the centers of neighboring (but not necessary
touching) particles (Figure 1.8). The displacement field
associated with this continuum is defined using a linear
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interpolation of nodal displacements, which are, by definition,
the same that the particle displacements.

Figure 1.8. Space cells (inspired by [BAG 06])

Within a cell c, this displacement field is continuously
differentiable, and its gradient is constant in this cell. Let
ec = ∇u denote the displacement gradient tensor in the cell c.
The volume average of this tensor over the cell c can be
expressed using a surface integral as follows:

ēc =
1

V c

∮
Sc

u⊗ n ds [1.14]

where V c and Sc are, respectively, the volume and boundary
surface of the cell c, and n is the outward unit normal vector
of Sc. Using [1.14], the volume average of the displacement
gradient tensor over the whole continuum domain associated
with ΩD is given by:

ē =
1

V

∑
c

V c ēc [1.15]

where V =
∑
c

V c is the volume of the whole continuum

associated with ΩD. To compute [1.15], Bagi
[BAG 95, BAG 96] has introduced a new vector dpq associated
with the particle interactions pq (between particles p and q).
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This vector is called the complementary area vector, and its
derivation is detailed in [BAG 95, BAG 96]. It can be
interpreted as the dual of the branch vector lpq pointing from
the center of the particle p to the center of the particle q, in
the sense that the total volume of the studied domain is
determined by summing the scalar products of these vectors
over the total number of particle interactions pq:

V =
1

3

∑
pq

dpq.lpq [1.16]

Using the complementary area vector dpq, equation [1.15]
can be rewritten as:

ē =
1

V

∑
pq

upq ⊗ dpq [1.17]

where upq = uq−up is the relative displacement of the centers
of particles p and q. The details of the proof can be found in
[BAG 95, BAG 96]. The symmetric part of the tensor ē defines
the average strain tensor ε̄ in V :

ε̄ =
1

2

(
ē+ tē

)
[1.18]

Several papers studying the Bagi approach can be found in
the literature [BAG 06, CAM 09]. These papers conclude that
this approach generally gives a good estimate of the strain
tensor at the structure scale.

1.4.2.2. Best-fit strains

These microstructural strains are based on the best-fit
technique (e.g. using the least squares method). They consist
of finding the displacement gradient tensor which gives the
smallest deviation from characteristic displacements of the
particles in ΩD (the discrete region in which the strain tensor
would be computed). Several best-fit approaches have been
proposed in the literature [CUN 79, LIA 97, CAM 00], all of
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which are valid for 2D and 3D analyses. The main difference
between these approaches lies in the way in which the
characteristic displacements are defined, e.g. the relative
displacements of the particle centers, the relative
displacements at the contacts, etc. Among the first best-fit
strains is the Cundall strain [CUN 79], which is widely used
in the discrete element modeling and is even implemented in
several well-known software packages (e.g. PFC, TURBAL,
etc.). This microstructural strain is valid for particles with
arbitrary shape. The approach used to obtain this strain is
detailed hereafter. It should be noted that only displacements
of the particle centers (particle rotations are ignored) are
considered in this approach.

Let xp and up be the initial position vector and
displacement vector of a particle p. In the approach of
Cundall, the space variables are expressed in a framework
whose origin o is located at the average position of the
particle centers belonging to ΩD:

xo =
1

N

∑
p

xp [1.19]

where N is the total number of particles in ΩD. The
displacement of the Cundall framework is defined as the
average displacement of the particle centers in ΩD:

uo =
1

N

∑
p

up [1.20]

Therefore, the vectors xp and up are, respectively, replaced
by xop and uop. The vector xop represents the relative position
of individual particles with respect to xo:

xop = xp − xo [1.21]
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The vector uop represents the relative displacement of
individual particles with respect to uo:

uop = up − uo [1.22]

Assuming that the studied assembly deforms such that
every particle displacement exactly corresponds to a uniform
displacement gradient tensor ē (i.e. the strain tensor is
assumed to be constant in ΩD), equation [1.22] can be
rewritten as:

uop = ē xop [1.23]

because particle displacements are assumed to be small.
Therefore, the Cundall approach consists of finding the tensor
ē that gives the best fit to the relative particle displacements
[1.23]. Using the least squares method, the problem is
reduced to finding the optimum ē that minimizes S:

S =
∑
p

‖uop − ē xop‖2 [1.24]

where “‖.‖” denotes the Euclidean norm. This last relation
[1.24] can be rewritten in index form (using the Einstein
summation convention) as follows:

S =
∑
p

(
uopi − ēij x

op
j

)2
, i, j ∈ [1..3] [1.25]

The corresponding mathematical problem is: find ē such
that:

∀ i, j ∈ [1..3],
∂S

∂ēij
= 0 [1.26]

which can be rewritten in matrix form as:

A tē = B [1.27]
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where the matrices A and B are given by:

A =
∑
p

xop ⊗ xop, B =
∑
p

xop ⊗ uop [1.28]

As demonstrated by Bagi [BAG 05], the coefficient matrix A
is positive-definite if and only if n ≥ 4 and there exist at least
four particles whose centers are not in the same plane. This
is the necessary and sufficient condition for existence of the
inverse coefficient matrix A−1, and then the existence of the
Cundall strain in 3D. If A−1 exists, the best-fit displacement
gradient tensor is given by:

ē = t
(
A−1B

)
[1.29]

The Cundall strain is none other than the symmetric part
of [1.29]. Based on [BAG 06, CAM 09], this microstructural
strain gives relatively good results, in agreement with strain
measures at the structure level.

1.4.2.3. Satake strain

Contrary to the Bagi and Cundall approaches, the Satake
approach [SAT 04] takes into account both displacements and
rotations of the particles. Such an approach shares some
features with the equivalent continuum ones. Indeed, it is
based on a tessellation system (space cells). However, no
displacement field assigned to these cells is required, and
then no cell deformations are analyzed (unlike in equivalent
continuum approaches). This approach is valid for assemblies
of disk or spherical particles, as in hybrid lattice-particle
methods, which is of particular interest with regard to the
subject of this book.

The geometrical background of the Satake strain is
constructed using the generalized Dirichlet tessellation
(which is also known as the Voronoï diagram) [ASH 86],
whose 2D illustration is given by Figure 1.9. This tessellation
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is unique for a given set of particles N , and it fills the convex
hull of the particles. An individual Dirichlet cell (Voronoï cell)
associated with a particle p is defined by:

Tp = {x| ‖x− xp‖ < ‖x− xq‖ , ∀ p �= q} [1.30]

(a) Construction of generalized
Dirichlet tessellation

(b) Generalized Dirichlet
tessellation

(c) Delaunay tessellation

Figure 1.9. Geometric construction of the generalized
Dirichlet tessellation and the associated Delaunay tessellation

for a set of particles in 2D



State of the Art: Discrete Element Modeling 29

Using [1.30], the generalized Dirichlet tessellation P can be
obtained:

P = {Tp| p ∈ [1..N ]} [1.31]

After construction of P , the Delaunay tessellation
(Figure 1.9c) can be formed by the branches connecting the
centers of the particles which have a common face in P . This
allows us to define the neighboring particles: every two
particles p and q linked by a Delaunay branch are considered
as neighbors. Then, the contact cells can be defined, based on
the generalized Dirichlet tessellation and the associated
Delaunay network, such that one contact cell is defined per
pair of neighboring particles. The contact cell associated with
the pair of particles (p and q) will be denoted by pq. For each
pq, two vectors are introduced: branch vector lpq linking the
centers of the neighboring particles p and q and the dual
branch vector dpq, whose direction is perpendicular to the
Dirichlet face between these particle and magnitude is equal
to the area of this face. The volume of this cell can be
obtained using these two vectors as:

V pq =
1

3
dpq.lpq [1.32]

After long and complicated calculations which can be
found in [SAT 04], Satake has shown that the volume
average of the displacement gradient tensor over the whole
considered domain is defined by:

ē =
1

V

∑
pq

cpq ⊗ dpq [1.33]

where V =
∑
pq

V pq is the volume of the whole domain and cpq is

the contact deformation defined as the relative displacement,
between two particles p and q, expressed at the contact point c.
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This quantity can be determined using particle displacements
(up and uq) and the particle rotations (θp and θq) as follows:

cpq = {uq}c − {up}c = (uq + θq ∧ rcq)− (up + θp ∧ rcp) [1.34]

where {up}c is the displacement of the particle p expressed at
the contact point c, up is the displacement of the center of the
particle p, θp is the rotation of a particle p, rcp is a vector
pointing from the center of the particle p to the contact
(boundary) point c and “∧” denotes the vector product. The
symmetric part of ē represents the Satake strain.

As can be seen from [1.17] and [1.33], the Satake strain
expression is similar to that obtained by Bagi. One difference
is that the dual branch vector is used in place of the so-called
complementary area vector in the Bagi definition. This is due
to a difference in the definition of the geometrical background
of two microstructural strains. The generalized Dirichlet
tessellation is used to obtain the Satake strain, which allows
us to properly define a geometric background that takes into
account the particle size. This makes the geometrical
explanation more simple and clearer so that a systematic
analysis becomes easy both in 2D and 3D analyses. Another
difference between the strain definitions is that the Bagi
definition is based upon relative displacements between the
particle centers, whereas relative displacements at the
contact points are considered for the Satake definition. This
allows us to take into consideration the particle rotations in
the computation of the microstrutural strain. Numerical
comparison of these two definitions of microstructural strain
shows that they give similar results, which are in good
agreement with the strain measured at the structure level
[BAG 06, CAM 09]. This can reflect that the contribution of
the particle rotations is not of major importance in the
computation of the strain tensor.
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1.5. Conclusion

This chapter provides a brief review of discrete element
modeling. A classification of the DMs most commonly used to
model physical systems is given, in order to place the DEM
proposed in this book. Depending on the analysis scale, three
classes can be distinguished: QMMs, AMs and MDMs. The
first two classes are extremely time-consuming and can be
applied only to simulate very small-scale problems. The
MDMs are used to simulate problems at the mesoscopic scale,
which is the scale of interest of most of the complex
phenomena encountered in continuum modeling (i.e. by using
CMs). Therefore, this class provides an alternative method to
model such phenomena. MDM methods are generally made
up of four categories: lattice methods, smooth contact particle
methods, non-smooth contact particle methods and hybrid
lattice-particle methods. The non-smooth contact particle
methods are based on the non-smooth formulation between
particles. Such a category is rather adapted for granular
materials. The other categories are based on the smooth
particle interactions, and then come forward as candidates to
model continuous problems. Indeed, the mechanical behavior
of these materials can naturally be taken into account by
such interactions. In particular, the category of hybrid
lattice-particle methods has practically all the advantages of
the MDM methods with regard to modeling of continuous
materials. This is why a hybrid lattice-particle method is
chosen to model continua in this book. The main features of
this method will be detailed in the next chapter. The results
of such a method and the DMs, in general, are given in terms
of discrete particle loadings (forces and torques) and their
corresponding particle motions (displacements and rotations).
These results are strongly heterogeneous: their size and
magnitude may significantly vary from particle to particle.
Therefore, they cannot be estimated as continuously
differentiable fields. Establishing a link between
particle-level results and structure-level stresses and strains
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is important to interpret these results from a macroscopic
point of view. The second part of this chapter gives some
analytical and numerical techniques used to bridge these
levels. As will be seen in Chapter 4, these techniques are also
useful to enrich the criteria applied in discrete element
modeling.


