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Scheduling in Energy
Autonomous Objects

In an autonomous system, in other words a system
supplied during its entire lifetime by ambient energy, the
issue of scheduling must be addressed in jointly taking into
account the two physical constraints: time and energy. The
fundamental scheduling questions can be raised as follows: is
a scheduler as efficient, simple and high-performance as
earliest deadline first (EDF) is appropriate? Is there, in this
new context of perpetual energy autonomy, a scheduler which
is optimal with acceptable implementation costs? How do we
dimension the energy storage unit in such a way that no
energy starvation, and therefore no deadline violation can
occur at any time?

This chapter proposes to answer these questions according
to the following plan:

– description of the real-time energy harvesting (RTEH)
system model;

– study of the behavior of EDF for the RTEH model;
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– specification of the earliest deadline-harvesting (ED-H)
scheduler, optimal for the RTEH model;

– description of a necessary and sufficient schedulability
test.

1.1. Introduction

Electrical energy supply is a crucial issue, in particular in
the design of portable systems that by nature have to be
autonomous from an energy point of view. Today, this issue is
mainly handled by dynamic voltage scaling (DVS) or dynamic
power management (DPM) methods that aim to reduce the
energy consumption of electronic circuits. Thus, the proposed
solutions allow us to extend the durations separating two
successive recharges of a battery without overcoming them.

However, the new generations of embedded systems, in
particular those functioning in hostile or inaccessible
environments, limit human intervention. They function with
the help of batteries (or any other kind of energy storage
unit), which are continuously recharged over time from a
renewable energy source. There is no doubt that the DVS and
DPM techniques prove to be very useful in autonomous
systems: they lead to using lower capacity batteries, smaller
solar panels, etc. But these techniques do not allow, by
themselves, to ensure infinite operation, called
energy-neutral. Energy-neutrality is defined here by the
property of the embedded system to operate in such a way as
to respect all of its timing constraints and this, by only using
the energy available in the storage unit without ever lacking
any.

An autonomous system is built around three components
(see Figure 1.1):

– The energy harvester whose choice depends on the nature
of the environmental energy, the amount of energy required,
etc.
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– The energy storage unit, such as a battery or a super-
capacitor, whose choice depends on the dynamics of the
system, the design constraints and/or cost constraints, etc.

– The energy consumer that here represents the execution
support of the real-time tasks. In this chapter, we assume that
the energy consumed by the operational part of the embedded
system (actuator, LED, etc.) is separately powered, as is the
transmitter/receiver module. Therefore, the energy consumer
denotes the electronic card built around a microcontroller or a
microprocessor.

Figure 1.1. Diagram of an ambient energy harvesting system

Designing such a system requires the resolution of a
certain number of issues related to the harvesting, storage
and the use of ambient energy [PRI 09]. It has to be provided
with a durable autonomy (from one to tens of years) while
maintaining an acceptable real-time performance level. In
this chapter, we focus on the consumer of energy, a machine
whose energy needs are variable in time. These needs are
required by the real-time tasks whose processing has to be
done in predefined time intervals. Therefore, the energy
needs are not identical and continuous over time. They
depend on the timing profile of the tasks, very generally
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characterized by a period and/or a deadline. An embedded
system and mainly an autonomous intelligent sensor has to
function during several years or even several tens of years
without any possibility of intervention. This is why
guaranteeing offline that it will respect its constraints is of
importance. The implementation will be made difficult or
even impossible by the uncertainty attached to the quantity
of harvested energy. We can, therefore, see that the design of
an autonomous system leads to several fundamental
questions. Assuming that the energy supply is perfectly
characterized (energy source profile, size of the storage
battery, etc.), how do we verify and guarantee before the
system becomes operational that it will have a continuous
autonomy with an always acceptable performance level? This,
therefore, means, first of all, to define this performance, often
called Quality-of-Service, characterized by application
constraints. In this chapter, we consider a firm real-time
system whose performance level is mostly related to the
percentage of jobs satisfying their deadlines.

From a software point of view, a real-time system is
composed of application tasks and the real-time operating
system (commonly referred to as RTOS) that ensures their
scheduling. In Chapter 1, Volume 1 [CHE 14d], we have
recalled the real-time schedulers typically implemented in
current RTOSs. These schedulers have, for the most part, the
particularity of being online, non-idling, priority-driven and
preemptive. Their implementation does not lead to any major
difficulty: one or more data structures organized in lists have
to be managed. The role of the scheduler is to order these
lists and update them, either using a fixed-priority policy
such as rate monotonic or a dynamic-priority policy such as
EDF [LIU 73]. However, these optimal schedulers offer their
performance under the assumption that there is no energy
limitation. Indeed, their optimality assumes that the
processor has, at any time, the energy required for the
execution of any job. Thus, we can see that the only
constraint to be handled by the scheduler is a timing one.
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Schedulability conditions associated with these schedulers
are, therefore, centered around the utilization factor of the
processor or the processor demand by time interval.

In an energy-autonomous system, the issue of scheduling
is related to jointly taking into account the two physical
constraints: time, which is measured in seconds and energy,
which is measured in joules. The following fundamental
questions are, therefore, raised: can an efficient and capable
scheduler, such as EDF, be suitable for systems subject to,
besides timing constraints, energy constraints? Are there, in
this new context proper to renewable energy harvesting,
schedulers which are at the same time optimal and easily
implementable? The initial studies related to these questions
date back to the 2000s [ALL 01].

1.2. Modeling and terminology

1.2.1. System model

Hereafter, we describe the RTEH model that comprises a
computing element, a set of jobs, an energy storage unit, an
energy harvesting unit and the environmental energy source
(see Figure 1.2).

1.2.1.1. Job model

We consider a set of real-time jobs that is executed on a
single processing unit. A single operating frequency is
supported. We assume the energy consumed in the idle state
to be negligible. The energy consumption comes integrally
from dynamic switching. The jobs are executed by exclusively
using the energy generated by the environmental source. We
denote by τ = {τi, i = 1, . . . , n} the set of n preemptible jobs.
The jobs are independent from one another. We associate the
four-tuple (ri, Ci, Ei, di) with the job τi. This job arrives at
time ri called release time, and requires a worst-case
execution time of Ci time units and consumes Ei energy units
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in the worst case. The quantity Ei is not necessarily
proportional to Ci [JAY 06]. In other words, the effective
energy consumption of a job does not vary linearly with its
effective execution time. During each time unit, we know an
upper bound on the energy consumption of every job equal to
eMax energy units. The exact amount of energy effectively
drained in every time unit is, however, not known
beforehand. The deadline of τi denoted by di represents the
date at which τi has to have terminated its execution. We
assume that min0≤i≤n ri = 0. Let dMax = max0≤i≤n di and
D = max0≤i≤n (di − ri) be, respectively, the latest absolute
deadline and the greatest relative deadline among those of
the jobs of τ . Ec(t1, t2) denotes the energy consumed by the
jobs on the time interval [t1, t2). If the energy consumed by a
job in each time unit is no less than the energy harvested on
this same time unit, we say that the job is discharging
[ALL 01]. Every job of τ is discharging. Consequently, the
residual capacity of the energy storage unit never increases
every time a job executes.

Figure 1.2. The RTEH model
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1.2.1.2. Energy production model

The energy produced by the environmental source is
assumed to be uncontrollable. We characterize it by a
so-called instantaneous charging rate denoted by Pp(t). This
includes all the losses induced by the energy conversion and
storage processes. The energy produced by the source on the
time interval [t1, t2) is denoted by Ep(t1, t2) and is obtained by
the following formula: Ep(t1, t2) =

∫ t2
t1

Pp(t)dt. We assume that
the production and consumption of energy can occur
simultaneously. Even though the power output at any time by
the environmental source fluctuates with time, we assume to
be able to predict it with precision in an immediate future
and with negligible processing and energy costs.

1.2.1.3. Energy storage model

Our system uses an ideal energy storage unit with a
nominal capacity denoted by C that is expressed in units of
energy such as joule or watt per hour. The capacity may be
less than the total energy consumption of a job. Let us denote
by E(t) the residual capacity of the storage unit at time t,
which gives the current level of energy available.

We consider the energy to be wasted when the storage unit
is fully charged while we continue to charge it. In contrast,
the storage unit is considered fully discharged at time t if 0 ≤
E(t) < eMax denoted by E(t) ≈ 0. The application starts with
a fully charged storage unit (i.e. E(0) = C). The stored energy
may be used at any later time and does not leak energy over
time.

1.2.2. Types of starvation

According to the RTEH model described in the previous
section, a job τi can miss its deadline if one of the two following
situations occurs:



8 Real-time Systems Scheduling 2: Focuses

– Time starvation: when τi reaches its deadline at time t, its
execution is incomplete because the time required to process
τi by its deadline is not sufficient. However, there is enough
energy in the storage unit when the deadline violation occurs,
i.e. E(t) > 0.

– Energy starvation: when τi reaches its deadline at time
t, its execution is incomplete because the energy required to
process it by its deadline is not sufficient. The energy in the
storage unit is exhausted when the deadline violation occurs,
i.e. E(t) ≈ 0.

1.2.3. Terminology

We now give definitions that we will be requiring
throughout the remainder of the chapter.

DEFINITION 1.1.– A schedule Γ for τ is said to be valid if the
deadlines of all jobs of τ are respected in Γ starting with a full
energy storage unit.

DEFINITION 1.2.– A system is said to be feasible if there exists
at least one valid schedule for τ with a given energy storage
unit and environmental energy source. Otherwise, the system
is said to be infeasible.

In infeasible systems, the limiting factors are either time,
energy or both time and energy. In this chapter, we focus on
feasible systems only. As in classical scheduling theory, we say
that a scheduling algorithm is:

– optimal if it finds a valid schedule whenever one exists;

– online if it makes its decisions at run-time;

– semi-online if it is online with necessary lookahead on a
certain time interval;

– lookahead-ld if it is semi-online with lookahead on ld time
units;
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– idling if it is allowed to keep the processor idle even when
there are pending jobs. Otherwise, it is called non-idling;

– clairvoyant if it has knowledge of the future
(characteristics of released jobs and energy production
profile) at any time including the initial instant.

We introduce a terminology proper to the RTEH model.

DEFINITION 1.3.– A schedule Γ for τ is said to be time-valid
if the deadlines of all jobs in τ are met in Γ, considering that
Ei = 0 ∀i ∈ {1, . . . , n}.
DEFINITION 1.4.– A set of jobs τ is said to be time-feasible if
there exists a time-valid schedule for τ .

DEFINITION 1.5.– A schedule Γ for τ is said to be energy-valid
if the deadlines of all jobs in τ are met in Γ, considering that
Ci = 0 ∀i ∈ {1, . . . , n}.
DEFINITION 1.6.– A set of jobs τ is said to be energy-feasible if
there exists an energy-valid schedule for τ .

DEFINITION 1.7.– A scheduling algorithm A is said to be
energy-clairvoyant if it needs knowledge of the future energy
production to take its run-time decisions.

1.3. Weaknesses of classical schedulers

1.3.1. Scheduling by EDF

We show by a simple example that a conventional
priority-driven real-time scheduler cannot build an optimal
schedule for the RETH model. We consider the EDF
algorithm, the most popular approach to schedule
independent jobs in the absence of energy limitation and
processing overload [LIU 73, DER 74]. EDF is an online
scheduler that selects the ready job with the closest relative
deadline. An online scheduling represents the only option in a
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system whose processing overload is unpredictable, since it
accommodates itself in an adaptive way to processor demand
variations.

Let us give several useful definitions for the evaluation of
the performance of online schedulers. The value of a job
defines its contribution to the global performance of the
system. The system obtains the value of the job if it
terminates its execution before its deadline. Otherwise, the
system obtains no value [BAR 91, BUT 05]. We say that an
online scheduler has a competitive factor r (0 < r < 1) if it
guarantees a total cumulated value of at least r times the
value that the best clairvoyant scheduler may provide
[BAR 92]. We say that an online scheduler is competitive if its
competitive factor is strictly higher than 0. Otherwise, it is
non-competitive.

The optimality of EDF remains true as long as we allow
preemption between the jobs, and the jobs do not enter into
competition for the access to shared resources. However, if a
processing overload occurs, the optimality of EDF disappears.
Let us consider the value of a job as being proportional to its
execution time. Baruah et al. proved that no online scheduler,
including EDF, can guarantee, in an overload situation, a
competitive factor higher than 0.25 when jobs have uniform
value densities [BAR 92]. A recent analysis shows that for
the RTEH model, the competitive factor of EDF becomes zero.

THEOREM 1.1.– [CHE 14a] EDF is non-competitive for the
RTEH model.

The EDF scheduler can be implemented under two distinct
variants, called, respectively, as soon as possible (ASAP) and
as late as possible (ALAP). It also possesses very important
qualities: easy implementation, fast execution (low overhead)
and reduced preemption rate. It is, therefore, natural to ask
ourselves whether the EDF algorithm, even though
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non-competitive, remains optimal or not when the jobs
present energy needs in the context of RTEH.

1.3.2. ASAP strategy

The EDF variant that applies the ASAP policy is also
called Earliest Deadline as Soon as possible (EDS). It consists
of immediately rendering the highest priority ready job
executable. We illustrate below this non-idling scheduling
policy.

Example: let us consider a time-feasible set of two jobs τ1
and τ2 with τ1 = (0, 4, 32, 9) and τ2 = (2, 3, 24, 5). We harvest
energy from the environment with the same power over time,
Pp = 6. The energy storage unit has a capacity of C = 8 and is
initially full (Ec(0) = 8). We notice that τ2 misses its deadline
at time 5 (see Figure 1.3). The weak point of EDS resides in
its greedy way of consuming energy, which leads to emptying
the energy storage unit and preventing the job τ2 to be
completely executed. This example shows that, despite a
sufficient amount of energy and processing capacity, the
non-idling schedulers commonly integrated into existing
operating systems turn out to be incapable of efficiently
dealing with energy limitations. Theorem 1.2 establishes that
the EDF scheduler remains, however, the best non-idling
scheduler for the RTEH model.

THEOREM 1.2.– [CHE 14a] EDF is optimal in the class of non-
idling schedulers for the RTEH model.

1.3.3. ALAP strategy

In symmetry with the ASAP variant of EDF, let us
examine the behavior of the ALAP variant, also called
earliest deadline as late as possible (EDL). This consists of
postponing the execution of the jobs as much as possible
while respecting their deadlines. EDL is particularly adapted
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to situations in which the processor must be put in an idle
state for as long as possible [CHE 89]. The idea of delaying
the execution of the jobs of critical periodic tasks permits us
to recover the availability of the processor and to serve
non-critical aperiodic tasks as soon as possible for minimizing
their response time [CHE 99].

Figure 1.3. Schedule produced by EDF with ASAP

Example: We go back to the previous example and apply the
ALAP variant of EDF (see Figure 1.4).

At the release of τ1, its latest starting time for ALAP is
computed, equal here to 5 and given by its deadline minus its
execution time. The processor, in the idle state from instant 0,
therefore, does not consume any energy, which allows the
storage unit to fill up until time 1. The storage unit has then
reached its full capacity. Thus, the energy harvested after
time 1 is wasted. At time 2, the job τ2 is released. Its latest
starting time corresponds to its release time. τ2 is executed
from time 2 to time 5. Hence, this is causing a discharge of
the storage unit which, at time 5, contains 2 units of energy.
τ2 starts its execution, which leads to completely emptying
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the storage unit at time 6, when the application is
prematurely stopped.

Figure 1.4. Schedule produced by EDF with ALAP

Contrarily to EDS, EDL does not turn out to be greedy
enough, since it delays the energy consumption of the jobs.
This first of all leads to a waste given the limited capacity of
the storage unit that cannot store all the harvested energy.
This is followed by an energy starvation depriving the job
from terminating its execution before its deadline even
though it has enough time to do so.

From a practical point of view and with regard to
simplicity, EDF remains a first-choice scheduler for systems
powered by renewable energy. Its integration does not require
any particular technological device: it does not need to know
the current level of energy in the storage unit, and to
complete a predictive estimation of the harvested energy.

1.4. Fundamental properties

From the above, we conclude that every energy starvation
(i.e. the situation in which the available energy proves to be
insufficient to execute a job with respect to its deadline) has
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to be anticipated sufficiently in advance in order to prevent it
from exceeding a deadline. In other words, the optimality of a
scheduler assumes a clairvoyance capacity.

THEOREM 1.3.– [CHE 14a] A non-clairvoyant online
scheduling algorithm cannot be optimal for the RTEH model.

Thus, theorem 1.3 indicates that having a prediction on a
part of the future may help in building a better schedule than
that produced by a totally non-clairvoyant scheduler such as
EDF. Moreover, theorem 1.4 establishes a lower bound on the
omniscience of the scheduler in order for it to build an energy-
valid schedule.

THEOREM 1.4.– [CHE 14a] Let D be the largest relative
deadline of the application. No lookahead-ld online
scheduling algorithm is optimal for the RTEH model if
ld < D.

Thus, theorem 1.4 gives us the clairvoyance horizon
required by any optimal scheduler. The value of the largest
relative deadline appears as a key parameter in the
application. If, for a given application we cannot predict the
harvested energy profile on a time interval of length equal to
at least this relative deadline, then it is illusory to benefit
from an optimal online scheduler.

Estimating the amount of energy drained from the
environment on a given time interval constitutes a central
issue on the design of an RTEH system. The source of
environmental energy can be formally modeled or even
precisely determined offline in certain applications. However,
when it is uncontrollable and highly unstable, only the
prediction techniques applied online and cyclically on timing
sliding windows allow us to determine lower bounds on the
future harvested energy.
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1.5. Concepts related to energy

1.5.1. Processor demand

The processor demand on [t1, t2) is defined by the amount
of execution time required by all jobs with release time at or
after t1 and deadline before or at t2 (see definition 1.8). When
the set of jobs τ under-utilizes the processor, the result is a
residual processing availability and a timing flexibility in the
execution of the jobs, hence the notion of slack time.

DEFINITION 1.8.– The processor demand of a set of jobs τ on
the time interval [t1, t2) is given by

h(t1, t2) =
∑

t1≤rk,dk≤t2

Ck [1.1]

The schedulability analysis of EDF based on the so-called
processor demand approach needs to compute the processor
demand for every time interval starting with a release time
and finishing with a deadline. We then verify whether there
is a processing overload on each tested interval. This
approach comes down to compute the static slack time
denoted by SSTτ (t1, t2) (see definition 1.9). For applications in
which the jobs arrive in an unpredictable manner, the
schedulability analysis takes the form of an online test (we
then refer to an admission test) in such a way as to decide
whether to accept or reject a new job [BUT 05].

DEFINITION 1.9.– The static slack time of a set of jobs τ on the
time interval [t1, t2) is given by

SSTτ (t1, t2) = t2 − t1 − h(t1, t2) [1.2]

SSTτ (t1, t2) represents the longest duration of the interval
included within [t1, t2) during which the processor can remain
inactive while guaranteeing the execution of the jobs of τ
released at or after t1 and with deadline at most equal to t2.
From this, we deduce the static slack time of the set τ .
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DEFINITION 1.10.– The static slack time of a set of jobs τ ,
SSTτ , is given by

SSTτ = min
0≤t1<t2≤dMax

SSTτ (t1, t2) [1.3]

Let tc be the current time in the schedule produced for the
set of jobs τ by a certain scheduling algorithm. Let ATi be the
remaining execution time of the uncompleted jobs at time tc
with deadlines smaller than or equal to di.

DEFINITION 1.11.– The slack time of the job τi at the current
time tc is given by

STτi(tc) = di − tc − h(tc, di)− ATi [1.4]

STτi(tc) represents the total amount of processor time
available in [tc, di) after having executed all the jobs with
deadlines smaller than or equal to di. We can define the slack
time of τ at the current time tc as follows:

DEFINITION 1.12.– The slack time of the set of jobs τ at the
current time tc is given by

STτ (tc) = min
di>tc

STτi(tc) [1.5]

The slack time as computed with [1.5] represents the
maximum continuous processor time that could be available
from tc during which the processor could remain inactive or
execute other jobs than those of the set τ . The computation of
STτ (tc) uses the construction of the EDL schedule from time
tc initially described in [CHE 89].

1.5.2. Energy demand

We introduce here new concepts for the feasibility analysis
of a set of jobs characterized by their energy needs. Let
Ep(t1, t2) be the amount of energy harvested between t1
and t2.
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DEFINITION 1.13.– The energy demand of a set of jobs τ on the
time interval [t1, t2) is given by

g(t1, t2) =
∑

t1≤rk,dk≤t2

Ek [1.6]

DEFINITION 1.14.– The static slack energy of a set of jobs τ on
the time interval [t1, t2) is given by

SSEτ (t1, t2) = C + Ep(t1, t2)− g(t1, t2) [1.7]

SSEτ (t1, t2) represents the maximum amount of energy
available during the time interval [t1, t2) and this, while
guaranteeing the execution of the jobs of τ released at or
after t1 and with deadlines smaller than or equal to t2. We
can then define the static slack energy of τ as follows:

DEFINITION 1.15.– The static slack energy of a set of jobs τ is
given by

SSEτ = min
0≤t1<t2≤dMax

SSEτ (t1, t2) [1.8]

The static slack energy of τ represents the energy surplus
that could be consumed at any time while guaranteeing the
energy needs of the jobs of τ .

DEFINITION 1.16.– The slack energy of a job τi at the current
time tc is given by

SEτi(tc) = E(tc) + Ep(tc, di)− g(tc, di) [1.9]

SEτi(tc) represents the maximum amount of energy
consumed in [tc, di) while guaranteeing the energy needs of
the jobs released from time tc with deadlines smaller than or
equal to di. If there is a job τi such that SEτi(tc) = 0, then the
execution between tc and di of any job with a deadline higher
than di will provoke an energy starvation for τi. We can now
describe ED-H, the optimal scheduler for the RTEH model.
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1.6. ED-H scheduling

1.6.1. Informal description

The intuition behind the ED-H scheduler is to run jobs
according to the EDF rule in time intervals determined
following energy constraints. A job is only allowed to be
executed after having verified that its execution during a
time unit will not lead to energy starvation neither for the job
nor for a job that will arrive in the future. ED-H does not
correspond either to EDS, nor to EDL. This scheduler is,
therefore, based on the timing and energy characteristics of
the jobs as well as on the replenishment rate of the storage
unit to make decisions concerning the state of the processor.
Schematically, ED-H constitutes a variant of EDF that could
be qualified as energy aware, since it is capable of preventing
energy starvation.

The conventional EDF scheduler is said to be greedy since
it executes systematically jobs as soon as possible, and thus
spends the energy stored in the storage unit disregarding
needs of future occurring jobs. Let us consider a set of jobs
that is time-feasible by EDF. The energy starvation for a job
τi can only come from the execution of a job τj that is
executed before the arrival of τi with dj > di. Indeed, the
energy starvation of τi caused by τj with dj ≤ di cannot be
avoided by any other scheduler. Intuitively, a minimum of
clairvoyance relative to the arrival of jobs and to the
production of energy will help EDF to anticipate an energy
starvation, and consequently a deadline miss. The key
principle of ED-H consists of allowing the execution of jobs
while no energy starvation can occur. We are, therefore, led to
introducing the concept of preemption slack energy at the
current time tc as the largest quantity of energy consumable
by the active job that does not put into question the
feasibility of the jobs susceptible to preempt it.
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DEFINITION 1.17.– Let d be the deadline of the active job at
time tc. The preemption slack energy of the set τ at time tc is
given by

PSEτ (tc) = min
tc<ri<di<d

SEτi(tc) [1.10]

1.6.2. Rules of ED-H

Let Lr(tc) be the list of jobs ready for execution at time tc.
The ED-H scheduling algorithm respects the following rules:

– Rule 1: the EDF priority order is used to select the future
running job in Lr(tc).

– Rule 2: the processor is imperatively idle in [tc, tc + 1) if
Lr(tc) = ∅.

– Rule 3: the processor is imperatively idle in [tc, tc + 1) if
Lr(tc) �= ∅ and one of the following conditions is satisfied:

1) E(tc) ≈ 0;

2) P SEτ (tc) ≈ 0.

– Rule 4: the processor is imperatively busy in [tc, tc + 1) if
Lr(tc) �= ∅ and one of the following conditions is satisfied:

1) E(tc) ≈ C;

2) STτ (tc) = 0.

– Rule 5: the processor can equally be idle or busy if Lr(tc) �=
∅, 0 < E(tc) < C, STτ (tc) > 0 and P SEτ (tc) > 0.

Rule 3 states that no job can be executed if the energy
storage unit is empty or if this execution unavoidably leads to
energy starvation, the preemption slack energy being
insufficient. Rule 4 states that the processor cannot be
inactive if either the energy storage unit is fully replenished
or making the processor idle would lead to missing a deadline
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due to a zero slack time. If the storage unit is neither empty
nor full and if the system has a non-zero slack time and a
non-zero preemption slack energy, rule 5 states that the
processor can equally take the idle or busy state without
compromising the validity of the resulting schedule. Note
that according to ED-H, a waste of energy is only produced
when the storage unit is full and no job is waiting to be
executed.

This description of ED-H does not mention the particular
situation in which the storage unit is full
(C ≤ E(tc) < C + eMax) with a zero preemption slack energy
(0 ≤ PSEτ (tc) < eMax). In order to avoid a waste of energy by
putting the processor into an idle state, the execution of the
highest priority job in [tc, tc + 1) may be allowed, leading then
to an energy consumption equal to at most eMax units of
energy. The processor then remains passive during a
sufficient amount of time for the storage unit to be fully
replenished. Thus, ED-H provokes a continuous switching
from a busy state to an idle state in such a way that over this
period the consumption of energy remains the same as the
production of energy. The result is an energy waste of at most
eMax units.

Various implementations can be taken from ED-H
depending on the choice of rule 5. ASAP and ALAP are the
only special cases that can be reduced to executing jobs either
systematically at the earliest as soon as the energy proves to
be sufficient or at the latest without, however, provoking an
overflow of the energy storage unit. The rule selected for
deciding when to start and when to stop the recharging phase
of the storage unit determines the variant of ED-H. Thus, we
will be able to choose to execute jobs while the energy level is
above a certain threshold and leaving the processor inactive
in order to replenish the storage unit while its level has not
reached a predefined upper value. The ED-H scheduler,
therefore, presents a great flexibility in its implementation
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with the only conditions that we forbid at all times the waste
of energy and we prevent the system from a negative slack
time and a negative preemption slack energy.

Example: let us go back to the previous example. Equation
[1.9] gives us

SEτ2(0) = E(0) + Ep(0, d2)− g(0, d2) = 8 + 30− 24 = 12.

SEτ2(0) represents the maximum quantity of energy that any
active job may consume from instant zero in order to preserve
to feasibility of τ2. τ1 is allowed to consume at most 12 units
of energy and is stopped at time 1, since SEτ2(1) ≈ 0. Rule 3
imposes that the processor be put into an idle state until the
storage unit is again full or that the slack time becomes zero.
Note the simultaneous fulfillment of these two conditions at
time 2. STτ2(1) is given by d2−1−h(2, d2)−AT2. Consequently,
STτ2(1) = 1. STτ1(1) is given by d1 − 1 − h(2, d1) − AT1 = 9 −
1 − (3 + 3) − 1. STτ1(1) = 3. From formula [1.5], STτ (1) = 1.
The processor switches back to the active state at time 2 when
E(2) = 8. τ2 is executed until its completion at time 5 where
E(5) = 2. τ1 resumes its execution until the storage unit is
empty at time 6. The processor becomes inactive in order to
refill the storage unit until time 7, the time when the slack
time of the system becomes zero, imposing the execution of τ1
that is thus terminated at time 9, its deadline where E(9) = 2
(see Figure 1.5).

1.6.3. Optimality analysis

The optimality of ED-H means that if ED-H is unable to
build a valid schedule for a set of jobs τ , then no other
scheduler will be able to. The proof of optimality is based on
lemmas 1.1 and 1.2 in which we assume that the deadline d1
of the job τ1 is the first missed deadline in the ED-H schedule
produced for the set τ .
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Figure 1.5. Schedule produced by ED-H

LEMMA 1.1.– [CHE 14c] If d1 is missed in the ED-H schedule
because of time starvation, then there exists a time instant t
such that h(t, d1) > d1 − t and no schedule exists where d1 and
all earlier deadlines are met.

LEMMA 1.2.– [CHE 14c] If d1 is missed in the ED-H schedule
because of energy starvation, then there exists a time instant
t such that g(t, d1) > C+Ep(t, d1) and no schedule exists where
d1 and all earlier deadlines are met.

The ED-H scheduler produces a valid schedule as long as
there are no time intervals where the processor demand on
this interval exceeds its duration and the energy demand
exceeds the total available energy in this interval. Lemmas
1.1 and 1.2 then lead us to theorem 1.5.

THEOREM 1.5.– [CHE 14c] The ED-H scheduling algorithm is
optimal for the RTEH model.

ED-H provides an optimal solution that is less restrictive
than the lazy scheduling algorithm (LSA) algorithm described
in [MOS 07]. In these works, the energy consumed by any job
being executed varies linearly with its execution time.
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1.6.4. Clairvoyance analysis

In accordance with the result outlined in theorem 1.4, we
know that no online scheduling algorithm can be optimal
without a clairvoyance of at least D time units. In order to
make a decision at any time tc, ED-H requires to know at the
same time the arrival process of the jobs and the energy
production process recovered over the following D time units,
hence theorem 1.6.

THEOREM 1.6.– [CHE 14c] The ED-H scheduling algorithm is
lookahead-D.

The main technological limitation associated with the
implementation of ED-H is due to the estimated measure of
the energy harvested over D time units. This problem is
handled by targeted prediction methods that depend on the
energy source.

1.6.5. Schedulability test

The essential question “is the set τ feasible?” refers to that
of the schedulability of τ by ED-H. It has to be verified by a
simple test whether there exists a valid ED-H schedule for τ ,
given an energy storage unit characterized by its capacity
and an energy harvesting system characterized by an
instantaneous production power Pp(t). Theorem 1.7 shows
that this feasibility test is reduced to two independent tests,
one relative to the timing feasibility and the other to the
energy feasibility. In other words, we show that τ is feasible if
and only if τ is time-feasible and energy-feasible.

THEOREM 1.7.– [CHE 14c] A set of jobs τ compliant with the
RTEH model is feasible if and only if

SSTτ ≥ 0 and SSEτ ≥ 0 [1.11]
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This feasibility test is implemented in O(n2), since n2 time
intervals are the object of a static slack time calculation. Let
us assume that we predict the ambient energy on each time
interval by a finite number of values. We then show that the
complexity of the energy feasibility test is in O(n2).

Example: we go back to the previous example and apply
theorem 1.7 in order to test the feasibility of the two jobs τ1
and τ2. Since SSTτ (0, 9) = 2 and SSEτ = 6, we deduce that
the set τ is feasible and consequently feasibly schedulable by
ED-H.

1.7. Conclusion

The technology known as energy harvesting consists of
generating electrical energy from the environment. This
technology is becoming an undeniable asset for the
development of autonomous communication devices, with as
much regards to civil applications as military defense
applications. Energy harvesting is turning out to be
potentially attractive and promising. Nevertheless, its
implementation assumes to resolve numerous theoretical and
technological issues relative to the harvesting, conversion,
storage and consumption of energy. We do not seek here to
minimize the energy consumption in order to maximize the
lifetime of the system (low-power technology) as in traditional
portable devices. An energy-neutral mode of functioning has
to be ensured in which the system never consumes more
energy than it harvests. More precisely, the question that we
have provided an answer for, is formulated as follows: how do
we schedule the jobs in order to continuously respect their
timing constraints by an adequate exploitation of the
processor resource and the ambient energy resource?

This assumes providing the operating system with DPM
functions capable of adapting the energy consumption of the
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processor to the energy production profile and respecting the
deadline constraints attached to the jobs.

In this chapter, we have restricted our study to a
monofrequency uniprocessor platform. We have presented an
optimal scheduler, ED-H, a variant of the EDF scheduler.
Energy autonomous real-time systems are also the subject of
studies that relate to platforms equipped with DVFS
functionalities [LIU 08, LIU 09, LIU 12], to fixed-priority
driven systems [ABD 13] or to multiprocessor architectures
[LU 11].
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