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Basic Fundamentals  
of Digital Holography  

The idea of digitally reconstructing the optical wavefront first 
appeared in the 1960s. The oldest study on the subject dates back to 
1967 with the article published by Goodman in Applied Physics 
Letters [GOO 67]. The aim was to replace the “analog” 
recording/decoding of the object by a “digital” recording/decoding 
simulating diffraction from a digital grating consisting of the recorded 
image. Thus, holography became “digital”, replacing the silvered 
support with a matrix of the discrete values of the hologram. Then, in 
1971, Huang discussed the computer analysis of optical wavefronts 
and introduced for the first time the concept of “digital holography” 
[HUA 71]. The works presented in 1972 by Kronrod [KRO 72] 
historically constituted the first attempts at reconstruction by the 
calculation of an object coded in a hologram. At that time, 6 h of 
calculation was required for the reconstruction of a field of 512 × 512 
pixels with the Minsk-22 computer, the discrete values being obtained 
from a holographic plate by 64-bit digitization with a scanner. 
However, it took until the 1990s for array detector-based digital 
holography to materialize [SCH 94]. In effect, there have been 
important developments in two sectors of technology: since this 
period, microtechnological processes have resulted in charge coupled 
device (CCD) arrays with sufficiently small pixels to fulfill the 
Shannon condition for the spatial sampling of a hologram; the 
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2     New Techniques in Digital Holography 

computational treatment of images has become accessible largely due 
to the significant improvement in microprocessor performance, in 
particular their processing units as well as storage capacities. 

The physical principle of digital holography is similar to that of 
traditional holography. However, the size of the pixels in an image 
detector (CCD or complementary metal oxyde semiconductor 
(CMOS)) is clearly greater than that of the grains of a traditional 
photographic plate (typically 2–3 μm, compared with some 25 nm). 
These constraints impose to take into account certain parameters 
(pixel area, number of pixels and pixel pitch) which were more or less 
clear in an analog holography. 

This chapter, as an introduction to advanced methods detailed in 
other chapters, aims at describing the different aspects related  
to digital holography: the principle of light diffraction, how to record  
a digital hologram and color holograms, algorithms to reconstruct 
digital holograms, an insight into the different holographic 
configurations, special techniques to demodulate the hologram, the 
basic principle of digital holographic interferometry and a brief 
discussion on tomographic phase imaging. 

1.1. Digital holograms 

A digital hologram is an interferometric mixing between a 
reference wave and a wave from the object of interest. This section 
presents the basic properties related to a digital hologram. 

1.1.1. Interferences between the object and reference waves 

Figure 1.1 illustrates the basic geometry for recording a  
digital hologram. An object wave is coherently mixed with a reference 
wave, and their interferences are recorded in the recording plane H. In 
digital holography, the recording is performed by using a pixel matrix 
sensor.  
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Figure 1.1. Free space diffraction, interferences and notations. For a color  
version of this figure, see www.iste.co.uk/picart/digiholography.zip 

Consider an extended object illuminated with a monochromatic 
wave. This object diffracts a wave to the observation plane localized 
at a distance d0 = |z0|. The surface of the object generates a wavefront 
which will be denoted as A (i = √−1): 

( ) ( ) ( )( )0 0, , exp ,A x y A x y i x yψ= . [1.1] 

The amplitude A0 describes the reflectivity/transmission of the 
object and phase ψ0 is related to its surface and shape or thickness and 
refractive index. Because of the natural roughness of the object, ψ0 is 
a random variable, uniformly distributed over [ π,+π]. The diffracted 
field UO at distance d0, and at spatial coordinates (X,Y) of the 
observation plane, is given by the propagation of the object wave to 
the recording plane. In the observation plane, this wave can be simply 
written as: 

( ) ( ) ( )( )0, , , exp ,O O OU X Y d a X Y i X Yφ= , [1.2] 

here aO is the modulus of the complex amplitude and ϕO is its optical 
phase. Since the object is naturally rough, the diffracted field at 
distance d0 is a speckle pattern [DAI 84, GOO 07]. 

Let us consider Ur, the complex amplitude of the reference 
wavefront, at the recording plane. We have: 

( ) ( ) ( )( ), , exp ,r r rU X Y a X Y i X Yφ= , [1.3] 
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where ar is the modulus and ϕr is the optical phase. The reference 
wavefront usually comes from a small pinhole: thus, it is a spherical 
divergent wave, impacting the plane with a non-zero incident angle. 
Considering (xs, ys,zs) the coordinates of the source point in the 
hologram reference frame (zs<0), the optical phase of the reference 
wave can be written in the paraxial approximations by [GOO 72, 
GOO 05]: 

( ) ( ) ( )( )2 2,r s s
s

X Y X x Y y
z

πφ
λ

≅ − + − . [1.4] 

This optical phase can also be written as: 

( ) ( ) ( )2 2
0 0, 2r s

s

X Y u X v Y X Y
z

πφ π φ
λ

= + + + + , [1.5] 

where (u0,v0) are the carrier spatial frequencies of the hologram, and ϕs 
is a constant term that can be omitted. When (u0,v0) = (0,0),  
i.e. reference point source localized on the z-axis, holography is said to 
be “in-line” (no tilt between the two waves), whereas when (u0,v0) ≠ 
(0,0), holography is said to be “off-axis” (slight tilt between the two 
waves). As a general rule, we are interested in adjusting the reference 
wave so that it has uniform amplitude, i.e. ar(X,Y) = Cte. The total 
illumination, denoted H, is then written as [KRE 96, HAR 02, KRE 04]: 

2 2 2 * *
r O r O r O r OH U U U U U U U U= + = + + + . [1.6] 

This equation can also be written as: 

( )2 2 2 cosr O r O r OH a a a a φ φ= + + − . [1.7] 

Equations [1.6] and [1.7] constitute what is classically called the 
digital hologram. It includes three orders: the 0-order is composed of 
terms |Ur|2+|UO|2, the +1 order is the term Ur

*UO and the −1 order is 
the term UrU*

O, also called the twin image. Generally, the +1 order is 
of interest because it is related to the initial object, whereas the −1 
order exhibits some symmetry that is due to the hermitic property of 
the Fourier operator. Figure 1.2 shows a digital hologram and a zoom 
on one of its part. 
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Figure 1.2. Fine structure of a digital hologram: a) digitally recorded  
hologram and b) zoom showing micro fringes and speckle grains 

As can be seen, the microstructure of a digital hologram is 
composed of micro fringes, on the one hand,  and  light grains, on the 
other hand. These light grains are speckles that are due to the random 
nature of the light reflected from the object [GOO 85, DAI 84]. Note 
that in the case where the object is transparent and non-diffusing, the 
speckle nature of the hologram may disappear. 

1.1.2. Role of the image sensor 

1.1.2.1. Spatial sampling and Shannon conditions 

In digital holography, the hologram is recorded with N × M pixels 
having pitches px and py and active surfaces Δx and Δy, respectively, 
for the x- and y-directions. Thus, the space coordinates in the 
recording plane are sampled; this means that we have (X, Y) = (npx, 
mpy) with (m; n)∈(–M/2,+M/2–1;–N/2,+N/2–1). In addition, the 
sampling of the hologram leads to Shannon conditions. Considering 
the maximum angle θmax (see Figure 1.1) between the two waves,  
the micro fringes locally produced by the two tilted wavefronts must 
be sampled so that the sampling pitch is at least equal to two times the 
fringe period. Thus, this leads to the maximum acceptable angle for 
the setup, according to the following equation [SCH 94]: 

( )
-1

max 2sin
4max ,x yp p

λθ < . [1.8] 
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For example, with λ = 632.8 nm and px = py = 4.65 μm, the 
maximum acceptable angle is smaller than 4°. This means that the 
setup must be precisely adjusted so as to fulfill the Shannon 
conditions. 

1.1.2.2. Low-pass filtering 

The digital hologram effectively recorded by the sensor is not 
simply described by equation [1.6]. Indeed, we must take into account 
the active surface of pixels, which induces a local spatial integration. 
So, the recorded hologram at point (npx, mpy) was given to be written 
as [PIC 08]: 

( ) ( ) ( ) ( ),, , , ,
x yPIX x y x yH np mp H X Y X Y np mpΠ Δ Δ= ∗ . [1.9] 

with the even pixel function: 

( ),

1 / 1 / if / 2 and / 2
,

0 if notx y

x y x yx y
x yΠ Δ Δ

Δ × Δ ≤ Δ ≤ Δ
= . [1.10] 

From equation [1.9], the basic effect can be understood: since the 
pixel provides local integration of the micro fringes, the consequence 
is a blurring of these fringes. Qualitatively, this means that the spatial 
resolution will deteriorate and that the pixel induces a low-pass 
filtering to the digital hologram. 

1.1.2.3. Effect of the exposure time 

During the recording of the hologram, the pixel receives light for a 
certain duration, called the exposure time T. The total energy received 
by the sensor is such that [KRE 96]: 

( )1

1

t T

t
W H t dt

+
= . [1.11] 

When the hologram has no temporal dependence, the time 
integration can be omitted. However, in the case where the object 
exhibits time dependence, i.e. sinusoidal oscillation, the exposure time  
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influences significantly the recorded hologram. The characteristic 
parameter of the recording is the cyclic ratio defined by α = T/T0, 
which is the ratio between the exposure time T and the oscillation 
period T0. Typically, if α << 1, the recording regime uses light pulses 
and is equivalent to a freezing of the object at the instant at which the 
recording is performed (“impulse regime”) [LEC 13]. When, on the 
contrary, we have α >> 1, the regime is said to be “time-averaging”. 
The object reconstructed from the digital hologram is then amplitude-
modulated by a Bessel function [PIC 03, PIC 05]. In experiments for 
which 0 << α < 1, the cyclic ratio is too high to be classified as 
“impulse” and too low to be considered as “time-averaging”. This 
intermediary regime is called “quasi-time-averaging” and is 
completely described in [LEC 13]. The object amplitude also exhibits 
a modulation that is more complex than that of the pure time-
averaging regime. 

1.1.2.4. Recording digital color holograms 

The first digital color holograms appeared in the 2000s with the 
advent of color detectors. Yamaguchi showed the applicability of 
digital color holography to the color reconstruction of objects  
[YAM 02]. Since then, numerous applications have been developed, 
particularly in the domain of contactless metrology: flow analysis in 
fluid mechanics [DEM 03, DES 08, DES 12], surface profilometry by 
two-color microscopy [KUM 09, KUH 07, MAN 08], three-color 
digital holographic microscopy (DHM) even with low coherence 
[DUB 12] and multidimensional metrology of deformed objects 
[KHM 08, TAN 10a, TAN 10b, TAN 11]. There are different 
approaches for recording digital color holograms, in particular for 
simultaneously recording the three colors. The simplest method 
consists of using a monochromatic detector and recording the colors 
sequentially. This method was proposed by Demoli in 2003 [DEM 03] 
and is only adapted to the case of objects which vary slowing in time. 
Figure 1.3 illustrates the different recording strategies. The first 
possibility consists of using a chromatic filter organized in a Bayer 
mosaic (Figure 1.3(a)). However, in such a detector, half of the pixels 
detect green, and only a quarter detect red or blue [YAM 02, DES 11].  
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The spatial color filter creates holes in the mesh, and therefore a loss 
of information, which translates into a loss of resolution. For example, 
Yamaguchi used a detector with 1,636 × 1,238 pixels of size 3.9 ×   
3.9 μm2 [YAM 02], and his results had a relatively low spatial 
resolution. The number of pixels for each color was 818 × 619, and 
the pixel pitch was 7.8 μm. The second possibility consists of using 
three detectors organized as a “tri-CCD”, the spectral selection being 
carried out by a prism with dichroic layers (Figure 1.3(b)). Such a 
detector guarantees a high spatial resolution and a spectral selectivity 
compatible with the constraints of digital color holography. Of course, 
the relative adjustment of the three sensors must be realized with high 
precision. For example, Desse developed a type of holographic color 
interferometry for use in fluid mechanics, with three detectors of 
1,344 × 1,024 pixels of size 6.45 μm × 6.45 μm [DES 11]. The third 
possibility consists of using a color detector based on a stack of 
photodiodes [TAN 10a, TAN 10b, DES 08, DES 11] 
(http://www.foveon.com, Figure 1.3(c)). The spectral selectivity is 
relative to the mean penetration depth of the photons in the silicon: 
blue photons at 425 nm penetrate to around 0.2 μm, green photons at 
532 nm to around 2 m and red photons at 630 nm to around 3 m. 
Thus, the construction of junctions at depths at around 0.2, 0.8 and  
3.0 m gives the correct spectral selectivity for color imaging. 
However, the spectral selectivity is not perfect, as green photons may 
be detected in the blue and red bands, but the architecture guarantees a 
maximum spectral resolution since the number of effective pixels for 
each wavelength is that of the entire matrix. For example, [TAN 10b] 
uses a stack of photodiodes with 1,060 × 1,414 pixels of size 5 ×  
5 μm2. One last possibility consists of using a monochromatic detector 
combined with spatial chromatic multiplexing (Figure 1.3(d)). Each 
reference wave must have different separately adjusted spatial 
frequencies according to their wavelengths. The complexity of the 
experimental apparatus increases with the number of colors. For two-
color digital holography, it is acceptable; for three colors, it becomes 
prohibitive. A demonstration of this approach is given in [PIC 09, 
MAN 08, KUH 07] and [TAN 11]. 
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Figure 1.3. Recording digital color holograms. For a color version of  
this figure, see www.iste.co.uk/picart/digiholography.zip 

1.1.3. Demodulation of digital holograms 

Equations [1.6] and [1.7] describe the digital hologram. The +1 
order is of interest because it includes the object wave through term 
Ur

*UO. Note that the −1, UrU*
O, is the complex conjugate of Ur

*UO 
and that it includes also the full information on the object wave. The 
demodulation of the digital hologram consists of retrieving the +1 
order from the recording of H. There are mainly two ways to perform 
demodulation: using slightly off-axis geometry at the recording, or 
using phase-shifting [CUC 99b]. These approaches are detailed in the 
next sections. 

1.1.3.1. Off-axis holograms 

Off-axis geometry introduces a spatial carrier frequency and 
demodulation restores the full spatial frequency content of the 
wavefront, i.e. Ur

*UO. In equation [1.5], the phase of the reference 
wave includes the carrier spatial frequencies of the hologram (u0,v0). 
When (u0,v0) ≠ (0,0), there is a slight tilt between the two waves and 
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holography is off-axis. Practically, the different diffraction terms 
encoded in the hologram (zero-order wave, real image and virtual 
image) are propagating in different directions, enabling their 
separation for reconstruction. This configuration was the one 
employed for the first demonstration of a fully numerical recording 
and reconstruction holography [SCH 94, COQ 95]. In practice, 
reconstruction methods based on off-axis configuration usually rely on 
Fourier methods to filter one of the diffraction terms contained in the 
hologram (Ur

*UO or UrU*
O) [CUC 00]. This concept was first 

proposed by Takeda et al. [TAK 82] in the context of interferometric 
topography. The method was later extended for smooth topographic 
measurements for phase recovery [KRE 86] and generalized for the 
use in DHM with amplitude and phase recovery [CUC 99a].  

According to equations [1.3]–[1.6], in the spatial frequency 
spectrum, a three-modal distribution is related to the three diffraction 
orders of the hologram (FT and FT-1 means, respectively, Fourier 
transform and inverse Fourier transform): 

[ ]( ) ( ) ( ) ( )*
0 1 0 0 1 0 0, , , ,FT H u v C u v C u u v v C u u v v= + − − + − − − − , [1.12] 

where C0 is the Fourier transform of the zero-order and C1 is the 
Fourier transform of the +1 order. If the three orders are well 
separated in the Fourier plane, the +1 order can be extracted from the 
Fourier spectrum. Figure 1.4 illustrates the spectral distribution in the 
Fourier domain of the digital hologram. The spatial frequencies (u0,v0) 
localize the useful information and they must be adjusted to minimize 
the overlapping of the three diffraction orders. By applying a 
bandwidth-limited filter (Δu × Δv width) around the spatial frequency 
(u0,v0), and after filtering and inverse two-dimensional (2D) Fourier 
transform, we get the object complex amplitude: 

( ) ( )
( ) ( ) ( ){ } ( )

1
1 1 0 0

0 0

, ,

, exp , exp 2 ,r O O

O x y FT C u u v v

a a x y i x y i u x v y h x yφ π

−
+ = − −

≅ + ∗
, [1.13] 

where the symbol * means convolution and h(x,y) is the impulse 
response corresponding to the filtering applied in the Fourier domain. 
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Figure 1.4. Spectral distribution of orders and spectral filtering 

The impulse response of the filter is such that: 

( ) ( ) ( ) ( )0 0, exp 2 sinc sinch x y u v i u x v y ux vyπ π π= Δ Δ + Δ Δ , [1.14] 

The spatial resolution is then related to 1/Δu and 1/Δv, respectively, 
in the x-y axis. In addition, the phase recovered with equation [1.13] 
includes the spatial carrier modulation that has to be removed. This 
may be achieved by multiplying O+1 by exp[−2iπ(u0x+v0y)]. 

Note that a filter having a circular bandwidth (instead of a 
rectangular bandwidth) can also be used [CUC 99a]. In that case, the 
impulse response of the filter is proportional to a J0 Bessel function. 

Then, the optical object phase at the hologram plane can be 
estimated from relation: 

( ) ( )
( )

11

1

,
, tan

,
m

O
e

O x y
x y

O x y
φ +−

+

ℑ
=

ℜ
, [1.15] 

and the object amplitude by: 

( ) ( ) ( )2 2
1 1, , ,O m ea x y O x y O x y+ += ℑ + ℜ , [1.16] 

In equations [1.15] and [1.16], [ ]...mℑ  and [ ]...eℜ , respectively, 
mean the imaginary and real parts of the complex value. 
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The main advantage of this approach is its capability of recovering 
the complex object wave through only one acquisition. Thus, there is 
no time spent heterodyning or moving mirrors and the influence of 
vibrations is greatly reduced. However, as the diffraction terms are 
spatially encoded in the hologram, this one shot capability potentially 
comes at the cost of usable bandwidth (filter with width Δu × Δv). In 
addition, the frequency modulation, induced by the angle between the 
reference and the object waves, has to guarantee the separation of  
the information contained in the different diffraction terms that are 
encoded in the hologram while carrying a frequency compatible with 
the sampling capacity of digital detectors. 

However, in the field of microscopy, the microscope objective 
usually allows us to properly adapt the object wave field to the 
sampling capacity of the camera. Definitively, the lateral components 
of the wave vector k x or y are divided by the magnification factor M of 
the microscope objective. Practically, when a standard camera with 
pixels at a few microns is used, microscope objective with 
magnification larger than ×20 makes possible obtaining diffraction-
limited resolution even when high numerical apertures (NAs) are 
considered [MAR 05]. It should also be mentioned that the numerical 
reconstruction of the object wavefront, particularly its propagation, 
represents a breakthrough in modern optics and specifically in 
microscopy [MAR 13]. Indeed, in addition to the possibility to 
achieve off-line autofocusing [LAN 08, LIE 04a, LIE 04c, DUB 06a] 
and to extend the depth of focus [FER 05], these numerical 
reconstruction procedures permit us to mimic complex optical systems 
as well as to compensate for aberrations [COL 06a, COL 06b], 
distortions and experimental noise leading to the development of 
various simplified and robust interferometric configurations able to 
quantitatively measure optical path lengths with ultrahigh resolution 
[MAR 13, LEE 13], in practice down to the subnanometer scale  
[KUH 08], depending on the wavelength and other parameters 
including the integration time. 

1.1.3.2. Phase-shifting digital holography 

In contrast to off-axis digital holography (Fourier domain), the 
complex amplitude of the object wave can be directly extracted by 
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using phase-shifting methods in the temporal domain [CRE 88,  
DOR 99]. This approach was described by Yamaguchi in 1997  
[YAM 97, YAM 01a, YAM 01b] and leads to the reconstruction of an 
image free from the zero-order and of the twin image (−1 order). 
Consider the hologram equation written as: 

( )2 2 2 cosr O r O O rH a a a a φ φ= + + −  [1.17] 

Basically, in equation [1.17] we should consider three unknowns: 
the offset term ar

2+aO
2, the modulation term 2araO and the phase of the 

cosine function, ϕO−ϕr. So, with at least three values for H, we should 
be able to solve these three unknowns. This can be done by shifting 
the phase in the cosine function, by adding in the holographic 
interferometer a phase modulator. Practically, a piezoelectric 
transducer (PZT) is used (although other methods do exist) [CRE 88, 
DOR 99]. The PZT is stamped to a mirror and applying a small 
voltage to the PZT has to slightly move the mirror as a consequence, 
and thus to shift the optical phase. With at least three positions of the 
mirror, the object wave field can be recovered. The robustness of the 
method increases with increasing the number of phase-shifted 
holograms. Consider a phase-shifted hologram with a phase-shift 
being an integer division of 2 , i.e. 2π/P, with P an integer. We have: 

( )( )2 2 2 cos 2 1 /p r O r O O rH a a a a p Pφ φ π= + + − + −  [1.18] 

with p = 1, 2, …, P. For P ≥ 3, the phase of the object wave in the 
detector plane may be calculated by [GRE 84]: 

( )( )

( )( )
1

1

sin 2 1 /
arctan

cos 2 1 /

P

p
n

O r P

p
n

H p P

H p P

π
φ φ

π

=

=

−
= +

−
 [1.19] 

and the amplitude is calculated by: 

( )( ) ( )( )
2 2

1 1

1 sin 2 1 / cos 2 1 /
2

P P

O p p
p pr

a H p P H p P
a

π π
= =

= − + −  [1.20] 
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If the reference wave is plane or spherical, that is free from 
aberrations, the phase φO(x,y) may be determined without ambiguity 
and compensated. The complex wave may be evaluated and the object 
may be directly reconstructed. Using the conjugate complex wave, we 
may calculate the twin image. 

With P = 4, we obtain the most widely used method, which was 
proposed by Yamaguchi and Zhang [YAM 97], using four π/2 phase-
shifted holograms [CRE 88, WYA 75]. In this case, we have: 

4 2

1 3

arctanO r
H H
H H

φ φ −= +
−

 

[ ] [ ]2 2
1 3 4 2

1
4O

r

a H H H H
a

= − + −  [1.21] 

1.1.3.3. Parallel phase-shifting 

In the technique of phase-shifting, both the single-shot and real-
time capability of digital holography are lost because of the sequential 
recording of holograms. The four holograms are sequentially recorded 
by using reference waves with different phase retardations, such as 0, 
π/2, π and 3π/2. Although the phase-shifting method achieves 
noiseless images, it is useless for the instantaneous measurement of 
moving objects. Even though off-axis digital holography is one 
candidate for instantaneously obtaining only the first-order diffracted 
wave, it has some drawbacks: a high-resolution image sensor is 
required to record spatial carrier fringes and the spatial bandwidth has 
to be judiciously occupied (see Figure 1.4). In parallel phase-shifting 
digital holography, the four kinds of phase-shifting are simultaneously 
carried out for the reference wave in each segment consisting of  
2 × 2 pixels of the image sensor in the recording hologram; thus, it 
implements four phase-shifting processes by using a spatial division-
multiplexing technique. The four holograms required for the phase-
shifting interferometry are numerically generated from a hologram 
recorded with the reference wave. The recording process of the 
technique is schematically illustrated in Figure 1.5 [AWA 06a,  
AWA 6b].  
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Figure 1.5. Implementation of parallel phase-shifting digital holography,  
phase-shifting array device and the distribution of the reference wave for  

parallel four-step phase-shifting (from [AWA 06a]) 

A phase-shifting device array is placed in the reference beam in the 
holographic interferometer. The array device is a segmented array with 
a 2 × 2 cell configuration that generates the periodic four-step phase 
distributions 0, π/2, π and 3π/2. The array device can be implemented 
by using a glass plate with a periodic four-step thickness. The array 
device is imaged onto the image sensor so that the phase distribution of 
the reference wave at the image sensor plane corresponds with the 
arrangement of pixels in the image sensor. The size of the imaged cells 
at the image sensor is the same as that of the pixels. Thus, the image 
sensor captures a hologram recorded with the reference wave containing 
the four-step phase distributions. The pixels containing the same phase-
shift are extracted from the recorded hologram. For each phase-shift, the 
extracted pixels are relocated in another 2D image at the same addresses 
at which they were located before being extracted. The values of the 
pixels not relocated in the 2D image are simply linearly interpolated by 
using the adjacent pixel values in the reconstruction process. By 
carrying out this relocation and interpolation for the four phase-shifts, 
four holograms H1, H2, H3 and H4 are obtained. Then, the amplitude and 
phase of the complex object field can be calculated using the 
conventional algorithm [1.21]. 

1.1.3.4. Heterodyne digital holography 

In a heterodyne digital holographic scheme, the reference beam is 
dynamically phase-shifted with respect to the object field. This shift 
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produces time-varying interferograms at the sensor plane. Generally, 
the phase-shift is linear in time (frequency shift). The hologram in the 
detector plane results from the interference of the object wave with the 
δf-shifted reference wave, as described in equation [1.22]: 

( )
( ) ( )

2

2 2 * *

exp 2

exp 2 exp 2

r O

r O r O r O

H U i f t U

U U U U i f t U U i f t

πδ

πδ πδ

= +

= + + − + +
. [1.22] 

A set of P holograms Hp (p = 1, 2,…, P) is recorded within a δf 
period at tp = 2π(p−1)/δf  [LE 00, LE 01]. The demodulation algorithm 
is then: 

( )
*

1

2 11 1 exp
p P

O p
pr

i p
U H

P U P
π=

=

−
= . [1.23] 

For P = 4, the object complex wave is proportional to 
(H1−H3)+i(H2−H4) and the algorithm is quite similar to that provided 
in equation [1.21]. Thus, heterodyne holography measures the phase, 
using the information obtained at different times. From the practical 
point of view, the frequency shift is provided by combining two 
acousto-optic modulators working at Δf+δf and Δf, respectively, and δf 
is adjusted to be equal to one quarter of the sensor frame rate  
[LE 00, LE 01, ABS 10, SAM 11]. 

Combining off-axis holography with heterodyning permits us to 
reach the shot-noise detection and to achieve the ultimate sensitivity 
of digital holography [ATL 07, ATL 08, GRO 07, GRO 08]. 

1.2. Back-propagation to the object plane 

The previous sections have discussed on the basics of digital 
hologram recording and demodulation. In order to discuss the digital 
reconstruction of the object wave at the object plane (and not 
necessarily at the sensor plane), this section presents the basics of the 
scalar diffraction of light. Algorithms used to back-propagate the 
object field estimated at the sensor plane are based on this approach. 
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1.2.1. Monochromatic spherical and plane waves 

In this chapter, the time dependence of the optical wavefront is 
implicit and not included in the equations describing the diffraction. In 
a space described by a Cartesian coordinate system Oxyz, a point P is 
described by a set of three coordinates (x, y, z) and we will use the 
modulus of the distance OP by 2 2 2r x y z= = + +OP . We also use 
k = 2π/λ, the modulus of the wave vector, here  is the wavelength of 
the light. We assume that the optical field is written as: 

( ) ( ) ( ), exp 2U P t U P i vt= −  [1.24] 

where U(P) is the complex amplitude at the observation point  
P(x, y, z) and v is the frequency of the light wave. Let us begin with 
the definition of a spherical wave. If the point source of a spherical 
wave is at the origin of a Cartesian coordinate system, the complex 
amplitude of a spherical wave can, therefore, be expressed by  
[GOO 72, COL 70, YAR 85]: 

( )
( ) ( )

( ) ( )

0

0

exp
, ,

exp

A ikr divergent
rU x y z

A ikr convergent
r

=
−

 [1.25] 

We note that the amplitude is proportional to the inverse of the 
distance between the point source and r, the observation point. When 
the center of the spherical wave is at point (xc, yc, zc), instead of the 
origin, the expressions are identical, with r substituted for: 

( ) ( ) ( )2 2 2
c c cr x x y y z z= − + − + −  [1.26] 

For a plane wave propagating in a homogeneous medium, the 
wavefront is perpendicular to the propagation direction. The plane 
wave can be written as: 

( ) ( )0, , exp cos cos cosU x y z A ik x y zα β γ= + +  [1.27] 
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The propagation direction is defined by the direction cosines cosα, 
cosβ and cosγ  of [1.27]. This relation shows that for a real number C, 
the expression cos cos cosx y z C+ + =  describes a phase plane 
whose normal is in the direction given by the cosines cosα, cosβ and 
cosγ. Since different values of C correspond to different parallel 
planes, expression [1.27] represents a wave propagating in the 
direction normal to these planes.  

Figure 1.6 illustrates the concept of spherical and plane waves. 
Figure 1.6(a) shows a spherical wavefront with center A, that emits a 
divergent spherical wavefront Σ (see [1.25]). In a homogeneous 
medium, rays are perpendicular to Σ, and the wave is deformed when 
propagating to the right (to the left for a convergent wavefront). When 
the point source tends to infinity, the spherical wave tends to a plane 
wave, as illustrated in Figure 1.6(b). In this case, the rays become 
parallel and the beam propagates without any deformation. 

 

Figure 1.6. Illustration of spherical and plane waves. For a color version  
of this figure, see www.iste.co.uk/picart/digiholography.zip 

1.2.2. Propagation equation 

The wave aspect of light is described by the classical theory of 
electromagnetism, by the Maxwell’s equations [BOR 99, GOO 72, 
LAU 10, YAR 85]. In this chapter, we consider the case of a 
homogeneous medium. After some mathematics, Maxwell’s equations 
can be reduced to this propagation equation: 

2
2

2 2

1 0
c t

∂∇ − =
∂

EE , [1.28] 
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where E is the electric field and c is the velocity of light in the 
medium. Operator 2 2 2 2 2 2 2/ / /x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  is the Laplacian 
operator. Note that [1.28] is also valid for the magnetic field B.  

1.2.3. Angular spectrum transfer function 

Substituting [1.24] into [1.28], we obtain an equation which is 
independent of time t, known as the Helmholtz equation: 

( ) ( )2 2 0k U P∇ + =  [1.29] 

This equation can be solved in the Fourier domain. We suppose 
that z is the distance between the initial and observation planes, and 
that U(x,y,0) and U(x, y, z) are the respective complex amplitudes of 
these two planes. Moreover, in the frequency space, their spectral 
functions are G0(u,v) and Gz(u,v), respectively, (u,v) being the spatial 
frequencies associated with the spatial coordinates (x, y). These two 
functions are defined by: 

( ) ( ) ( )0 , , ,0 exp 2G u v U x y i ux vy dxdyπ
∞ ∞

−∞ −∞

= − +  [1.30] 

( ) ( ) ( ), , , exp 2zG u v U x y z i ux vy dxdyπ
∞ ∞

−∞ −∞

= − +  [1.31] 

The demonstration will not be provided in this chapter; a general 
solution to the differential equation can be expressed with the Fourier 
components of U(x,y,0) and U(x, y, z) according to: 

( ) ( ) ( ) ( )2 2
0

2, , exp 1z
iG u v G u v z u vλ λ
λ

= − −  [1.32] 

Then the complex field at distance z can be obtained by: 

( ) ( ) ( ), , , exp 2zU x y z G u v i ux vy dudvπ
∞ ∞

−∞ −∞

= +  [1.33] 
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So, we have a relation between the spectrum of the wave in the 
initial plane and that obtain in the observation plane. This relation 
shows that, in the frequency space, the spectral variation in complex 
amplitude caused by the propagation of light over the distance z is 
represented by its multiplication by a phase-delay factor: 

( ) ( ) ( )2 2, exp 2 / 1G u v i z u vπ λ λ λ= − −  [1.34] 

According to the theory of linear systems, the process of 
diffraction is a transformation of the light field across an optical 
system, as the phase-delay factor can be interpreted as a transfer 
function in the frequency space. This interpretation of the propagation 
of light is called the propagation of the angular spectrum and the 
associated transfer function [1.34] is called the angular spectrum 
transfer function. Figure 1.7 illustrates this approach. 

 

Figure 1.7. Scheme of the diffraction by the angular spectrum 

Figure 1.7 means that that the field U(x,y,z) can be  
considered as a superposition of plane waves of  
amplitude Gz(u,v)dudv propagating in a direction whose cosines  

are { } ( ) ( ){ }2 2cos ,cos ,cos , , 1u v u vα β γ λ λ λ λ= − − . From the 

diffraction of the angular spectrum, [1.34] means that the elementary 
waves satisfying ( ) ( )2 21 0u vλ λ− − <  are attenuated by the 
propagation, i.e. all the components satisfying this relation only exist 
in a zone very close to the initial plane. These components of the 
angular spectrum are, therefore, called “evanescent waves”. As the 
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components of the observation plane must satisfy the relation 
( ) ( )2 21 0,u vλ λ− − >  i.e. 2 2 21 / ,u v λ+ <  propagation in free space 

can be considered as an ideal low-pass filter of radius 1/λ in the 
frequency space. Consequently, on the condition that we can obtain 
the spectrum of U(x,y,0), the spectrum in the observation plane,  
U(x, y, z) can be expressed by relation [1.32]. Using the direct and 
inverse Fourier transforms (FT and FT-1), the diffraction calculation 
process can be described as: 

( ) ( ){ } ( ) ( )2 21 2, , , ,0 exp 1iU x y z FT FT U x y z u vλ λ
λ

−= − −  [1.35] 

1.2.4. Kirchhoff and Rayleigh–Sommerfeld formulas 

There also exist two more solutions to the Helmholtz equation: 
Kirchhoff’s formula and that of Rayleigh–Sommerfeld. Using the 
coordinates shown in Figure 1.8 which represents the relationship 
between the initial plane and the observation plane, these two 
formulas are written in the same mathematical expression [GOO 05]: 

( ) ( ) ( ) ( )0

exp1, , , ,0
i kr

U x y d U X Y K dXdY
i r

θ
λ

∞ ∞

−∞ −∞

=  [1.36] 

where 

( ) ( )2 2 2
0r x X y Y d= − + − +  [1.37] 

and θ is the angle between the normal at point (X,Y,0), and the vector 
MP from point (X,Y,0) to point (x, y, d0) (see Figure 1.8), K(θ) is 
called the obliquity factor and its three different expressions 
correspond to three different formulations [GOO 05]. 

– ( ) cos 1
2

K θ +=  Kirchhoff’s formula; 

– ( ) cosK θ=  first Rayleigh–Sommerfeld solution; 

– ( ) 1K =   second Rayleigh–Sommerfeld solution. 
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Figure 1.8. Relation between the initial diffraction plane and the observation plane. 
For a color version of this figure, see www.iste.co.uk/picart/digiholography.zip 

Even though there exist certain inconsistencies [GOO 05,  
BOR 99], Kirchhoff’s formula gives results in remarkable agreement 
with experiment, and it is for this reason that it is widely applied in 
practice. Furthermore, since the angle θ  is often small in experimental 
configurations, the obliquity factors of the three formulations are 
roughly equal to unity. Thus, the Kirchhoff, Rayleigh–Sommerfeld 
and angular spectrum formulas are considered as equivalent 
representations of diffraction. The derivations of the Kirchhoff and 
Rayleigh–Sommerfeld approaches are presented in detail in  
[GOO 05]. Readers who would like to go into these aspects in greater 
detail are invited to familiarize themselves with these appraoches. 

1.2.5. Fresnel approximation and Fresnel diffraction integral 

The equations proposed previously are complex and this is due to 
the presence of a square root in the complex exponentials. In practice, 
problems of diffraction quite often concern paraxial propagation, and 
to simplify the theoretical analysis, we generally use Fresnel’s 
approximation. Let d0 be the diffraction distance, and expanding the 
square root in [1.34] to the first order leads to: 

( ) [ ] ( )2 2
0 0, exp expG u v ikd i d u vπλ≅ − +  [1.38] 

Given that expression [1.35] can be written in the form of a 
convolution (* means convolution): 

( ) ( ) ( ){ }1
0, , , ,0 ,U x y d U x y FT G u v−= ∗  [1.39] 
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Substituting [1.38] into [1.39] and knowing that the inverse Fourier 
transform of G(u,v) is an analytic function, we have: 

( ) ( ) ( ) ( )0 2 2
0

0 0

exp
, , , ,0 exp

i kd iU x y d U x y x y
i d d

π
λ λ

= ∗ + , [1.40] 

In [1.40], we recognize a convolution of U(x,y,0) with the impulse 
response of free space propagation that will be denoted as h(x, y, d0): 

( ) ( )2 2
0 0

0 0

, , exp expi ih x y d ikd x y
d d

π
λ λ

= − + . [1.41] 

Equation [1.41] can also be written as: 

( ) ( ) ( ) ( ) ( )2 20
0

0 0

exp
, , , ,0 exp

ikd iU x y d U X Y x X y Y dXdY
i d d

π
λ λ

∞ ∞

−∞ −∞

= − + −  [1.42] 

Equation [1.42] constitutes Fresnel’s diffraction integral. Note that 
this approximation consists of replacing spherical wavelets (see 
[1.25]) by quadratic waves (parabolic surface approximation). 
Developing the quadratic terms in the exponential of [1.42] leads us 
to: 

( ) ( ) ( )

( ) ( )

0 2 2
0

0 0

2 2

0 0 0

exp
, , exp

, ,0 exp exp 2

i kd iU x y d x y
i d d

i x yU X Y X Y i X Y dXdY
d d d

π
λ λ

π π
λ λ λ

∞ ∞

−∞ −∞

= + ×

+ − +

 [1.43] 

Thus, with the exception of multiplicative phase and amplitude 
factors which are independent of X and Y, we can calculate the 
function U(x, y, d0) by carrying out the Fourier transform of: 

( ) ( )2 2

0

, ,0 exp iU X Y X Y
d
π

λ
+  [1.44] 

This transformation must be evaluated at the frequencies  
(u,v) = (x/λd0, y/λd0) to guarantee a correct spatial scale in the 
observation plane. The calculation of the two Fresnel diffraction 
integrals is relatively simple compared to the formulas which 
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rigorously satisfy the Helmholtz equation. In the regime of paraxial 
propagation, this approximation is relatively precise. By defining the 
Fresnel transfer function [GOO 05] as: 

( ) ( )2 22, exp expF
i zG u v i z u vπ λ
λ

= − +  [1.45] 

The Fresnel approximation can be expressed by: 

( ) ( ){ } ( ){ }1, , , ,0 ,FU x y z FT FT U x y G u v−=  [1.46] 

This expression is analogous to the angular spectrum formulation 
[1.35], but the difference is related to the different transfer functions 
of the two formulas. 

The next section discusses the use of the theoretical basics of wave 
propagation to numerically reconstruct the object wave at the object 
plane (which is not necessarily the same as the recording plane). 

1.3. Numerical reconstruction of digital holograms 

1.3.1. Discrete Fresnel transform 

1.3.1.1. Algorithm 

The numerical reconstruction with the discrete Fresnel transform is 
based on the discrete version of equation [1.43] and considering the 
input plane as the hologram plane. The spatial sampling in the 
hologram plane (X,Y) = (npx, mpy) where (m; n) ∈(–M/2,+M/2–1;–
N/2,+N/2–1) has to be taken into account. At any distance dr from the 
recording plane, the reconstructed object field can be calculated 
according to [1.47], in which UO is the object wave at the sensor plane 
estimated from the demodulation (see section 1.1.3): 

( ) ( )

( ) ( ) ( )

2 2

/2 /2
2 2 2 2

/2 / 2

2, , exp exp

2, exp exp

r
r r

r r

l L k K

O x y x y x y
l L k K r r

i i d iA x y d x y
d d

i iU lp kp l p k p lp x kp y
d d

π π
λ λ λ

π π
λ λ

=+ =+

=− =−

= − +

× + × − +
 [1.47] 
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Note that in off-axis holography, the different diffraction terms 
encoded in the hologram (zero-order wave, real image and virtual 
image) are propagated in different directions, thus enabling their 
separation for reconstruction. This means that equation [1.47] can be 
directly used with an off-axis hologram (replace UO by H in [1.47]) to 
calculate the propagated field at distance dr. In this case, the 
reconstructed field appears as illustrated in Figure 1.9. 

 

Figure 1.9. Structure of the reconstructed field of view calculated from an  
off-axis hologram by using the discrete Fresnel transform 

The spatial localization is related to the spatial carrier frequencies 
of the hologram, (x0, y0) = (λdru0, λdrv0), and if the carrier frequencies 
are correctly adjusted, there is no superposition between the 
diffractions orders. Then, the object zone can be selected without 
doubt and the amplitude and phase of the reconstructed object can be 
estimated. 

Since the processor cannot calculate indefinitely, we also have to 
take into account the spatial sampling in the reconstructed plane. In 
addition, we can consider that the reconstructed field will be sampled 
with (K, L) (M, N) pixels. It follows that the sampling pitch is equal 
to Δη = λdr/Lpx and Δξ = λdr/Kpy [KRE 97, YAM 01a]. The spatial 
sampling in the image plane is simply x = lΔη and y = kΔξ with l and 
k varying from −L/2 to L/2 1 and from −K/2 to K/2 1. The schematic 
diagram of the algorithm is given in Figure 1.10 for a reconstruction 
distance dr. This algorithm is known as the single-fast Fourier 
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transform (S-FFT) algorithm since it uses only a single FFT 
computation. 

 

Figure 1.10. Diagram of the reconstruction with the discrete Fresnel transform 

In addition, the sampling of the quadric phase that is multiplied by 
the input data (H or UO) must fulfill the Shannon condition. This 
means that the minimal distance dr

min that can be put into the 
algorithm must fulfill this relation [MAS 03, MAS 99, LI 07]: 

22
min max , yx
r

MpNpd
λ λ

≥ . [1.48] 

Thus, the discrete Fresnel transform cannot be calculated for 
distance shorter than dr

min. 

1.3.1.2. Spatial resolution in the reconstructed plane 

The computation of the reconstructed field using a finite number of 
pixels induces a truncate effect. Mathematically, we have to consider 
the filtering function of the 2D discrete Fourier transform which limits 
the achievable spatial resolution in the reconstructed plane. It is given 
by [PIC 08]: 

( ) ( ) ( )

( )
( )

( )
( )

, , exp 1 1

sin /sin /
sin / sin /

yx
NM r

r r

y rx r

x r y r

ypxpW x y d i N i M
d d

Myp dNxp d
xp d yp d

π π
λ λ

π λπ λ
π λ π λ

= − + −

×
. [1.49] 

This function is periodic and its period can be assimilated to a sinc 
function [PIC 08]. It is interpreted to be the numerical diffraction 
pattern of the rectangular aperture constituted by the recorded 
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hologram. The width of this function gives the intrinsic spatial 
resolutions in the reconstructed plane. They are given by ρx = λdr/Npx 
and ρy = λdr/Mpy, respectively, or the x- and y-directions, and they 
depend on the wavelength, the number of useful sampling pixels and 
the reconstruction distance. 

1.3.1.3. Effect of defocus and depth of focus 

Although digital holography is not a conventional imaging method, 
it exhibits some similarities with classical imaging. Especially, the 
reconstructed images include a depth of focus. The perfect focus is 
obtained if the spatial resolution reaches its theoretical limits. The 
contribution to the degradation of the spatial resolution will not be 
discussed in this section and the readers may have a look at  
[YAM 01a, PIC 08, PIC 12]. However, to determine the focal depth of 
the reconstructed image, we can set the width of the defocusing 
function as having to be approximately equal to ρx. If the perfect 
image distance is di, noting Δz = |dr−di|, the full depth of focus on both 
sides of the perfect image plane is given by: 

2

2 2

22 i

x

dz
N p

λ
Δ ≅  [1.50] 

Thus, the focal depth in digital holography is proportional to the 
square of the angular aperture of the sensor as seen from the object 
[YAM 01a]. 

As an illustration, a 2€ coin, 25 mm in diameter, is illuminated at 
λ = 0.6328 nm and placed at d0 = 660 mm from the sensor (N = 1,024, 
px = 4.65 μm). The theoretical ideal focused image is obtained with  
di = −660 mm and the spatial resolution is ρx = 87.7 μm in the 
reconstructed image plane. Then, the depth of focus is estimated at 
Δz≈12.15 mm. Figure 1.11 provides a set of reconstructed images. 
Figure 1.11(a) corresponds to the best focus image. Figure 1.11(b) 
corresponds to an out of focus image with dr = di−50 mm. The image 
is highly blurred. Figures 1.11(c) and (d) correspond to 
reconstructions symmetrically included in the depth of focus. As can 
be seen, the images are focused even if there is a slight difference 
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between the two images. Figures 1.11(e) and (f) correspond to 
reconstructions slightly outside the depth of focus. The images 
become to be blurred by the defocusing [PIC 08], whose width 
increases with the increase of |dr−di|. Figure 1.11 shows that if the 
reconstruction distance is slightly different from the ideal one, there is 
no significant difference between reconstructed images. 

 

Figure 1.11. Reconstructed images in and out the depth of focus 
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1.3.1.4. Effect of zero-padding 

Computation of the discrete Fresnel transform with (K, L) = (N, M) 
uses the data from the raw hologram (H or UO). If (K, L)≥(N, M), this 
case is called “zero-padding” and it consists of adding (K−N, L−M) 
zeros to the hologram matrix. Fundamentally, these zeros do not add 
pertinent information; however, they modify the sampling pitches 
Δη = λdr/Lpx and Δξ = λdr/Kpy of the diffracted field. In the case 
where (K, L)>(N, M), then ρx > Δξ and ρy > Δη. This means that the 
intrinsic resolution is not modified because it is imposed by  
the number of useful pixels (M,N) of the detector area and not by the 
number of data points of the reconstructed field. However, there is a 
decrease in the sampling pitch inducing an increase in the “definition” 
of the image plane. Definitively, this means that we will see more 
texture in the image: the resolution function will be finely sampled 
and the granular structure of the object will appear to the observer. 
Zero-padding of hologram consequently has to make the speckles of 
the image appear finely but without decreasing their size. This aspect 
is illustrated in Figure 1.12 in the case of a 2€ coin 25 mm in diameter 
illuminated at λ = 632.8 nm which was placed at distance d0=660 mm 
from the sensor (M × N = 1,024 × 1,360 pixels, px = py = 4.65 μm). 
The number of reconstructed points is chosen to be (512, 1,024, 2,048 
and 4,096). When K = L = 512 there is a strong reduction of the width 
of the hologram since the number of data points used for the 
computation is smaller than the initial matrix. In this case, the intrinsic 
resolution decreases and the reconstructed image appears very badly. 
When K = L = 1,024, the number of data points is approximately equal 
to that given by the sensor (1,024 against 1,360 in horizontal 
direction). The image sampling also corresponds approximately to the 
intrinsic resolution. Thus, the image appears “pixelized”. For K = L = 
2,048, zero-padding is effective and image sampling is twice as small 
as intrinsic resolution. So, the resolution function is sampled with a 
better definition and this facilitates the observation of the fine texture 
of the image, particularly its speckle. For K = L = 4,096, image 
sampling is now four times smaller than the intrinsic resolution. The 
definition of the image plane is again increased but the speckle does 
not change its size since it is imposed by the intrinsic resolution (i.e. 
ρx and ρy). 



30     New Techniques in Digital Holography 

 

Figure 1.12. Illustration of the effect of zero-padding 

1.3.2. Reconstruction with convolution 

1.3.2.1. Basic algorithm 

The numerical reconstruction with the convolution algorithm is 
based on the discrete version of equation [1.47] and considering the 
input plane as the hologram plane. In the same manner as that of  
the discrete Fresnel transform, the spatial sampling in the hologram 
plane has to be taken into account. Furthermore, we have to consider 
the sampling of the angular spectrum transfer function [1.34]. In the 
Fourier domain calculated by the FFT algorithm, the spatial 
frequencies are sampled so that (u,v) = (nδu,mδv), where (m;n)∈ 
(–M/2,+M/2–1;–N/2,+N/2–1) and (δu,δv) = (1/Npx,1/Mpy). 

 

Figure 1.13. Diagram of the reconstruction with convolution  
and the angular spectrum transfer function 

At any distance dr from the recording plane, the reconstructed object 
field can be calculated according to the algorithm in  
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Figure 1.13, in which UO is the object wave at the sensor plane 
estimated from the demodulation of the hologram (see section 1.1.3). 
This algorithm is known as the double-fast Fourier transform (D-FFT) 
algorithm since only two FFTs are required to compute the image plane. 

Note that the sampling of the angular spectrum transfer function 
requires fulfilling the Shannon conditions. The condition is now: 

22
max min , yx
r

KpLpd
λ λ

≤ , [1.51] 

and is in the opposite way, compared to [1.48]. This means that the 
angular spectrum transfer function cannot be used to calculate 
distances larger than dr

max. 

In cases of using directly the recorded hologram (i.e. H instead of 
UO) as input to the algorithm in Figure 1.13, problems occur that are 
related to limitation in this approach. This point is discussed in the 
next section. 

1.3.2.2. Limits of classical approaches of convolution 

A spectral analysis is useful for highlighting the limits of  
the convolution approach when using directly H as input. From the 
convolution equation [1.40] and from equation [1.41], the impulse 
response of free space propagation is a bandwidth-limited function 
whose spatial bandwidth is related to the finite extent on which it is 
calculated. Thus, the spatial bandwidth of this convolution kernel is 
given by: 

kernel kernel d d
yx

r r

MpNpu v
λ λ

Δ × Δ = ×  [1.52] 

Also note that the transfer function of the convolution is a band-
pass filter centered at (0,0) spatial frequency. From equation [1.12], 
the +1 order is localized at spatial frequencies (u0,v0). Thus, in order to 
reconstruct from H, by convolution, the image localized at spatial 
frequencies (u0,v0), we need to check the suitable frequency 
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localization of the convolution kernel and the object-adapted spatial 
bandwidth. So as to fully reconstruct the object, the spatial frequency 
extents of the convolution kernel must be at least that of the object, 
giving: 

kernel kernel object object

AA
d d

yx

r r

u v u v
λ λ

ΔΔΔ × Δ ≥ Δ × Δ = × , [1.53] 

where ΔAx and ΔAy are, respectively, the object width along the x- and 
y-directions. Equation [1.53] means that it is not possible to 
reconstruct directly an object by applying equation [1.47], whose size 
is larger than the width on which the impulse response is calculated 
(i.e. Npx  × Mpy). To increase the spatial frequency bandwidth of the 
convolution kernel, there are several strategies: (1) zero-padding of 
the impulse response or the angular spectrum transfer function, (2) 
design of a filter bank, which consists of a spectral scanning of the 
object spectrum so as to recover the full bandwidth, and (3) modifying 
the reconstruction distance so as to naturally increase the spatial 
bandwidth [PIC 13a]. Approaches 1 and 3 are described in the next 
two sections. 

1.3.2.3. Zero-padding of the impulse response 

A simple way to increase the spatial frequency bandwidth consists 
of using the zero-padding of the impulse response or the angular 
spectrum transfer function to get: 

kernel object
x x

r r

Lp Au u
d dλ λ

Δ
Δ = = Δ =  [1.54] 

leading to L = ΔAx/px. So, the number of data points is the ratio 
between the object size and the pixel pitch of the sensor. The problem 
linked to the reconstruction of extended objects by using a 
convolution approach is tantamount to a problem of adaptation of the 
spatial frequency bandwidth. In order to reconstruct the hologram,  
the transfer function may be the Fourier transform of the impulse 
response [1.41] or the angular spectrum transfer function [1.34]. For 
these options, we must take into account the spectral localization and 
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the spatial frequency extents of the bandwidth. The zero-padding of 
the digital hologram with (K,L)>(M,N) leads to extending the horizon 
for the calculation of the impulse response of the free space 
propagation, or to an oversampling of the angular transfer function. If 
the impulse response of free space propagation is used, the spectral 
localization can be obtained by using the modulation theorem. 
Centering at frequency (u0,v0) is performed by spatially modulating h, 
according to: 

( ) ( ) ( )kernel 0 0, , , , exp 2r rh x y d h x y d i u x v yπ= × + +  [1.55] 

If the angular spectrum transfer function is used, and as the transfer 
function must be a band-pass filter in the Fourier domain, we may 
limit the convolution kernel to the effective spectrum bandwidth and 
shift G (or GF) in the spatial frequency space, and set a bandwidth 
limitation to satisfy sampling requirements. Thus, the associated 
transfer function becomes: 

( )
( )0 0

kernel 0 0

, ,

, , if / 2 and / 2

0 elsewhere

r

r x r y r

G u u v v d

G u v d u u Lp d v v Kp dλ λ
− −

= − ≤ − ≤  [1.56] 

As an example, let us consider the numerical reconstruction of the 
digital hologram of an object sized ΔAx = ΔAy = ΔA = 60 mm that is 
recorded with a pixel pitch at px = py = 4.65 μm. Given L = ΔAx/px, we 
need at least 12,000 × 12,000 data points to reconstruct the full object, 
which is greater than the calculation capacity of standard personnal 
computer (PC) computers. So, the approach based on the zero-padding 
remains limited to object having a “moderate” size, i.e. not too large 
compared to the sensor width. 

1.3.2.4. Adjustable magnification 

The second method to extend the spatial frequency bandwidth is 
based on modifying the reconstruction distance. For a given value of 
{K,L}, if dr decreases, then the spatial bandwidth of equation [1.52] 
increases. The modification of the reconstruction distance can be 
obtained by using a spherical reconstruction wave, instead of a plane 
wave as a numerical wave impacting the hologram. This means that 
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we need to consider H multiplied by a spherical wave w(x, y, λc, Rc) 
(equation [1.25]).  

The notion of “adjustable magnification” in digital holography 
requires a brief discussion. In classical holography, the concept of 
transverse magnification is perceptible since we can easily observe, 
before our very eyes, the change in the size and position of the 
diffracted image if we modify the laser wavelength or the curvature of 
the illuminating beam. However, with a numerical image, this notion 
is even less obvious. The notion of magnification is related to the field 
of view (sized Lpx  × Kpy) that is reconstructed by the convolution. The 
reconstruction of an extended object, whose physical size ΔAx  × ΔAy is 
larger than the field of view, is expected. So that the object may  
fully appear in the horizon, a transversal magnification  
γ = min(Lpx/ΔAx;Kpy/ΔAy) must be applied; it is the ratio between the 
horizon and the object widths. In this way, we may conceive that the 
adjustable magnification method results in adjusting the reconstructed 
object size to that of the field of view, which is imposed by calculation 
capacities or computation speed. Note that several authors proposed 
algorithms qualified “with adjustable magnification”. In 2004, Zhang 
and Yamaguchi [ZHA 04] proposed an algorithm based on a double 
Fresnel transform resulting in the adjustment of the side length of the 
field of view. In 2010, Restrepo and Garcia-Sucerquia [RES 10] 
discussed the adjustable magnification using the Fresnel–Bluestein 
transform. Both methods are based on the Fresnel transform (single or 
double) and the notion of magnification is linked to the ratio between 
the reconstructed pixel pitch and that of the sensor.  

The transverse magnification is related to the ratio between 
reconstruction and recording distances [LI 09]: 

0

rd
d

γ = − . [1.57] 

Thus, the focus on the virtual image is not obtained for dr  = −d0, 
but for a different distance that depends on the curvature of the 
recording reference wave and numerical reconstruction wave. This 
draws the basics of reconstruction with adjustable magnification: a 
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spherical wave, either a reference or a reconstruction wave [LI 09, 
TAN 10, PIC 13a], will modify the reconstruction distance, which will 
modify the spatial frequency bandwidth of convolution, then leading 
to an adaptation to the object bandwidth. The consequence is that the 
reconstructed object gets a size which is now compatible with that of 
the reconstruction field of view. Note that w(x,y,Rc) is also an 
oscillating function which must fulfill the sampling requirements to be 
correctly spatially sampled (see equation [1.48]). 

The transfer function of convolution can be either the Fourier 
transform of the impulse response [1.41] or the angular spectrum 
transfer function (G or GF) [1.34], [1.45]. For these options, we must 
take into account the spectral localization and the spatial frequency 
extents of the bandwidth. Since the transfer function is a band-pass 
filter in the Fourier domain, we may restrict it to the contour of the 
object and limit the convolution kernel to the effective object 
spectrum. Thus, if the object is included in a circular zone (ΔAx  =  
ΔAy  = ΔA), the impulse response can be chosen to be: 

( )
( ) ( )0 0

2 2 2 2
kernel

, , exp 2

, , if / 4
0 elsewhere

r

r

h x y d i u x v y

h x y d x y A

π

γ Δ

× + +

= + ≤ . [1.58] 

Similarly, the impulse response can also be defined for a 
rectangular object zone [PIC 09]. This restriction of the spatial 
bandwidth leads to a convolution kernel perfectly adjusted to the 
object bandwidth. If the angular spectrum transfer function is used, the 
associated transfer function is thus (circular object): 

( )
( )

( ) ( )
0 0

2 2 2 2
kernel 0 0

, ,

, , if / 4
0 elsewhere

r

r

G u u v v d

G u v d u u v v Aγ Δ

− −

= − + − ≤ . [1.59] 

Figure 1.14 shows the diagram for the algorithms based on 
convolution with adjustable magnification. This algorithm is known as 
the D-FFT algorithm since it uses two FFT computations  
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(Figure 1.14(a)) or as the three-fast Fourier transform (T-FFT) 
computation since it uses three FFT computations (Figure 1.14(b)). 

 

Figure 1.14. Diagram of the reconstruction with convolution  
with adjustable magnification: a) with the angular spectrum transfer  
function and b) with the impulse response of free space propagation 

The use of the adjustable magnification induces a modification in 
the spatial resolution of the reconstruction process. Since the 
reconstruction distance changes due to the magnification, the spatial 
resolutions are: 

0
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x x
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λλρ γ γρ

λλρ γ γρ

= = =
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, [1.60] 

where ρx and ρy are the spatial resolutions of the holographic process 
given by the spatial extents of the recording area. From [1.60], the 
spatial resolution is proportional to the magnification. Since |γ| < 1 
(object larger than sensor), this would mean that the spatial resolution 
is increased by the process. This is, of course, not physically possible 
because the numerical process cannot easily transcend the 
fundamental limits due to diffraction. As indicated previously, the 
reconstruction process based on adjustable magnification consists of 
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modifying the object size in the direct space so that it can “enter” the 
window of the reconstructed field of view. Thus, it is interesting to 
note that the ratio between the object size and the spatial resolution 
remains unchanged, either in the direct space or in the reconstructed 
space. This means that the resolution is not increased in the magnified 
object. The only effect of the algorithm is on the image “definition”, 
similarly to the effect of zero-padding in the Fresnel transform. 

1.4. Holographic setups 

This section aims to discuss the different experimental 
configurations to record a digital hologram. Basic experimental 
arrangements are provided and few explications on how it works are 
given. 

1.4.1. Fresnel holography 

The basic setup for digital Fresnel holography is given in  
Figure 1.15 [SCH 94]. The coherent light from a laser is separated into 
a reference wave and an object wave. The reference wave is expanded 
and illuminates directly the sensor, through the 50% beam splitter 
cube. The object wave, after being expanded, illuminates the object. 
The object diffracts light to the sensor area. Since the light is coherent, 
the mixing between the reference and the object waves produces 
interferences that constitute the digital hologram. 

 

Figure 1.15. Digital Fresnel holography. For a color version of this  
figure, see www.iste.co.uk/picart/digiholography.zip 
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The numerical reconstruction can be performed with the discrete 
Fresnel transform in which the reconstruction distance is dr = −d0 if the 
reference wave is plane. The hologram can also be reconstructed using 
the convolution with adjustable magnification, and in this case dr ≠ −d0. 

1.4.2. Fresnel holography with spatial spectrum reduction 

The basic setup is given in Figure 1.16. There are strong 
similarities with the digital Fresnel holography setup. The use of a 
diverging lens produces a virtual image of the object, which is smaller 
and localized closer to the sensor. So, this has for consequence to 
reduce the size of the setup and to give a more compact setup  
[SCH 96, MUN 10].  

 

Figure 1.16. Digital Fresnel holography with reduction of the spatial  
frequency spectrum. For a color version of this figure, see 

www.iste.co.uk/picart/digiholography.zip 

The numerical reconstruction can be performed with the discrete 
Fresnel transform in which the reconstruction distance is dr = −d’0 if the 
reference wave is plane. The hologram can also be reconstructed using 
the convolution with adjustable magnification, and in this case dr ≠ −d’0. 

1.4.3. Fourier holography 

The basic setup is given in Figure 1.17. A convergent lens, with 
focal distance f’, is inserted between the object plane and the sensor 
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[SEE 01]. The particularity is that the object and the sensor are 
localized at the focal points of this lens. It follows that the diffracted 
field at the sensor plane is simply the Fourier transform of the object 
[GOO 05]. 

 

Figure 1.17. Digital Fourier holography. For a color version of this  
figure, see www.iste.co.uk/picart/digiholography.zip 

The numerical reconstruction can be performed by computing 
directly the Fourier transform of the recorded hologram, without 
multiplying the hologram by the quadratic phase term. The main 
drawback of this setup is that the sensor and object have to be 
precisely adjusted at the focal points of the lens. In addition, the 
hologram of the optical mount can also be recorded in the hologram 
and this leads to parasitic images in the reconstructed plane. 

1.4.4. Lensless Fourier holography 

So as to simplify the Fourier setup, and to remove the lens, the 
lensless Fourier setup uses a spherical reference wave instead of a 
plane one [PED 02, ZHA 08]. The basic setup is given in Figure 1.18. 
The particularity is that the reference point source is localized in the 
object plane.  

The quadratic terms in the Fresnel integral [1.43] compensate to 
give directly a Fourier transform. The object field can be reconstructed 
by calculating the inverse Fourier transform of the recorded hologram, 
equivalent to dr = ∞ in algorithm of Figure 1.10. 
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Figure 1.18. Digital lensless Fourier holography. For a color version of  
this figure, see www.iste.co.uk/picart/digiholography.zip 

1.4.5. Image-plane holography 

The basic setup is given in Figure 1.19. Consider an extended 
object having a size much larger than the recording area; image-plane 
holography projects the extended object near the sensor area and 
produces a reduction of the size of the image. A convergent lens, with 
focal distance f’, is inserted between the object plane and the sensor, 
and it produces the reduced image of the object onto (or nearby) the 
sensor plane. In such a setup, the influence of the aperture diaphragm 
(AD) of the lens (AD in Figure 1.19) is significant. It must be pointed 
out that the recorded hologram is also the digital Fresnel hologram of 
the aperture. This means that the setup must be optimized according 
to the same rules as those for digital Fresnel holography. So, the NA 
of the imaging lens must be set to [KAR 12]: 

( ) sin '
2 3 2 xp

λα ≤
+

 [1.61] 

If this relation is not fulfilled, the three diffraction orders of the 
hologram of the aperture will overlap. Thus, the useful +1 order of the 
object will be corrupted by the zero-order of the digital hologram of 
the aperture. Note that the NA depends only on the wavelength and 
the pixel pitch, whatever the object size may be, since the 
optimization of the setup is related to the aperture diameter. In the  
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case of Fresnel holography, the useful NA of the beam is defined 
according to that of the sensor-to-object beam. It is equal to 
sinα’≅ΔA/2d0 = λ/(2+3√2)px [PIC 08]. It follows that this relation is 
the same as [1.61]. From this standpoint, the optimization of the 
optical setup follows the same rules for both methods and does not 
depend on the object size. That has the consequence of the spatial 
resolutions of both methods being identical. 

 

Figure 1.19. Digital image-plane holography (AD: aperture diaphragm). For 
 a color version of this figure, see www.iste.co.uk/picart/digiholography.zip 

From [1.48], the reconstruction distance dr must fulfill the 
sampling condition of the quadratic phase in the discrete Fresnel 
transform. This means that, a priori, the image-plane hologram cannot 
be computed by the S-FFT method. So, the reconstruction is 
performed according to the D-FFT strategy with the angular spectrum 
transfer function, in which dr = 0 when the object is rigorously 
projected in the recording plane. In the case of perfect image focusing, 
the transfer function of the convolution kernel tends to a uniform-
bandwidth limited function [PED 95]. 

1.4.6. Holographic microscopy 

Digital Holographic Microscopy (DHM) is the application of 
digital holography to microscopy. DHM is distinguished from other 
methods of microscopy by the fact that it does not require the focused 
recording of an image projected from the object onto the detector 
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plane [GAB 49]. The object wave is simply projected by the objective 
of the microscope toward the detector plane. Since we are recording a 
digital hologram, we may reconstruct the object with a focus which 
can be digitally adjusted during the reconstruction process. As the 
refocusing is performed by digital means, it becomes possible to 
investigate in three-dimensional (3D) dynamical phenomena, which is 
actually not possible with usual light microscopy [DUB 06b,  
DUB 04b, DUB 06c, YOU 14]. There exist other, very similar, 
techniques of microscopy which differ in name, such as interferential 
microscopy, optical coherence tomography and diffraction phase 
microscopy [CUC 99b, DUB 99, DUB 04a, DUB 06b, MAN 05,  
BHA 12, GIR 13, RAJ 14, FER 06, SHA 10, GAB 12, PAR 12,  
MAN 08, PIC 13b]. These methods each have in common the use of 
the coherent combination of an object and a reference wave, allowing 
the ultimate obtainment of an amplitude image and a phase image of 
the object. DHM set-ups implemented with spatial partial coherence 
light sources has permitted to reduce and improve the accuracy of 
both phase and intensity images [DUB 99, DUB 06b, DUB 04b,  
DUB 06c, YOU 14]. In traditional microscopy, the image of the object 
is projected onto the detector, and since there is no reference wave, the 
essential phase information is lost. DHM facilitates getting what is 
known as “quantitative phase microscopy” [CHA 07, CHA 06a,  
CUC 00, CUC 99a, CUC 99b, FER 06, MAN 05, ZHA 98]. 

Principally, there exist two architectures: using transmission and 
using reflection. Figure 1.20 describes the basic scheme, without 
detailing the transmission or reflection configurations. The objective 
is represented by its lens assembly and AD. In the transmission 
configuration, the object is illuminated by a collimated beam, and 
diffracts the light toward the aperture cone of the microscope 
objective. In the reflection configuration, the object is illuminated by a 
collimated beam which first passes through the microscope objective, 
and then diffracts/reflects the light toward the aperture cone of  
the microscope objective. The light, therefore, crosses the microscope 
objective twice. Compared to image-plane holography,  
the configuration is slightly different since we aim at imaging 
microscopic or nanometric objects. 
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Figure 1.20. Digital holographic microscopy. For a color version of this  
figure, see www.iste.co.uk/picart/digiholography.zip 

The image of the object near the sensor plane is produced by the 
microscope objective having a magnification |γopt|>>1 and a high NA 
nsinα. The holographic microscope has to be optimized similarly to 
image-plane holography. From the Abbe sinus relation and from 
[1.61], we have now the condition: 
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γ λ
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With pixels at a few microns and magnification larger than × 20, 
this relation is always fulfilled. 

From [1.48], the reconstruction distance dr must fulfill the 
sampling condition of the quadratic phase in the discrete Fresnel 
transform. This means that, as for image-plane holography,  
the processing cannot be carried out by the S-FFT method. The 
reconstruction is performed according to the D-FFT strategy with the 
angular spectrum transfer function. 

1.4.7. In-line Gabor holography 

In-line Gabor holography refers to the pioneering works of Gabor 
[GAB 48], who was studying an optical method to compensate for the 
aberrations in electron microscopy. The setup is quite simple and 
given in Figure 1.21. The laser beam is expanded and collimated to 
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produce a parallel beam. It directly illuminates the sensor plane, and 
this beam constitutes the reference beam. In the path of the beam, an 
object diffracting light is inserted. This object can be opaque or 
slightly absorbing. Microscopy of phase objects [GAR 06a, GAR 06b] 
is also possible. In-line holography is well suited to particle field 
extraction [ONU 92, HIN 02] and to analyze their statistical size 
distribution [MAL 04, DEN 06], localization [COE 02, SIN 10] or 3D 
movement [HIN 02, VER 10].  

 

Figure 1.21. Digital in-line Gabor holography. For a color version of  
this figure, see www.iste.co.uk/picart/digiholography.zip 

The modeling of the recorded hologram was provided by Onural 
[ONU 92, ONU 93]. The object distribution is denoted as s(x,y) and 
the field emerging from the diffracting object plane when it is 
illuminated by a reference plane wave is denoted as 1−s(x,y). In-line 
holography generally considers that s(x,y)<<1. If the object 
distribution takes only real values, the in-line hologram can be 
approximately written as: 

( ) ( ) ( ), 1 , ,zH x y s x y g x y= − ∗ , [1.63] 

with gz being given by: 

( ) ( )2 22, sinzg x y x y
z z

π
λ λ

= + . [1.64] 

The reconstruction of the hologram can be performed using the 
discrete Fresnel transform, under the condition that the reconstruction 
distance is fulfilling equation [1.48], or with the fractional Fourier 
transform [COE 02]. The latter approach will not be detailed in this 
chapter (see Chapter 2). 
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Note that in-line holography, in its basic configuration, suffers 
from the overlapping of the twin image and zero-order, since there is 
no independent reference beam to produce a separation of the three 
orders. The use of spatial light modulator in the optical bath is a key to 
recover both the amplitude and phase in digital in-line holography 
[PIC 13b]. 

1.5. Digital holographic interferometry 

Digital holographic interferometry exploits not only the amplitude 
of the object, but also its phase. This section presents the basic 
principle of digital holographic interferometry. 

1.5.1. Reconstruction of the phase of the object 

The result of the digital calculation of the diffracted field gives 
access to the complex amplitude sampled across a mesh 
corresponding to the number of reconstruction points of the algorithm. 
From this complex amplitude, we may access two quantities: the 
amplitude image (modulus) and the phase image (the argument of the 
field).The object phase, ψr, is obtained from: 
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The phase of the field is calculated using the arctangent function, 
and as a consequence, the result will be contained within the interval 
[−π,+π], i.e. modulo 2π. This phase is random in most of the cases as 
it is related to the roughness of the object’s surface. The reconstructed 
object is, therefore, marred with speckles [DAI 84]. The estimation of 
the optical phase of the reconstructed field is key to a large number of 
applications in digital holography. Note that the phase is relative to an 
unknown constant. Thus, the absolute phase cannot be obtained with a 
single wavelength. For the same reason, the notion of relief in digital 
holography is very different from that in analog holography. Several 
authors consider that digital holography, using a single hologram, as 
only reconstructing a “2.5D” volume [KOU 07a]. 
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1.5.2. Optical phase variations and the sensitivity vector 

Non-contact measurements using holographic methods are based 
on the variation of the optical phase of the reconstructed object when 
it is subjected to a stress. This stress may be of a biological, electronic, 
pneumatic, thermal, acoustic or mechanical nature. When subjected to 
a stress of any kind, the object is deformed, and thus the optical  
path along the source-object-hologram trajectory will vary. Let  
us imagine a point A at the light source and a point B attached to  
the object. When the object is slightly deformed by a stress,  
point B attached to the object undergoes a 3D change, the 
displacement vector D(Dx, Dy, Dz) which generates variations in the 
optical path from A to B and from B to C (Figure 1.22). These 
variations are much smaller than the absolute values of these path 
lengths, and have modules on the order of tens or hundreds of 
wavelengths of the used light. We denote by Ke the “illumination” 
vector of the object, by Ko the “observation” vector of the object and 
by n the refractive index around the object. The variation of optical 
path length is [KRE 96]: 

( ) ( )opt ABC n n nδ = − = −e o e oK .D K .D D. K K  [1.66] 

 

Figure 1.22. Variation of the source-object-hologram path length. For a color 
version of this figure, see www.iste.co.uk/picart/digiholography.zip 
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The observation vector is related to the direction of observation 
from the object toward the hologram. The illumination vector 
represents the direction of illumination of the studied object. We pose: 

= −e oS K K  [1.67] 

This vector is called the sensitivity vector. The sensitivity vector 
corresponds to the difference between the illumination and 
observation vectors of the object. The sensitivity vector indicates the 
displacement direction in which the sensitivity of the apparatus is 
optimal. Knowledge of the coordinates of this vector is essential for 
the precise analysis of the amplitude of the displacements. The 
variation in optical phase induced by the variation in source-object-
hologram optical path length is, therefore, given by the following 
relation [KRE 96]: 

( ) ( )opt
2 2ABC nπ πφ δ
λ λ

Δ = = −e oD. K K  [1.68] 

When the object is displaced along the displacement vector D, this 
leads to a variation of the phase, which is itself due to the variation in 
optical path. 

1.5.3. Phase difference method 

The measurement of the optical phase variations generated by the 
object requires the recording and reconstruction of at least two 
holograms (double exposure principle). The first corresponds to a 
reference hologram, and the second corresponds to a hologram of the 
object having been subjected to the change. Consequently, the phase 
variation may be evaluated by calculating the difference in optical 
phase between the two holograms. Let ψr1 and ψr2 be the optical 
phases of the first and second hologram, respectively. We then have: 

( )2 1 mod 2r rφ ψ ψ πΔ = −  [1.69] 

This phase variation will produce digital interference fringes, 
modulo 2π, which let us quantify the modification of the object 
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between the two states. The variation in optical path seen in 
holographic interferometry, therefore, corresponds to the variation in 
position of the object projected onto the sensitivity vector. We note 
that for a large number of applications, the refractive index of the 
medium in which the studied object is placed often equals 1 (air), 
except for DHM in which cells may be living specimen. 

As an illustration, Figure 1.23 shows two phases ψr1 and ψr2 of the 
first and second holograms, respectively, as well as the phase 
difference calculated modulo 2π. The two phases are random and 
uniformly distributed across [−π,+π]. The phase difference is also 
obtained in [−π,+π]. The case is that of a rough object surface. We 
observe digital interference fringes which represent phase jumps each 
time that Δϕ passes −π or +π. We also observe that the result is noisy, 
which is translated by the appearance of a “salt-and-pepper” texture in 
the image. This noise is due to the decorrelation of the speckle pattern 
which exists more or less for each movement of the object [DAI 84, 
KAR 12]. 

 

Figure 1.23. Illustration of the phase-subtraction method 

Such results lead to two conclusions: it is necessary to spatially 
filter the result to reduce the level of noise (not discussed here)  
[AEB 99], and, it is necessary to reconstruct the continuity of the 
phase variation, which is destroyed by calculation using the arctangent 
function. 
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1.5.4. Phase unwrapping 

This operation consists of reconstructing the physical continuity of 
the phase map. Of course, this continuity may only be reconstructed to 
within a phase constant, unless we know at which points of the 
mapping the phase is strictly zero. Figure 1.24 presents an illustration 
of this operation on one line of a result obtained after the subtraction 
of two phases. 

 

Figure 1.24. Illustration of the “unwrapping” procedure 

The unwrapping algorithm starts at pixel N°1, and then searches 
for the phase jumps; at each one detected, −2π or +2π, it adds +2π, or 
−2π so that the phase of two neighboring points is continuous. Phase 
unwrapping techniques have become more sophisticated in recent 
years with the appearance of powerful algorithms whose 
implementation is not always straightforward. For a complete 
description, the readers should refer to [GHI 98]. 

1.6. Quantitative phase tomography 

In general, a single wavefront determination obtained from a single 
hologram does not suffice to obtain a full 3D image of an object 
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[MAR 13]. An exception concerns sparse media, similar to those 
found in particle image velocimetry (PIV) where each particle can be 
considered as an isolated punctual object and its position determined 
in 3D by the methods of in-line holography. In this case, we can resort 
to sparse image representations to image the cloud of particles in 3D 
[LIE 04b, LIE 04c, DIX 11]. We must, however, admit that generally 
the true 3D shape of a given specimen cannot be derived from a single 
measurement obtained at one wavelength [SHE 10, KOU 07b]. The 
combination of data reconstructed from several holograms, obtained at 
either several wavelengths [YU 05] or at several incidence angles 
(multi-k), is needed to achieve true 3D imaging. Several articles report 
results obtained by changing the wavelength (variable k-vector 
amplitude) as shown, for example, by Marron [MAR 93]. However, in 
this study, the range of wavelength scan remains very small, and 
consequently the resolution is weak. Arons et al. using Fourier 
synthesis holography [ARO 96] have also discussed a similar 
approach. In digital holography, multiple wavelengths have been used 
to reconstruct 3D structures [KIM 99]. 

In the field of microscopy, this tomographic imaging technique, 
based on reconstruction from multiple holograms, has yielded very 
accurate images of cells, erythrocytes in particular [KUH 09,  
MON 06]. An alternative, but somehow similar approach, is to use a 
wide bandwidth source and form a hologram in the plane where the 
mutual coherence between the object and reference waves is non-zero: 
this concept introduces coherence gating in the space domain. It has 
proved to perform well [CUC 97, MAS 05]. 

The approach consisting of varying the angle of the illumination 
waves (variable k-vector direction) can be used in conjunction with 
the previous technique where the wavelength is changed (variable  
k-vector amplitude). This angular approach more exactly meets the 
concept found in the literature under the name of “diffraction 
tomography” [WOL 69] for reconstruction of the scattering potential 
associated with the structure of the diffracting object. A diffracted 
wave can be collected and reconstructed from the holograms at 
various incidences. The complex amplitude of the measured scattered 
field is linked to the object function via their Fourier transforms. In 
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microscopy, a tomographic approach, not based on holography, was 
presented by Lauer [LAU 02]. A simple way to reconstruct the 
scattered wave can be based on digital holography: the phase and 
amplitude of the diffracted wave are directly reconstructed from the 
hologram and can be used to compute the scattering potential at every 
point of the specimen.  

The scalar approximation has been shown to give good results. 
However, note that under the first Born approximation [WOL 69], the 
reconstruction is strictly valid for a low-phase change only, which is 
proportional to both the object refractive index and size, while under 
the Rytov approximation, “the size of the object is not a factor” (from 
[SLA 84]) and therefore the Rytov approximation is expected to give 
better results for larger objects.  

Noting the wave vector of the diffracted wave kd, ki that for the 
illumination wave, and kO that for the object field, these quantities are 
linked by the following equation: 

d i Ok k k= +  [1.70] 

When considering a transmission geometry and only one direction 
of illumination (only one ki), only one half of the Ewald sphere could 
be recorded at best. Moreover, this half-sphere is restricted to a cap of 
sphere only, because of the limited NA of the microscope objective 
(NA) used in the holographic scheme (see Figure 1.20). As shown in 
Figure 1.25(a), a very limited subset of the diffracted wave vectors 
can be measured. From [1.70], for a given incident direction ki, and an 
observation direction kd, the corresponding wave vector of the object 
field is kO = kd ki. The set of wave vectors kd ki which are recorded is 
shown as a bold arc of circle in Figure 1.25(a). The recorded spatial 
frequency space can be filled using successive variable directions of 
illumination, leading to recording a more complete subset of the 3D 
frequency representation of the object, in order to perform a more 
accurate reconstruction of the object [DEB 08]. The use of tilted 
illuminating wave permits to record higher frequencies from the 
Fourier transform of the object field. Figure 1.25(b) illustrates the 
mapping of the k-space with the set of wave vectors of Figure 1.25(a).  
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Each circle represents the spatial bandwidth available from the 
holographic setup for each illumination vector. Figure 1.25(c) shows 
that after scanning the incident vector, a portion of the k-space is 
covered by the measured data. When a large number of incidences 
angles are scanned, the area covered by the measured wave vectors in 
the x-y plane becomes a disk (Figure 1.25(d)).  

 

Figure 1.25. Principle of diffractive tomography: construction of the measured 
spatial frequency support in the case of transmission (refer to text). For a color 

version of this figure, see www.iste.co.uk/picart/digiholography.zip 

From these data, the 3D distribution of the refractive index can be 
established providing, therefore, a 3D tomographic image of the cell 
constituents.  

Tomography of cells based on DHM is new and original. In 2006, 
a first approach consisting of the rotation of the specimen has been 
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developed [CHA 06b, CHA 06c]. It was demonstrated that the 
refractive index of the cell body could be measured in 3D with a 
spatial resolution better than 3 μm in all directions. Other approaches 
consisting of rotating the beam rather than the object have been 
proposed [DEB 09, CHO 07, SUN 09, KIM 11, COT 11]. Kou  
[KOU 07b] and Sheppard [SHE 10] have compared both approaches 
in their principles and shown consistent differences in the 
performance of each modality. In this case, the approach is commonly 
described as “synthetic aperture imaging” because the effective 
aperture results from the stitching of several loci (Ewald spheres) in 
the Fourier domain corresponding to various illuminating directions. 

1.7. Conclusion 

In this chapter, we have introduced the principles of digital 
holography, as well as the associated reconstruction methods. Some 
demodulation techniques of eliminating the zero-order and twin 
image, to increase the spatial resolution of reconstructed images, have 
been discussed. The discrete Fresnel transform is the simplest and the 
most direct calculation method, on the condition that the sampling 
theorem is respected in the plane of the hologram. This method is 
certainly the most widely used method, even though it does not 
guarantee the invariance of the reconstructed horizon with the 
wavelength [FER 04]. We have presented the methods based on 
convolution, especially the adjustable-magnification approach which 
leads to the adaptation of the reconstructed image size to the size of 
the field of view. 

Note that other reconstruction methods based on wavelets are also 
discussed in the literature. For example, the readers could have a look 
at [ONU 93, LIE 03, LIE 04a] and [LIE 04b].  

We have introduced the methods of holographic interferometry for 
which the phase of the reconstructed field is the principal parameter. 
The exploitation of the phase gives versatility to digital holography: 
quantitative microscopy, phase contrast, profilometry, the 
measurement of displacement fields, vibrations and fluid mechanics. 
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Quantitative phase tomography has been introduced and applications 
are detailed in Chapter 5. 

This chapter serves as a basis for the next chapters that will go into 
advanced holographic methods more thoroughly. 
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