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State of the Art: Concurrent
Discrete-continuum Coupling

1.1. Introduction

Some of the most fascinating dynamic problems in all fields of science
involve multiple spatial or temporal scales: processes that occur at a certain
scale govern the behavior of the system across several (usually coarser)
scales. Therefore, to accurately simulate such problems with minimum cost, it
is often necessary to resort to multi-scale modeling. In particular, the
concurrent discrete-continuum coupling approaches seem to be the best
adapted to study these problems. On the one hand, these approaches are of
concurrent type. Therefore, as seen previously, these are well adapted to study
highly dependent multi-scale phenomena, which are frequently encountered
in complex dynamic problems. On the other hand, both discrete and
continuum methods (CMs) are involved in these approaches. This allows us to
combine their complementary advantages and to avoid their drawbacks. The
complex small-scale phenomena can easily be treated by application of the
discrete method (DM) in the associated regions. Furthermore, the application
of the CM in the remainder of the studied domain significantly reduces the
computation time, and avoids prohibitively large computations. Consequently,
simulation of real problems of material science and engineering can be
performed. Due to their advantages, the concurrent discrete-continuum
coupling approaches have become very fashionable in the last decade. This
chapter aims to shed light on some important aspects related to these
approaches. First, the major challenges that the designer faces in developing
such approaches will be outlined. Then, the coupling techniques most
commonly used to address these challenges will be reviewed. The one that
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best meets the scope of the present work will be selected. Although this
review is not all-inclusive, it gives a clear vision of the topic. It should be
noted that the techniques presented can also be applied for coupling DMs
concurrently (concurrent discrete–discrete coupling).

1.2. Coupling challenges

Coupling dissimilar methods in a concurrent manner for dynamic analysis
faces two major challenges. The first challenge is due to the different
mechanics underlying the DM and CM. The second challenge is related to the
different analysis scales of the coupled methods. This section is devoted to
explaining these two challenges in more detail.

1.2.1. Dissimilar variables due to different mechanical bases

One major difficulty in coupling DM and CM is that these methods are
based on different mechanics. The DMs are based on discrete mechanics, in
which the interaction between neighboring discrete elements is described by
classical Newtonian mechanics. The variables associated with this class of
methods are only defined in the element positions. In contrast, the CMs are
based on continuum mechanics, in which the studied domain is assumed to be
continuous and completely filling the space it occupies. The mechanical
behavior of this domain is described by constitutive laws involving
continuous field variables, instead of discrete element variables as in the
DMs. Therefore, a special treatment is required at the interface between the
coupled methods to ensure correct communication between the coupled
methods.

1.2.2. Wave reflections due to different analysis scales

Another major difficulty encountered in application of the concurrent
discrete-continuum coupling approaches in dynamics is that, due to the
different analysis scales, spurious wave reflections can occur at the interface
between the coupled models. This difficulty is almost always encountered,
since there is no benefit in coupling models having similar analysis scales. To
simply illustrate the problem of spurious wave reflections, the behavior of
waves in the discrete and continuum domains will be explored using simple
one-dimensional (1D) models. A chain of particles connected with equivalent
springs is used for the discrete model, and its corresponding continuum
counterpart is used for the continuum model (Figure 1.1).



State of the Art: Concurrent Discrete-continuum Coupling 5

Figure 1.1. 1D models to investigate spurious wave reflections

In the discrete model, the equation of motion of a particle p, in the absence
of body forces, can be derived by application of the fundamental principle of
dynamics (FPD):

md̈p = K (dp−1 − dp) +K (dp+1 − dp) = K (dp+1 + dp−1 − 2 dp) [1.1]

whereK is the stiffness of the springs, andm and dp are, respectively, the mass
and displacement of the particle p. Equation [1.1] can be solved by assuming
a wavelike solution which is only defined in the particle positions:

dp = D ei (k p r−ω t) [1.2]

where D is the amplitude of the oscillations, k is the 1D wave vector (its
amplitude gives the wavenumber κ = |k| = 2π

λ ), λ is the wave length, r is the
interparticle distance (x = p r is the position of the particle p along the chain)
and ω is the angular frequency. Substituting [1.2] into [1.1] leads after
simplification to:

ω2
D =

4K

m
sin2

(
k r

2

)
[1.3]

which is known as the dispersion relation. It characterizes the dependence of
the wave frequency on the wavenumber κ = |k|. It can be shown from [1.3]
that ωD(k) = ωD(k + 2 j π

r ) for any j ∈ Z. Therefore, only the case of k ∈
[−π

r ,
π
r ] will be considered hereafter. Moreover, for symmetry reasons, it is

sufficient to restrict to k = κ > 0.
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In the continuum model, the 1D equation of motion, in the absence of body
forces, can be written as:

ρ ü =
∂σ

∂x
[1.4]

where ρ is the density, and σ is the longitudinal Cauchy stress in x direction
(Figure 1.1). Under the assumption of small deformations, equation [1.4] can
be rewritten as:

ρ ü = E
∂2u

∂x2
[1.5]

where E is the Young’s modulus. Assuming a harmonic wave propagating
along the x direction (u = U ei (k x−ω t)), it is easy to find the continuum
dispersion relation:

ω2
C =

E

ρ
k2 [1.6]

To ensure equivalence between the discrete and continuum models, E and
ρ must verify, respectively, the following conditions (the cross-sectional area
S is assumed to be equal to the unit, for simplicity):

E = K r and ρ =
m

r
[1.7]

Using these conditions [1.7], the continuum dispersion relation can be
reformulated as follows:

ω2
C =

K r2

m
k2 [1.8]

After obtaining the discrete and continuum dispersion relations ([1.3] and
[1.8], respectively), the influence of the spatial and temporal discretization on
these parameters will be examined. This allows us to better understand the
wave reflection mechanisms encountered when coupling models of different
scales.
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1.2.2.1. Influence of the spatial discretization on the dispersion relation

In this section, the influence of the spatial discretization of the continuum
model on the dispersion relation will be examined. To do this, the continuum
domain is discretized into uniform segments of length h. Using linear
interpolation functions, the discretized equation of motion of a node p can
then be expressed as:

ρ h üp =
E

h
(up−1 − up) +

E

h
(up+1 − up) =

E

h
(up+1 + up−1 − 2up) [1.9]

where up designates the nodal displacement of the node p. By analogy with the
discrete model and using [1.7], the dispersion relation of the discretized form
of the continuum model can be obtained:

ω̃2
C =

4K r2

mh2
sin2

(
k h

2

)
[1.10]

Using [1.3] and [1.10], the cutoff frequencies of the discrete and discretized
continuum models can be obtained:

f cD =
ωmax
D

2π
=

1

π

√
K

m
[1.11]

f̃ c
C =

ω̃max
C

2π
=

1

π

√
K

m

r

h
[1.12]

The cutoff frequency of the discretized continuum model depends on h.
In the case of coarse discretization (h � r), the associated cutoff frequency
(f̃ c

C) becomes smaller than that of the discrete one (f cD). As a result, if these
models are coupled, the high-frequency waves (HFWs) (f > f̃ c

C) coming from
the discrete model are not supported by the continuum model, and will be
spuriously reflected at the interface (Figure 1.2). This phenomenon has already
been addressed using the finite element model with different element sizes
[CEL 83].

Taking into account the assumption that k = κ > 0, the phase and group
velocities in both the discrete model and discretized continuum model can be
obtained from [1.3] and [1.10] as follows:

vphD =
ωD

k
=

2

κ

√
C

m
sin
(κ r

2

)
and vgrD =

∂ωD

∂k
= r

√
C

m
cos
(κ r

2

)
[1.13]
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ṽphC =
ωC

k
=

2

κ

r

h

√
C

m
sin

(
κh

2

)
and

ṽgrC =
∂ωC

∂k
= r

√
C

m
cos

(
κh

2

)
[1.14]

Figure 1.2. Reflection of high-frequency waves at the interface

between the discrete and continuum models

The use of different discretization characteristic lengths in the discrete and
continuum models (r and h) leads to different wave velocities. Moreover, for
a fixed κ, the wave velocities in the discretized continuum model decrease as
h increases. This explains another mechanism of wave reflections, for which
a portion of the main propagating wave is reflected at the interface (not only
the HFWs). Figure 1.3 presents examples of a wave traveling between two
models having different wave propagation velocities, due to different spatial
discretizations.

a) Wave traveling from a faster wave velocity model to a slower wave velocity model

b) Wave traveling from a slower wave velocity model to a faster wave velocity model

Figure 1.3. Wave traveling between two models having

different wave propagation velocities
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1.2.2.2. Influence of the temporal discretization on the dispersion

relation

As seen before, the use of different discretization characteristic lengths in
the discrete and continuum models leads to different dispersion relations, and
then to different phase and group velocities. Hereafter, the influence of the
temporal discretization on the dispersion relations will be examined. For a
given time step Δt, the second derivative of a field variable f with respect to
time can be approximated as:

f̈ ≈ ft+Δt − 2 ft + ft−Δt

(Δt)2
[1.15]

Applying [1.15] to the particle and node accelerations (d̈p and üp,
respectively) and using the equivalence conditions [1.7], equations [1.1] and
[1.9] can be approximated as:

m

Δt2D
(dpn+1 + dpn−1 − 2 dpn) = K (dp+1

n + dp−1
n − 2 dpn) [1.16]

m

Δt2C
(upn+1 + upn−1 − 2upn) = K

r2

h2
(up+1

n + up−1
n − 2upn) [1.17]

where ΔtD and ΔtC are, respectively, the discrete and the continuum time
step, and dpn and upn are, respectively, the displacement of a particle p and the
displacement of a node p at the n−th time step. By analogy with the derivation
of the dispersion relations ([1.3] and [1.10]), the following equations can be
obtained:

sin2

(
ωD ΔtD

2

)
=
K

m
Δt2D sin2

(
k r

2

)
[1.18]

sin2

(
ω̃C ΔtC

2

)
=
K

m

r2

h2
Δt2C sin

2

(
k h

2

)
[1.19]

Equations [1.18] and [1.19] are obtained using the general form of a
harmonic solution which is expressed as dpn = D ei (k p r−ω nΔtD) for a
particle p at the n− th time step and upn = U ei (k p h−ω nΔtC) for a node p at
this time step. Using k = κ > 0 , equations [1.18] and [1.19] can be rewritten
as:

sin

(
ωD ΔtD

2

)
=

√
K

m
ΔtD sin

(κ r
2

)
[1.20]
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sin

(
ω̃C ΔtC

2

)
=

√
K

m

r

h
ΔtC sin

(
κh

2

)
[1.21]

With the help of the first-order and third-order Taylor expansions, an
approximation of ωD and ω̃C can be obtained from [1.20] and [1.21] as
follows:

ωD =

√
K

m
k r

[
1 +

k2 r2

24

(
K

m
Δt2D − 1

)]
[1.22]

ω̃C =

√
K

m
k r

[
1 +

k2 h2

24

(
K

m

r2

h2
Δt2C − 1

)]
[1.23]

It can be concluded from the last two equations that, for different
discretization characteristic lengths (r and h) and for a given discrete time
step ΔtD, it is possible to choose a suitable ΔtC such that the dispersion
relations of both models are equivalent:

ΔtC =

√
Δt2D +

m

K

h2 − r2

r2
[1.24]

Therefore, the inaccurate continuum dispersion relation caused by large
discretization characteristic length h can theoretically be corrected by
choosing a larger continuum time step ΔtC . However, this solution is not
always applicable in practice. For example, in the case of a “dynamic explicit”
simulation, ΔtC must satisfy the Courant–Friedrichs–Lewy (CFL) stability
criterion to ensure convergence of numerical approximation [1.25].

ΔtC ≤ 2π

ω̃max
C

[1.25]

1.3. Coupling techniques

To correctly bridge DM and CM in a concurrent manner for dynamic
analysis, the coupling challenges detailed in the previous section should be
properly addressed. To this end, several techniques have been proposed in the
literature [ABR 98, BRO 99, SMI 99, LU 05, XU 09, JEB 14, CUR 03]. A
common feature of these techniques is that the problem domain is often
partitioned into several subdomains characterized by different scales and
physics. The question that arises here is how to ensure a smooth coupling
between these subdomains. The next section tries to answer this question by
reviewing the most used techniques.
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1.3.1. Edge-to-edge coupling methods

A common technique for coupling discrete and continuum models is the
edge-to-edge approach. This technique is also widely used in the finite
element community for parallel implementation of the finite element method
(FEM) method [ZHU 01]. As shown in Figure 1.4, two types of discrete
elements are used in this technique. Aside from the real elements, virtual
elements are defined to model the angle-bending of the bonds (virtual)
between the discrete model and continuum model. The virtual particles
(discrete elements) are connected on one side to the discrete model by virtual
bonds, and on the other side are attached to the continuum model and move
with it. The motion of these particles can be determined by interpolation of
the continuum node motion. The most simple variation of this technique is
that in which the particles and continuum nodes on the interface are
coincident and constrained to move together. This variation is known in the
literature as the direct coupling approach. In the general case, the coincidence
of particles and nodes on the interface is not necessary. In this case, additional
handling is required to ensure correct communication between the coupled
models. This last point will be discussed below in more detail.

A domain ΩG is considered with boundary ∂Ω = ∂Ωu ∪ ∂Ωt

(∂Ωu ∩ ∂Ωt = φ), such that essential (displacement) and natural (traction)
boundary conditions are, respectively, prescribed on ∂Ωu and ∂Ωt. This
domain is divided into two adjacent subdomains ΩD and ΩC . These
subdomains are, respectively, modeled using the discrete approach and
continuum approach (Figure 1.4). An isotropic linear elastic behavior and
small deformations are assumed for simplicity. In the present development, an
energetic (Hamiltonian) approach will be used to derive the governing
equations of the coupling system.

Figure 1.4. Edge-to-edge coupling



12 Discrete-continuum Coupling to Simulate Multi-scale Problems

The total energy in the discrete subdomain ΩD, which is assumed to be
isolated at this stage, is known as the Hamiltonian and is given by:

HD = Ekinetic
D + Eint

D − W ext
D

=

nD∑
i=1

1

2mi

(
pi
D

)2 −
nD∑
i=1

f int
i di + Evirtual

D −
nD∑
i=1

fext
i di

[1.26]

where Ekinetic
D is the kinetic energy, Eint

D is the internal energy, W ext
D is the

external work, nD is the total number of particles, mi and pi
D = mi ḋi are

the mass and momentum of the particle i, di and ḋi are, respectively, the
displacement and velocity of the particle i, f int

i is the total internal force
exerted on the particle i by its neighbors, fext

i is the total external force
acting on the particle i and Evirtual

D is the bending energy of the virtual
bonds. It should be noted that the stretching energy of the virtual bonds is
automatically included in the continuum internal energy, since the virtual
particles move with the continuum material. At this stage, fext

i does not
include the coupling force which will be introduced later.

Under the assumption of small deformations, the total energy in the
continuum subdomain ΩC , which is supposed to be isolated at this stage, can
be written as:

HC = Ekinetic
C + Eint

C − W ext
C

=

ˆ
ΩC

1

2
ρ u̇2 dΩ + 1

2

ˆ
ΩC

σ : ε dΩ − ´
ΩC

ρ bu dΩ− ´
∂Ωt

C
tg u dΓ [1.27]

where ρ is the density and u̇ is the velocity field, σ and ε are, respectively, the
Cauchy stress tensor and strain tensor, b is the body force per unit mass and tg
is the prescribed traction vector on ∂Ωt

C .

In the above development, the discrete and continuum energies are derived
without taking into account the coupling conditions. In the following, it will
be shown how these models are coupled. Generally, the compatibility at the
interface between the coupled models can be enforced using either velocity
constraints or displacement constraints. However, in the case of highly
dynamic problems, where dynamic effects become significant, it would be
preferable to use velocity constraints to ensure a correct kinetic energy
transfer between the coupled models. For the sake of consistency with the
energetic (Hamiltonian) approach followed here to develop the edge-to-edge
coupling method, displacement constraints will be used in the rest of this
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derivation. These constraints can be applied in different ways, as shown in
[1.28] and [1.29].

gweak
i = ‖u(xi)− di‖2 = 0, i ∈ [1, nDI ] [1.28]

gstrongi = u(xi)− di = 0, i ∈ [1, nDI ] [1.29]

u is the continuum displacement field, di is the displacement of a particle i
located on the interface at xi coordinates and nDI is the number of particles
on the interface. In [1.28], a single constraint is applied per particle belonging
to the interface. This results in a system of equations with a reduced number
of degrees of freedom. However, using this type of constraint, displacement
compatibility is only satisfied approximately. This can lead to unacceptable
large errors. In contrast, three constraints (one for each component) per
particle are applied in [1.29]. This allows the coupled models to better
communicate. Although it can lead to a large system of equations, [1.29] is
generally recommended and is retained here to enforce compatibility between
the discrete and continuum approaches. In practice, these constraints can be
introduced in the global system by using rigid models, such as the Lagrangian
multipliers model (LM), elastic models such as the penalty model (PM) or
combined models such as the augmented Lagrange multipliers model (ALM).
In the rest of this derivation, the ALM is used, because it is more general and
includes the two other models. The associated coupling energy, in a
continuous form, is given by:

HALM
I =

ˆ
ΓI

λ (u− d) dΓ +
p

2

ˆ
ΓI

(u− d)2 dΓ [1.30]

where ΓI is the interface between the two models, λ is the Lagrange
multipliers field and p is the penalty parameter. The Lagrange multipliers field
λ can be regarded as a generalized coupling force field. Since the
displacements di in the discrete subdomain ΩD are only defined in the
particle positions, a continuous field d must be inferred from the particle
displacements di at least on the interface to evaluate HALM

I [1.30]. This can
be achieved using a kind of interpolation:

d(xi) =

nDI∑
j=1

φjD(xi)dj [1.31]
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where φjD is the interpolation function associated with the particle j. Taking
into account [1.30], the total energy of the coupling system can be obtained:

HALM
G = HD +HC +HALM

I [1.32]

In [1.32], the Hamiltonian is given in a continuous form. To develop the
corresponding discrete form H̃ALM

G , the continuum displacement and the
Lagrange multipliers fields (u and λ, respectively) can be approximated,
using, for example, the finite element interpolation in the corresponding
domains, as follows:

ũ(x) =

nC∑
i=1

φiC(x)ui [1.33]

λ̃(x) =

nI∑
i=1

φiI(x)λi [1.34]

where φiC and φiI are the shape functions constructed on, respectively, Ω̃C

and Γ̃I (the discretized forms of, respectively, ΩC and ΓI ), nC and nI are,
respectively, the total number of continuum nodes and the total number of
Lagrange multipliers nodes. In the general case, the Lagrange multipliers
nodes do not necessarily coincide with the discrete particles or the continuum
nodes at the interface. Substituting [1.33] and [1.34] into [1.32] and using
[1.31] on ΓI , the discrete Hamiltonian H̃ALM

G can be obtained. Based on
H̃ALM

G , the discretized Hamiltonian equations of the coupling system can be
derived:

ṗi
D = −∂H̃

ALM
G

∂di
, and ḋi =

∂H̃ALM
G

∂ṗi
D

for i ∈ [1, nD] [1.35]

ṗi
C = −∂H̃

ALM
G

∂ui
and u̇i =

∂H̃ALM
G

∂ṗi
C

for i ∈ [1, nC ] [1.36]

gi =
∂H̃ALM

G

∂λi
= 0 for i ∈ [1, nI ] [1.37]

Replacing ḋi and u̇i with their expressions in, respectively, ṗi
D and ṗi

C ,
the global system of equations can be expressed, in matrix form, as:

md̈ = f int + fext + fλ [1.38]
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Mü = F int + F ext − F λ [1.39]

CIu− cI d = 0 [1.40]

where m is the diagonal mass matrix of the particles, f int, fext and fλ are the
vectors of, respectively, the internal forces, external forces and coupling forces
in the discrete model, M is the lumped mass matrix of the nodes, F int, F ext

and F λ are the vectors of, respectively, the internal forces, external forces and
coupling forces in the continuum model, CI and cI are the continuum and
discrete coupling matrices. The matrix systems [1.47], [1.48] and [1.49] are
in the form of time-dependent ordinary differential equations (ODEs). These
equations can be solved numerically using a time integration scheme.

The edge-to-edge coupling methods are rather dedicated to quasi-static
problems or problems with relatively low dynamic effects. Otherwise, fine
discretization of the continuum subdomain, at the same level as the discrete
subdomain, is required to deal with the spurious wave reflections at the
interface. Moreover, in most of the cases, the use of fine continuum
discretization is not sufficient to overcome the reflection problems. Mostly,
the particles belonging to the interface must be coupled with dampers, which
are generally difficult to adjust. These difficulties make the edge-to-edge
coupling approaches useless for dynamic studies, since the reduction in the
computation effort from a fully discrete element analysis is not significant.

1.3.2. Bridging domain coupling methods

In the following, the bridging (overlapping) domain (BD) technique for
coupling continuum models with discrete models is described. Contrary to
the edge-to-edge coupling technique, the present technique considers a BD
(overlapping) between the coupled models. It should be noted that this
technique is also called the Arlequin approach in the literature [BEN 98,
BEN 01, BEN 05]. It consists of:

– decomposition of the global domain ΩG into two subdomains ΩD and
ΩC , modeled, respectively, by the discrete model and continuum model, with
a bridging region ΩB ;

– weak coupling (based on weak formulation): the discrepancy between
the mechanical states, e.g. displacement, deformation, strain, etc., in the
bridging region must be controlled using some kind of fictive forces. To allow
each model to express its own wealth, the discrepancy should preferably be
controlled in a weak manner using averaging operators. This point consists of:
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- definition of a gluing zone ΩGL (ΩGL ⊆ ΩB), in which the coupling
control will be performed. In the general case, this zone can be different from
the bridging region (ΩGL � ΩB). In the present development, ΩGL is chosen
the same that ΩB . Hereafter, the term “bridging zone” will be used to designate
both the bridging zone and gluing zone,

- definition of a mediator space M which is defined as the space of
the field variables restricted to ΩB that must be controlled in the bridging
region. To ensure a correct dialogue between the coupled models, the
control quantities must be carefully chosen. Generally, either displacements
or velocities are controlled in ΩB ,

- definition of a projection operator Π which will be used to project the
discrete and continuum field variables to be controlled onto the mediator space
M,

- definition of a junction model which will be used to ensure the
compatibility of the controlled field variables in the bridging region. Besides
the Lagrange, penalty and augmented Lagrange multipliers models, which
were introduced earlier, another junction model has been proposed in the
literature [BAU 08, BEN 01, BEN 98, BEN 05, BEN 08]:

< λ,fC − fD > =

ˆ
ΩB

η1 λ · (ΠfC −ΠfD)

+η2 l
2ε(λ) : ε(ΠfC −ΠfD) dΩ [1.41]

where (ΠfC − ΠfD) is the difference between the projected continuum
and discrete control quantities on the mediator space M, λ is the Lagrange
multiplier field and l is a parameter which is named “junction parameter” in
this book. This parameter which has the dimension of a length is added to
ensure the homogeneity of the integral terms in [1.41]. η1 and η2 are non-
negative weight parameters. These parameters can be chosen so as to scale the
two integral terms in [1.41]. (η1, η2) = (1, 0) refers to L2(ΩB) inner (scalar)
product which is the same that the Lagrange multiplier model, (η1, η2) =
(1, 1) refers to H1(ΩB) inner (scalar) product and (η1, η2) = (0, 1) refers to
H1(ΩB) semi-inner product;

– partition of energy between the discrete and continuum models in the
bridging zone. The two models coexist in ΩB . Therefore, the discrete and
continuum energies in this region must be weighted using a kind of unity
partition functions (to avoid counting twice the associated energy). Different
weight functions can be used for the kinetic energy, internal energy and
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external work in ΩB . These functions must verify:

fC : ΩG 
→ [0, 1]

x 
→
⎧⎨
⎩

1 in ΩC\ΩB

[0, 1] in ΩB

0 in ΩD\ΩB

[1.42]

in the continuum subdomain, and fD = f̄C = 1 − fC in the discrete
subdomain. Figure 1.5 presents examples of weight functions.

Figure 1.5. Examples of weight functions

These different ingredients will be detailed hereafter. As for the
edge-to-edge technique, a domain ΩG is considered with boundary
∂Ω = ∂Ωu ∪ ∂Ωt (∂Ωu ∩ ∂Ωt = φ), such that essential (displacement) and
natural (traction) boundary conditions are, respectively, prescribed on ∂Ωu

and ∂Ωt. This domain is divided into two subdomains ΩD, treated by the
discrete model, and ΩC , treated by the continuum model, with a bridging
region ΩB (Figure 1.6). An isotropic linear elastic behavior and small
deformations are assumed for simplicity.

Figure 1.6. Bridging domain coupling

To weight the energies in the continuum subdomain, three weight functions
are assumed in this development: α for the internal energy, β for the kinetic
energy and γ for the external work. In a complementary manner, the energies
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in the discrete subdomain are weighted using ᾱ, β̄ and γ̄, for, respectively, the
internal energy, kinetic energy and external work. Using these functions, the
weighted discrete and continuum Hamiltonians can, respectively, be written
as:

Hw
D = Ekinetic, w

D + Eint, w
D − W ext, w

D

=

nD∑
i=1

1

2mi
β̄i
(
pi
D

)2 −
nD∑
i=1

ᾱi f
int
i di −

nD∑
i=1

γ̄i f
ext
i di

[1.43]

Hw
C = Ekinetic, w

C + Eint, w
C −W ext, w

C

=

ˆ
ΩC

1

2
β ρ u̇2 dΩ+

1

2

ˆ
ΩC

ασ : ε dΩ

−
ˆ
ΩC

γ ρ bu dΩ−
ˆ
∂Ωt

C

γ tg u dΓ [1.44]

To enforce compatibility between the coupled models in the bridging zone
ΩB , the H1(ΩB) junction model ([1.41], with (η1, η2) = (1, 1)) is used. The
associated coupling energy can be written as:

HH1
B =

ˆ
ΩB

λ · (Πu−Πd) + l2ε(λ) : ε(Πu−Πd) dΩ [1.45]

As explained before, to evaluate HH1
B , a continuous displacement field d

must be approximated from the particle displacements di in the bridging zone,
using a kind of interpolation [1.31]. The global Hamiltonian of the coupling
system can be obtained by summing [1.43], [1.44] and [1.45]:

HH1
G = Hw

D +Hw
C +HH1

B [1.46]

To obtain the corresponding discrete form H̃H1
G , the continuum

displacement field u and the Lagrange multipliers field λ are approximated as
given by [1.33] and [1.34]. Using H̃H1

G , the global system of equations can be
derived:

mβ d̈ = f int
α + fext

γ + fλ [1.47]

Mβ ü = F int
α + F ext

γ − F λ [1.48]

CB u− cB d = 0 [1.49]
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where mβ is the weighted diagonal mass matrix of the particles, f int
α , fext

γ

and fλ are, respectively, the weighted vector of internal forces, weighted
vector of external forces and vector of coupling forces in the discrete model,
Mβ is the weighted continuum lumped mass matrix, F int

α , F ext
γ and F λ are,

respectively, the weighted vector of internal forces, weighted vector of the
external forces and vector of coupling forces in the continuum model. CB

and cB are the continuum and discrete coupling matrices. For Mβ and mβ to
be invertible, the weight functions β and β̄ must be strictly positive in ΩB and
at the border ∂ΩB . Therefore, a small ε must be used instead of zero in the
nodes assigned to ∂ΩB . The definition of the weight function β given by
[1.42] is slightly modified as follows:

β : ΩG → [0, 1]

x →
⎧⎨
⎩

1 in ΩC\ΩB

[ε, 1− ε] in ΩC|ΩB

0 in ΩD\ΩB

[1.50]

The global system of equations consisting of [1.47], [1.48] and [1.49] can
finally be solved using a temporal integration scheme.

In the BD coupling methods, the fine-scale solution (of the discrete
model) is continuously projected onto the coarse-scale solution (of the
continuum model) in the bridging zone. This can cancel the HFWs, and then
avoids spurious wave reflections at the discrete/continuum interface, without
any additional filtering or damping [BEN 05, JEB 13c]. However, this is
conditional upon choosing correctly the coupling parameters, which is not a
straightforward issue due to the large number of these parameters. Another
interesting aspect of the BD coupling methods is that they can also be applied
to obtain solution for nonlinear problems, in which devising an energy
functional for the entire system is not possible, due to the presence of
irreversible process, for example [FIS 07].

1.3.3. Bridging-scale coupling methods

The bridging-scale technique was recently proposed by Wagner and Liu
[WAG 03] to couple molecular dynamics (MD) and FEM. The main concepts
of this approach will be briefly reviewed hereafter. The readers can refer to
[PAR 05a, PAR 05b, WAG 03] for more details. Two subdomains ΩD and ΩC

modeled, respectively, by discrete and continuum models are considered.
These will first be assumed to be completely superimposed in the global
domain ΩG, to better understand the features of the bridging-scale approach.
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The key idea of such an approach is to decompose the total displacement field
u in the particle positions into coarse and fine scales:

uTot(xi) = ū(xi) + u′(xi) [1.51]

where xi represents the position of a particle i, ū and u′ are, respectively, the
coarse-scale and fine-scale displacements (Figure 1.7).

Figure 1.7. Scale decomposition of total displacement

in the particle positions

After discretization of the continuum subdomain ΩC , the coarse-scale
displacement in the particle positions xj is evaluated from the continuum
nodal displacements as:

ū(xj) =

nC∑
i=1

φiC(xj)ui [1.52]

where ui and φiC are the continuum nodal displacement and shape function
associated with the node i, respectively. For the sake of clarity, matrix
representation will be used for subsequent developments. In matrix form,
equation [1.52] can be rewritten as:

ū = N u [1.53]

where ū = t {ū(x1) ū(x2) ... ū(xnD
)} is the vector of coarse displacements

in the particles positions, nD is the total number of particles,
u = t {u1 u2 ... unC

} is the vector of continuum nodal displacements, nC is
the total number of nodes and N is the interpolation matrix.

The fine-scale displacement is defined as the part of the total displacement
that cannot be represented by the coarse scale. This quantity is computed
from the vector d of the particle displacements, which include the



State of the Art: Concurrent Discrete-continuum Coupling 21

coarse-scale parts, by subtracting (from d) the projection of the discrete
solution onto the continuum solution.

u′ = d− P d
= Qd

[1.54]

where P is the projection matrix and Q = I − P is the complementary
projector [WAG 03]. The term P d, which is called “bridging scale (BS)”, is
the part of the particle displacement that must be subtracted from the total
displacement to completely separate the scales (i.e. the coarse and fine scales
are orthogonal or linearly independent of each other). The total displacement
u can finally be written as the sum of the coarse and fine scales as:

uTot = N u+Qd [1.55]

To derive the coupled discrete and continuum equations, it is most
convenient to adopt the Lagrangian approach, in which the multi-scale
Lagrangian is defined by:

L(uTot, u̇Tot) = Ekinetic(u̇Tot)− Eint(uTot) +W ext(uTot)

= 1
2
tu̇M u̇+ 1

2
tḋmf ḋ− Eint(uTot) +

t fext uTot
[1.56]

where M and mf are, respectively, the coarse-scale and fine-scale diagonal
mass matrices (defined in terms of the diagonal mass matrix m of the particles
as: M = N t mN and mf = Qt mQ = Qt m = mQ), and fext is
the vector of external forces acting on the particles. An important feature of
the Lagrangian [1.56] is the absence of quadratic terms in the kinetic energy,
which are canceled due to the presence of the “BS”. The coupled multi-scale
equations of motion can be obtained from L as follows:

d

dt

(
∂L

∂u̇

)
− ∂L

∂u
= 0 and

d

dt

(
∂L

∂ḋ

)
− ∂L

∂d
= 0 [1.57]

Using [1.56], these equations can be rewritten after simplification as:

md̈ = f int + fext [1.58]

Mü = N t
(
f int + fext

)
[1.59]

The first (fine scale) equation is the equation of motion in the discrete
model, m is the diagonal mass matrix of the particles. The second (coarse
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scale) equation is simply the equation of motion in the continuum model,
where the mass matrix M is consistent. The coupling between these
equations is ensured through the vector of the continuum internal forces
F int = N t f int which is a function of the vector of the discrete internal
forces f int.

In the above development, ΩD and ΩC are assumed to be completely
superimposed. In this case, the continuum equation of motion [1.59] is
redundant, since it is only an approximation of the discrete one [1.58]. The
total and discrete displacements (uTot and d, respectively) satisfy the same
equation of motion [1.58] and have the same initial conditions. Therefore,
these quantities are identical during the entire simulation, and the continuum
displacement u can simply be determined by [1.55] which implies:
N u = P d.

Assuming that the fine-scale analysis is only required in a small region
ΩB , the particles outside this zone will now be removed. In other words, the
unnecessary fine-scale degrees of freedom will be eliminated. By doing so,
the discrete model is reduced to ΩB , where the two models coexist, and the
remaining estate is only modeled by the continuum model (Figure 1.8). The
process of eliminating the unnecessary degrees of freedom results in a
modified equation of motion in the discrete model, including an external force
called impedance force. This force is a function of a damping matrix or
equivalently its time derivative, known as the time history kernel
[ADE 76, WAG 03]. The damping kernel was first derived analytically by
Adelman and Doll [ADE 76] for a harmonic 1D lattice. However, their
analytical approach is very costly and is intractable above 1D [PAR 05b]. To
overcome this limitation, other works [CAI 00, WEI 02] have proposed
numerical approaches to evaluate this quantity, whose the effect is to dissipate
the HFWs and to avoid wave reflections at the interface between the discrete
and continuum models.

In recent years, the bridging-scale methods have received much research
interest, and several improvements, concerning the damping kernel and
projection mechanism, have been proposed. In the first implementation of
Wagner and Liu [WAG 03], the projection of the fine-scale solution onto the
coarse-scale solution is apparently only performed at the interface using the
approach of Adelman and Doll [ADE 76] (without introducing Lagrange
multipliers). This approach has been improved by computing the interface
nodes using Green’s functions for lattices [PAR 05a, PAR 05b]. More
recently, other enhancements have been proposed to join the coarse and fine
scales in a BD, using the perfectly matched layer (PML) technique
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[LI 06, TO 05]. As shown [XU 09], the performance of the BS methods based
on PML is comparable to that of BD methods. However, the BD methods
would be less costly, since they allow for reducing spurious wave reflections
by only a correct setting of their parameters (no additional treatments are
required).

Figure 1.8. Removal of unnecessary degrees of freedom in

bridging-scale modeling

1.3.4. Other coupling techniques

1.3.4.1. Quasicontinuum method

The quasicontinuum (QC) method was originally developed in the context
of lattice statics at zero temperature (molecular mechanics) using empirical
interatomic potentials [TAD 96b, TAD 96a]. Later on, it was extended to
dynamic problems using the coarse grained energy and the Hamilton
principle [LI 14, ROD 03, SHE 99]. The chief objective of the theory is to
systematically coarsen a particle (atomistic) description by introducing
kinematic constraints. These constraints are selected and designed so that the
fully atomistic model is preserved in the regions of fine-scale effects and large
number of particles (atoms) are collectively treated in the coarse-scale
regions. The fully discrete model is then represented by a set of representative
particles (mainly located in the fine-scale region), where the equation of
motion has to be solved (Figure 1.9). The displacement of the
non-representative particles is determined by kinematic constraints based on
finite element meshing, of which the nodes are coincident with the
representative particles (Figure 1.9).
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a) Selection of representative particles b) Meshing for application of kinematic
constraints

Figure 1.9. Quasicontinuum model

Although the imposed kinematic constraints significantly reduce the
number of degrees of freedom (particles), the computational complexity of
evaluating the generalized forces corresponding to the coarse-grained degrees
of freedom (representative particles) still scales with the total number of
particles in the system making computation on large systems intractable.
Several approximations have been suggested in the literature to alleviate such
difficulty [IYE 11, LI 14, ORT 01, ROD 03, SHE 99]. These include the
mixed discrete (atomistic) and continuum formulations, or introduction of
cluster summation rules on lattice sums. However, these approximations
induce spurious forces, which can affect the solution accuracy. As shown in
the literature [LI 14], the effects of these induced forces are more significant
in the case of dynamic studies. These effects may even be more severe than
the spurious reflections at the interface. Many strategies have been suggested
to correct the errors incurred in these approximations [SHI 04, WEI 06], but
they introduce undesirable seams in the process. Furthermore, recent
numerical analysis suggests that the approximations introduced may not be
consistent and stable, and can result in uncontrolled errors for rapid
coarse-graining [DOB 08, DOB 10]. More recently, other works have
proposed seamless QC formulations. However, they generally suffer from a
lack of systematic convergence [IYE 11].

1.3.4.2. Coupling of discrete and continuum meshless methods

In this section, techniques used to couple discrete and continuum meshless
methods are briefly reviewed. The readers are referred to [LIU 02] for more
details. These techniques were first developed to couple smoothed particle
hydrodynamics (SPH) and MD. In meshless methods, the studied domain is
represented by a set of scattered particles (continuum particles) or nodes
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without any connectivity between them. Each continuum particle has its
corresponding smoothing length R, representing the influence domain, and
length scale h, characterizing locally the domain discretization. The idea is
that the continuum particles close to the discrete-continuum interface
(transitional particles) also act as virtual discrete particles for the discrete
model (Figure 1.10). To avoid interface problems, the length scale of the
transitional particles must be graded down to the order of the discretization
characteristic length of the discrete model. The communication between the
coupled models can further be enhanced by using large transitional zone, in
which the particles act both as continuum and discrete particles (Figure 1.10).

a) Coupling with reduced transitional zone b) Coupling with extended transitional zone

Figure 1.10. Techniques for coupling discrete and

continuum meshless methods

1.4. Conclusion

Mainly, three coupling approaches can be used to couple discrete element
method (DEM) with CMs: hierarchical, concurrent and hybrid
hierarchical-concurrent approach. Among them, the concurrent approach is
the most appropriate to study multi-scale problems in fast dynamics which is
the scope of the present book. This chapter brought light to some important
aspects related to this approach. First, the major difficulties that arise from
application of this approach to couple DM and CM for dynamic studies were
briefly outlined. These difficulties are mainly due to the different mechanical
bases and analysis scales between the coupled methods. Then, the techniques
most commonly used to overcome such difficulties were reviewed. Among
these techniques, the BD technique seems best suited to develop a concurrent
DEM-CM coupling approach for highly dynamic studies. Using this
technique, spurious wave reflections can naturally be avoided without any
additional filtering or damping. This can considerably reduce the computation
time. The fine-scale solution is projected onto the coarse-scale solution in the
bridging region at each time step. This projection mechanism naturally filters
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the high-frequency portion of the fine-scale solution that is not supported by
the admissible solution space of the coarse-scale model. This technique is
then retained to develop the concurrent discrete-continuum coupling. The
question that arises here is how to choose the CM that will be coupled with
DEM. Chapter 2 tries to answer this question.


