
1

Object Oriented Approach and UML

The Object Oriented (OO) approach is not really new; it has been known
and used since the 1990s [MEY 88, MEY 97]. The OO approach uses
Uni ed Modeling Language (UML)1 diagrams [RUM 98] for documenting
the analysis and design stage, and languages supporting the OO paradigms
(C++, Java, C#, etc.) for the programming stage. Some UML tools
(commercial or open source) can generate more or less complete C++ code
from design speci cations.

In the following, details on UML graphical notations will be presented as
necessary in order to illustrate OO items. Section 1.3 presents some higher
level considerations on UML diagrams used in OO analysis and design.

1.1. Object Oriented (OO) paradigms

We present hereafter some of the main paradigms encountered within OO
analysis and design, class, object, inheritance, encapsulation, polymorphism
and genericity:

Class: a class is a model that can represent any entity or concept identi ed
at the analysis or design stage. The class models the data structure and
provides the behavior of the associated concept or entity. Class data are called

1 www.uml.org.

CO
PYRIG

HTED
 M

ATERIA
L

2 3D Discrete Element Workbench

attributes. The class behavior is de ned by member functions called methods.
Class methods are allowed us to play with the class data.

Within the DEM context, we need classes such as DiscreteElement, Spring,
Contact, Acceleration, Position, Vector, Quaternion, Point, DiscreteDomain,
etc.

Programming languages supporting the class keyword consider a class as
a new type (a user type).

Object: an object is the result of a transformation operated on a class
called class instantiation. The instantiation is the mechanism through which
we give concrete values to the class attributes in order to construct an object.
Each object has the behavior of its class, but owns its speci c individual set of
attribute values.

Most OO programming languages provide a special class method called
the constructor used to instantiate objects from classes. Another special class
method called the destructor can be used to make an object die (technically
speaking, it is removed from the computer memory). The type of an object is
the class it has been instantiated from.

Inheritance: inheritance is the mechanism that gives OO models their
power, scalability, extendibility and reusability. Due to inheritance, we can
design base classes factorizing data and behaviors that can be used by derived
classes. Derived classes can simply use behavior of their base class(es)
through the base class methods, or rede ne a speci c behavior by rede ning
some of the base class methods at their level.

All languages that are said to be OO should give syntactic elements to
implement inheritance. The C++ language proposes a rich support of
inheritance (multiple inheritance, public/protected/private inheritance,
abstract class, virtual methods, purely virtual methods, etc.). Inheritance also
avoids the copy–paste programming drawbacks.

Encapsulation: class data can be protected from hazardous manipulations
by qualifying them as private or protected: a class attribute that is private

Object Oriented Approach and UML 3

(respectively, protected) cannot be manipulated from outside the class
(respectively, from outside a derived class).

Hiding class attributes as private or protected data allows us to design and
write more robust software: access to class attributes is achieved by using
some special class methods that control what is done with the class data. This
mechanism avoids a lot of software bugs occurring when direct access to data
is allowed, potentially leading to data corruption.

Polymorphism: OO polymorphism has two main forms: dynamic or static.
At the design stage, the (dynamic) polymorphism is mainly a consequence of
inheritance: a common behavior de ned in a base class can be rede ned
speci cally in each derived class. At (software) run time, the type of the
derived class will dynamically decide which implementation of the behavior
will be launched.

At the coding stage, languages such as C++ also offer a (static)
polymorphism relying on the overloading mechanism: the same identi er (for
instance, language operator name, function name or class method name) can
behave in different ways depending on the type and number of the given
arguments.

Genericity: genericity is the ability to make some design items depend on a
template parameter that generally represents a class or a type. It is an important
key in designing OO models with a high level of abstraction.

From the programming point of view, genericity can take various
formulations, depending on the language used. For the C++ language, generic
classes are those which depend on a template parameter. A typical example is
the class container of “something”, where “something” is the template
parameter that can represent any class. You can have a container of “int”, a
container of “Points”, a container of “DiscreteElements” etc. Generic
behavior for “something” is coded as a generic C++ source code. Each time the
generic class is used with a given instantiation of the template parameter
(“int”, “Point”, “DiscreteElement”, etc.), the C++ compiler automatically
generates and compiles a speci c version of the source code obtained by
replacing all the occurrences of the text “something” in the generic code by
the text “int”, “Point”, “DiscreteElement” or anything else.

4 3D Discrete Element Workbench

Genericity is a very valuable quality of programming languages, when
possible. It saves a lot of developers time because the developer only writes
the generic code in a single version. It is also a key factor for software
scalability.

1.2. OO analysis and design

The main goal of the OO approach (analysis or design) is to capture
concepts and entities of the studied system in order to associate classes to
each concept or entity of the studied system. Once the classes have been
found, the OO model must be completed to nd out the relations between
classes.

So, a major task when designing an OO solution is to establish the relations
between classes that have been found at the rst step to model correctly the
studied system. Of particular interest among the various type of relations that
can be used are the association (with its possible association class), inheritance,
aggregation and composition.

1.2.1. Association

The rst relation we present here is the simple association: it is a very
commonly used relation and despite its simplicity, it is the key to a fundamental
mechanism: when class A is associated with class B, A knows that B exists
and A can make B to do something (in OO context, we say that A can send a
message to B).

Sending messages between classes is a crucial mechanism to make the OO
model do something.

A B
Association is the simplest relation: class A
knows class B and reciprocally. A and B can
exchanges messages...

A B
Unidirectional association: class A knows
class B, but B does not know A.

1..3 *
A B

Mutiplicities: class A is associated to 0 or more
occurences of class B. Class B knows 1,2 or 3
occurences of class A.

Object Oriented Approach and UML 5

1.2.2. Association class

When an association between two classes carries some data and has a
behavior, a class can be used to model the data and behavior of the
association : it is called an association class.

A B

C

The association class C models data and
behaviour of the association between classes A
and B, if any.

1.2.3. Inheritance

As we have already seen, inheritance is a major paradigm of the OO
approach. A very common usage of inheritance within OO analysis and
design is when you come to say that “A is a B” like in the phrase “a cube is a
volume shape”. It means that all what a volume shape can do, a cube can do
the same (or can do it differently, or better, if the behavior is rede ned for the
cube). In this situation, you would say that the Cube class uses the
VolumeShape class.

The graphical UML representation is a white arrow:

A B

Class B inherits from classs A: A is the base
class, mother class...
B is the derived class.
B is a A.

1.2.4. Aggregation

The aggregation is a relation in which one class contains other classes. It is
often used in OO analysis and design situations where an entity is made of or
contains one or many other entities.

6 3D Discrete Element Workbench

The UML graphical representation of the aggregation is a line between the
container and the components, with a white diamond on the container side.
Multiplicities can be used to indicate the number of occurrences of each class.

A B Class A contains class B.

A B
Unilateral aggregation: class A contains class
B, but class B has no relation with class A.

*
A B Class A contains zero or more occurences of

class B.

0..3 1..n
A B

Class A contains one or more occurences of
class B. Class B is contained by 0, 1, 2 or 3
occurences of class A.

1.2.5. Composition

Composition is often introduced as a strong form of aggregation, with an
impact on the lifetime of the components: when the object holds the
composition dies, all the components are also deleted. Unlike aggregation,
components of a composition make part of one and only one composition.
The UML graphical representation of the composition is a line between the
container and the components, with a black diamond on container side.
Multiplicities can be used to indicate the number of occurrences of each class.

A B Class A is composed of class B.

A B
Unilateral composition: class A is composed
of class B, but class B does not know class A.

*
A B Class A is made of zero or more occurences of

class B.

Object Oriented Approach and UML 7

1.2.6. Genericity with the template classes

Genericity is a very powerful paradigm of the OO approach. A generic class
is parametrized with a template parameter that can represent a type, a class
or an integral type. A generic class cannot be instantiated as this: we must
give a “value” to the template parameter (in other words, we must instantiate
the template parameter) to obtain a concrete class that can be instantiated in
objects.

UML provides a graphical representation of a template class where the
template parameter(s) is (are) drawn in a little box at the top right of the class
box.

«T→ int»

A

T

B

The generic class A, with the template
parameters T. A generic class cannot be
instantiated.
The concrete class B instantiated the template
parameters T to the type int. B can be
instantiated, it corresponds to the type A<int>.

The C++ compiler generates on the y the source code of the A<int> class
by substituting each occurrence of template parameters T by int in the
generic source code le of the A class. If the implementation of a method of
the template A class cannot simply be obtained by replacing T by int, the
developer has to provide himself a specialized version of these methods for
the int case.

A<int> A< oat>

A<int> is a type (the name of a class),
A<float> is a different type. They both
come from the instanciation of the template
parameter T of the A class, but they are two
different concrete classes.

Generic classes are often used to model containers of something. Some
famous examples in C++ are the containers of the standard template library
(STL) such as, for example the vector, list and map classes. Within the
GranOO workbench, The libDEM library provides the class SetOf that models
the concept of “set of something” (SetOf class uses the vector STL class).
SetOf objects are useful to store discrete elements, bonds, springs, etc. We

8 3D Discrete Element Workbench

can retrieve a SetOf by its name, we can scan its elements in a loop, we can
add/remove item etc. (more on SetOf is given in section 3.2.1).

DEM::SetOf

- string id

+ string GetStrKey()

+ SetOf<type>& GetGlobalSet()

+ SetOf<type>& GetSetOfById(const string & id)

+ SetOf<type>& Get(const string & id)

+ void AddItem(type * item, bool check = True)

+ void AddItem(type & item, bool check = True)

+ void AddItem(vector<type *> & , bool check = true)

+ void EraseItem(const type * item)

+ void EraseItem(const type & item)

+ void EraseItemIfIndexed(const type & item)

+ SetOf(const string & id)

type

Figure 1.1. The template class SetOf (from the libDEM library)

1.2.7. Encapsulation and class interface

As already seen, software robustness can be improved due to the
encapsulation mechanism: the “iceberg metaphor” is often used to present
objects like icebergs oating at the surface of the water:

– all what is visible above the water (attributes and methods) make the
object interface, its public part;

– all what is under the surface (attributes and methods) make the object
implementation, its private part.

When using an object, as a user, a program, or another object, etc., we are
only concerned with the interface of the object, and not with the internal details
explaining how the object treats our request. When an object evolves with time
(under the maintenance of the source code or the evolution of the OO design),
its interface must remain stable to ensure the object perennity. This is a real
deal in OO design and development: design robustness relies on the objects

s,

Object Oriented Approach and UML 9

interface, so if we want to develop a robust software we must play with the
encapsulation. This advice gives a way of coding also known as data hiding.

UML provides standard artifacts to show the visibility of the members
(attributes or methods) of a class:

A

+ i : uint
- j : int
k : oat

+ setJ(i : int) : void
+ getK() : int
- count() : void

+ before a class member means a public member,
belonging to the interface of the class.

- before a class member means a private member,
belonging to the private part of the class

before a class member means a protected member,
only accessible by derived classes, if any.

1.3. UML diagrams

UML diagrams are the documentation of OO analysis or design. UML is a
standard that de nes many different diagrams: UML2 de nes 14 diagrams
(www.uml.org) that can be classi ed into static (structural) and dynamic
diagrams:

The static diagrams are related to the data structure of the studied system:

– Class and Object diagrams describe the different entities revealed by the
OO analysis or design, their structure, data, behavior and inter-relationships.

– Component, Deployment, Package and Composite diagrams are useful
for managing the technical aspects of software development.

The dynamic diagrams, related to the behavior of the studied system, are:

– Use case, Activity and State machine diagrams;

– Sequence, Communication, Interaction and Timing diagrams are useful
for describing time varying aspects of the studied system.

The UML diagrams are presented through views, which can show more
or less details on the entities they cover. For instance, at global design, the
class diagram views can only show the name of the classes and their relations.

10 3D Discrete Element Workbench

Details on the attributes or methods of the classes are not shown, because we
just want to represent the main entities and their relations.

Figure 1.2. Encapsulation mechanism

For the detailed design point of view, on contrary, we are concerned with
ne details on every class, and it can be useful to edit the detailed view with
only one class per view, showing extensive information on each class: attribute
names, quality and types as far as methods arguments and return type.

We present in the following the two main used diagrams for GranOO
documentation: class diagram and sequence diagram.

1.3.1. Class diagram

A class diagram represents the classes with their attributes and methods,
and the relations between classes. It is a static diagram which is very useful to
represent globally the relations between classes, and speci cally the attributes
and methods of a given class.

Object Oriented Approach and UML 11

Figure 1.3 shows a global view of the template class
DiscreteElementShaped and the hierarchy derived from the Interaction
class. The template parameter shape is used to design
DiscreteElementShaped as a class that depends on another: the one given by
the template parameter. In order to use DiscreteElementShaped, we must
instantiate a type for the template parameter: this gives, for example, the class
DiscreteElementShaped<Geom::Sphere>, where the template parameter
shape is instantiated to the type (i.e. the class) Geom::Sphere. The template
parameter N represents the space dimension. Currently, GranOO implements
the instantiation of this template parameter with the value _3D, a constant
integer given in the libGeometrical library.

Figure 1.3. Example of global class diagram view showing the class
DiscreteElementShaped (from the libDEM library) and the

Interaction hierarchy

01 3D Discrete Element Workbench

Figure 1.4 shows a global view of the template class DiscreteElement,
from the libDEM library. Different levels of details may be shown on a class
diagram view, depending on its usage. At detailed design stage, it may be
useful to see the list of the attributes and methods of a class, but without details
on the methods arguments and return types (see Figure 1.5(a)). If the detailed
view is to be used by developers as a speci cation of the methods signature, a
more detailed view can be given (see Figure 1.5(b)). Class diagram view of the
class DiscreteDomain where only the list of attributes and methods is shown.

Figure 1.4. Example of class diagram view showing the class
DiscreteDomain (from the libDEM library) and its relations with these

classes Point, Vector, etc. (from the libGeometrical library)

1.3.2. Sequence diagram

A sequence diagram represents a dynamic view of the system where the
time ows from top to bottom. The objects are placed in the diagram and can
exchange messages by using the methods of the classes they come from. A set
of objects exchanging messages implements a function of the system.

Object Oriented Approach and UML 13

<<singleton>>

DEM::DiscreteDomain
- theDiscreteDomain

- partialSerialisation

- partialSerializationTypeId

- partialSerializationSetId

- DiscreteDomain()

- DiscreteDomain()

+ Get()

+ Get_const()

+ GetDomainFileExtension()

+ ~DiscreteDomain()

+ OrderSerialisation()

+ Clear()

+ ReadSampleFile()

+ Save()

+ Save()

+ Load()

+ GetBondSet()

+ GetGlobalBondSet()

+ GetDiscreteElementSet()

+ GetGlobalDiscreteElementSet()

+ GetWallSet()

+ GetGlobalWallSet()

N

a) Simple list b) Full detailed methods signature

Figure 1.3. Class diagram view showing the list of methods of the class
DiscreteDomain (from the libDEM library)

UML graphical decorators can be used to implement alternatives (the
equivalent of an if/else), loops, options, etc. as illustrated in Figure 1.6. This
sequence diagram corresponds to the overall operations executed by a
Discrete Element Method (DEM) simulation build with the GranOO
workbench. The leftmost vertical line corresponds to the ComputeProblem
singleton class. Its static method Run is called by a main function. Any
executable application build within the GranOO workbench implements a
main function as follows:

#include "CommonLibsNameSpace.hpp"
#include "libDEM/SRC/ComputeProblem.hpp"

int main(int argc, char * argv[])
{
DEM::ComputeProblem<Geom::_3D>::Run(argc, argv);
return 0;

}

The static Run method is called by the main function using the C++ syntax
ClassName::staticMethodName(...). Then, it calls another static method

14 3D Discrete Element Workbench

of the ComputeProblem class: the Get method. Get creates the object
theComputeProblem as the sole instance of the ComputeProblem class: it is
illustrated in Figure 1.6 as the rightmost vertical line. A simple well-known
mechanism (the singleton pattern design) ensures the unicity of the
instantiation of the ComputeProblem class.

The sequence diagram shows how the Run method calls successively the
right methods of the object theComputeProblem to run the preprocessing
plugins, the processing plugins of the main loop and nally the
postprocessing plugins.

Run and Get are static methods.
:ComputeProblem

theComputeProblem:

ComputeProblem

[break if calculusLoop == false]

ReadXmlInputFile(jobname)

MakeBackUp(executableName)

Get()

NextProcessingStep()

Run(jobname, executableName, readWithTinyXml)

SetOutputDirectory()

Processing()

PostProcessing()

ReadXmlInputFileWithTinyXml(jobname)

PreProcessing()

Run(argc, argv)

alt

loop

This is the main DEM

loop

[readWithTinyXml == true]

Figure 1.6. Sequence diagram involving the ComputeProblem singleton
class (from the libDEM library) and the object theComputeProblem

instantiated from this class

