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Fatness of Tail

1.1. Fat tail heuristics

Suppose the tallest person you have ever seen was 2 m
(6 ft 8 in). Someday you may meet a taller person; how tall do
you think that person will be, 2.1 m (7 ft)? What is the
probability that the first person you meet taller than 2 m will
be more than twice as tall, 13 ft 4 in? Surely, that probability
is infinitesimal. The tallest person in the world, Bao Xishun
of Inner Mongolia, China, is 2.36 m (or 7 ft 9 in). Before 2005,
the most costly Hurricane in the US was Hurricane Andrew
(1992) at 41.5 billion USD (2011). Hurricane Katrina was the
next record hurricane, weighing in at 91 billion USD (2011)1.
People’s height is a “thin-tailed” distribution, whereas
hurricane damage is “fat-tailed” or “heavy-tailed”. The ways
in which we reason based on historical data and the ways we
think about the future are, or should be, very different
depending on whether we are dealing with thin- or fat-tailed
phenomena. This book provides an intuitive introduction to
fat-tailed phenomena, followed by a rigorous mathematical
overview of many of these intuitive features. A major goal is

1 http://en.wikipedia.org/wiki/Hurricane_Katrina, accessed January 28,
2011.
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2 Fat-tailed Distributions

to provide a definition of obesity that applies equally to finite
data sets and to parametric distribution functions.

Fat tails have entered popular discourse largely due to
Nassim Taleb’s book The Black Swan: The Impact of the
Highly Improbable ([TAL 07]). The black swan is the
paradigm shattering, game-changing incursion from
“Extremistan”, which confounds the unsuspecting public, the
experts and especially the professional statisticians, all of
whom inhabit “Mediocristan”.

Mathematicians have used at least three central
definitions for tail obesity. Older texts sometime speak of
“leptokurtic distributions”: distributions whose extreme
values are “more probable than normal”. These are
distributions with kurtosis greater than zero2, and whose
tails go to zero slower than the normal distribution.

Another definition is based on the theory of regularly
varying functions and it characterizes the rate at which the
probability of values greater than x go to zero as x → ∞. For
a large class of distributions, this rate is polynomial. Unless
indicated otherwise, we will always consider non-negative
random variables. Letting F denote the distribution function
of random variable X, such that
F (x) = 1− F (x) = Prob{X > x}, we write F (x) ∼ x−α, x →∞
to mean F (x)

x−α → 1, x → ∞. F (x) is called the survivor function
of X. A survivor function with polynomial decay rate −α, or,
as we will say, tail index α, has infinite kth moments for all
κ > α. The Pareto distribution is a special case of a regularly
varying distribution where F (x) = x−α, x > 1. In many cases,
like the Pareto distribution, the kth moments are infinite for
all κ ≥ α. Chapter 4 unravels these issues, and shows

2 Kurtosis is defined as the (μ4/σ
4) − 3, where μ4 is the fourth central

moment and σ is the standard deviation. Subtracting 3 arranges that the
kurtosis of the normal distribution is zero.
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distributions for which all moments are infinite. If we are
“sufficiently close” to infinity to estimate the tail indices of
two distributions, then we can meaningfully compare their
tail heaviness by comparing their tail indices, such that many
intuitive features of fat-tailed phenomena fall neatly into
place.

A third definition is based on the idea that the sum of
independent copies X1 + X2 + · · · + Xn behaves like the
maximum of X1, X2, . . . Xn. Distributions satisfying

Prob{X1+X2+ . . . +Xn>x} ∼ Prob{max{X1, X2, . . . Xn}>x},
x→∞

are called subexponential. Like regular variation,
subexponentiality is a phenomenon that is defined in terms of
limiting behavior as the underlying variable goes to infinity.
Unlike regular variation, there is no such thing as an “index
of subexponentiality” that would tell us whether one
distribution is “more subexponential” than another. The set of
regularly varying distributions is a strict subclass of the set
of subexponential distributions. Other more novel definitions
are given in Chapter 4.

There is a swarm of intuitive notions regarding heavy-
tailed phenomena that are captured to varying degrees in
the different formal definitions. The main intuitions are as
follows:

– the historical averages are unreliable for prediction;
– differences between successively larger observations

increases;
– the ratio of successive record values does not decrease;
– the expected excess above a threshold, given that the

threshold is exceeded, increases as the threshold increases;
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– the uncertainty in the average of n independent variables
does not converge to a normal with vanishing spread as n →
∞; rather, the average is similar to the original variables;

– regression coefficients which putatively explain heavy-
tailed variables in terms of covariates may behave erratically.

1.2. History and data

A detailed history of fat-tailed distributions is found in
[MAN 08]. Mandelbrot himself introduced fat tails into
finance by showing that the change in cotton prices was
heavy-tailed [MAN 63]. Since then many other examples of
heavy-tailed distributions have been found, among these we
find data file traffic on the Internet [CRO 97], financial
market returns [RAC 03, EMB 97] and magnitudes of
earthquakes and floods [LAT 08, MAL 06], to name a few.3

Data for this book were developed in the NSF project
0960865, and are available at http://www.rff.org/Events/
Pages/Introduction-Climate-Change-Extreme-Events.aspx, or
at public sites indicated below.

1.2.1. US flood insurance claims

US flood insurance claims data from the National Flood
Insurance Program (NFIP) are compiled by state and year for
the years 1980–2008; the data are in US dollars. Over this
time period, there has been substantial growth in exposure to
flood risk, particularly in coastal states. To remove the effect
of growing exposure, the claims are divided by personal

3 The website http://www.er.ethz.ch/presentations/Powerlaw_mechanisms_
13July07.pdf provides examples of earthquake numbers per 5×5 km grid,
wildfires, solar flares, rain events, financial returns, movie sales, health care
costs, size of wars, etc.
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income estimates per state per year from the Bureau of
Economic Accounts (BEA). Thus, we study flood claims per
dollar income by state and year4.

1.2.2. US crop loss

US crop insurance indemnities paid from the US
Department of Agriculture’s Risk Management Agency are
compiled by state and year for the years 1980–2008; the data
are in US dollars. The crop loss claims are not exposure
adjusted, since a proxy for exposure is not easy to establish,
and exposure growth is less of a concern5.

1.2.3. US damages and fatalities from natural disasters

The SHELDUS database, maintained by the Hazards and
Vulnerability Research Group at the University of South
Carolina, registers states-level damages and fatalities from
weather events6. The basal estimates in SHELDUS are
indications as the approach to compiling the data always
employs the most conservative estimates. Moreover, when a
disaster affects many states, the total damages and fatalities
are apportioned equally over the affected states regardless of
population or infrastructure. These data should therefore be
seen as indicative rather than precise.

4 Help from Ed Pasterick and Tim Scoville in securing and analyzing this
data is gratefully acknowledged.
5 Help from Barbara Carter in securing and analyzing this data is
gratefully acknowledged.
6 Information on SHELDUS is available at http://webra.cas.sc.edu/hvri/
products/SHELDUS.aspx.
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1.2.4. US hospital discharge bills

Billing data for hospital discharges in a northeast US states
were collected over the years 2000–2008; the data are in US
dollars.

1.2.5. G-Econ data

This uses the G-Econ database [NOR 06] showing the
dependence of gross cell product (GCP) on geographic
variables measured on a spatial scale of 1◦. At 45◦ latitude, a
1◦ by 1◦ grid cell is [45 mi]2 or [68 km]2. The size varies
substantially from equator to pole. The population per grid
cell varies from 0.31411 to 26,443,000. The GCP is for 1990,
non-mineral, 1995 USD, converted at market exchange rates.
It varies from 0.000103 to 1,155,800 USD (1995), the units
are $106. The GCP per person varies from 0.00000354 to
0.905, which scales from $3.54 to $905,000. There are 27,445
grid cells. Throwing out zero and empty cells for population
and GCP leaves 17,722; excluding cells with empty
temperature data leaves 17,015 cells7.

1.3. Diagnostics for heavy-tailed phenomena

If we look closely, we can find heavy-tailed phenomena all
around us. Loss distributions are a very good place to look for
tail obesity, but even something as mundane as hospital
discharge billing data can produce surprising evidence. Many
of the features of heavy-tailed phenomena would render our
traditional statistical tools useless at best, and dangerous at
worst. Prognosticators base their predictions on historical
averages. Of course, on a finite sample the average and
standard deviations are always finite; but these may not be

7 The data are publicly available at http://gecon.yale.edu/world\_big.html.
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converging to anything and their value for prediction might
be null. Or again, if we feed a data set into a statistical
regression package, the regression coefficients will be
estimated as “covariance over the variance”. The sample
versions of these quantities always exist, but if they do not
converge, their ratio could whiplash wildly, taking our
predictions with them. In this section, simple diagnostic tools
for detecting tail obesity are illustrated using mathematical
distributions and real data.

1.3.1. Historical averages

Consider independent and identically distributed random
variables with tail index 1 < α < 2. The variance of these
random variables is infinite, as is the variance of any finite
sum of these variables. Thereby, the variance of the average
of n variables is also infinite, for any n. The mean value is
finite and is equal to the expected value of the historical
average, but regardless of how many samples we take, the
average does not converge to the variable’s mean, and we
cannot use the sample average to estimate the mean reliably.
If α < 1, the variables have infinite mean. Of course, the
average of any finite sample is finite, but as we draw more
samples, the sample average tends to increase. One might
mistakenly conclude that there is a time trend in the data;
the universe is finite and an empirical sample would exhaust
all data before it reached infinity. However, such reassurance
is quite illusory; the question is, “where is the sample average
going?”. A simple computer experiment is enough to convince
sceptics: sample a set of random numbers on your computer;
these are approximately independent realizations of a
uniform variable on the interval [0,1]. Now invert these
numbers. If U is such a uniform variable, 1/U is a Pareto
variable with tail index 1. Compute the moving averages and
see how well you can predict the next value.
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Figure 1.1 shows the moving average of a Pareto (1)
distribution and a standard exponential distribution. The
mean of the Pareto (1) distribution is infinite whereas the
mean of the standard exponential distribution is equal to 1.

As we can see, the moving average of the Pareto (1)
distribution shows an upward trend, whereas the moving
average of the standard exponential distribution converges to
its real mean. Figure 1.2(a) shows the moving average of US
property damage by natural disasters from 2000 to 2008. We
observe an increasing pattern; this might be caused by
attempting to estimate an infinite mean, or it might actually
reflect a temporal trend. One way to approach this question is
to present the moving average in random order, as in (b), (c)
and (d). It is important to note that these are simply different
orderings of the same data set (note the differences on the
y-axes). Conclusive results are difficult to draw from single
moving average plots for this reason.

1.3.2. Records

One characteristic of heavy-tailed distributions is that
there are usually a few very large values relative to the other
values of the data set. In the insurance business, this is
called the Pareto law or the 20–80 rule of thumb: 20% of the
claims account for 80% of the total claim amount in an
insurance portfolio. This suggests that the largest values in a
heavy-tailed data set tend to be further apart than smaller
values. For regularly varying distributions, the ratio between
the two largest values in a data set has a non-degenerate
limiting distribution, whereas for distributions like the
normal and exponential distribution this ratio tends to zero
as we increase the number of observations. If we borrow a
data set from a Pareto distribution, then the ratio between
two consecutive observations will also have a Pareto
distribution.
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(a) Pareto (1)
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(b) Standard exponential

Figure 1.1. Moving average of Pareto (1) and standard exponential data
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(a) Natural disaster property damage,
temporal order

(b) Natural disaster property damage,
random order 1

(c) Natural disaster property damage,
random order 2

(d) Natural disaster property damage,
random order 3

Figure 1.2. Moving average US natural disaster property damage

In Table 1.1, we see the probability that the largest value in
the data set is twice as large as the second largest value for the
standard normal distribution and the Pareto (1) distribution.
The probability remains constant for the Pareto distribution,
but it tends to zero for the standard normal distribution as the
number of observations increases.

Number of
observations Standard normal distribution Pareto (1) distribution
10 0.2343 1

2

50 0.0102 1
2

100 0.0020 1
2

Table 1.1. Probability that the next record value is at least twice as large as
the previous record value for different sized data sets
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Seeing that one or two very large data points confound
their models, unwary actuaries may declare these “outliers”
and discard them, reassured that the remaining data look
“normal”. Figure 1.3 shows the yearly difference between
insurance premiums and claims of the US NFIP [COO 09].

The actuaries who set NFIP insurance rates explain that
their “historical average” gives 1% weight to the 2005 results
including losses from hurricanes Katrina, Rita and Wilma:
“This is an attempt to reflect the events of 2005 without
allowing them to overwhelm the pre-Katrina experience of
the Program” [HAY 11].

1.3.3. Mean excess

The mean excess function of a random variable X is defined
as:

e(u) = E [X − u|X > u] [1.1]

The mean excess function gives the expected excess of a
random variable over a certain threshold given that this
random variable is larger than the threshold. It is shown in
Chapter 4 that subexponential distributions’ mean excess
function tends to infinity as u tends to infinity. If we know
that an observation from a subexponential distribution is
above a very high threshold, then we expect that this
observation is much larger than the threshold. More
intuitively, we should expect the next worst case to be much
worse than the current worst case. It is also shown that
regularly varying distributions with tail index α > 1 have a
mean excess function which is ultimately linear with slope
1

α−1 . If α < 1, then the slope is infinite and [1.1] is not useful.
If we order a sample of n independent realizations of X, we
can construct a mean excess plot as in [1.2]. Such a plot will
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not show an infinite slope, rendering the interpretation of
such plots problematic for very heavy-tailed phenomena:

e(xi) =

∑
j>i xj − xi

n− i
; i < n, e(xn) = 0; x1 < x2 < . . . xn. [1.2]

Figure 1.3. US National Flood Insurance Program,
premiums minus claims

Figure 1.4(a) shows the mean excess plots of 5,000 samples
from a Pareto (1) and Figure 1.4(b) shows a Pareto (2). At a
glance, the slope in these plots clearly gives a better diagnostic
for (b) than for (a).

Figure 1.5 shows the mean excess plots for flood claims per
state per year per dollar income (Figure 1.5(a)) and insurance
claims for crop loss per year per state (Figure 1.5(b)). Both
plots are based roughly on the top 5,000 entries.

1.3.4. Sum convergence: self-similar or normal

For regularly varying random variables with tail index
α < 2, the standard central limit theorem does not hold: the
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standardized sum does not converge to a normal distribution.
Instead, the generalized central limit theorem [UCH 99]
applies: the sum of these random variables, appropriately
scaled, converges to a stable distribution having the same tail
index as the original random variable.

(a) Mean excess Pareto 1 (b) Mean excess Pareto 2

Figure 1.4. Pareto mean excess plots, 5,000 samples

(a) Mean excess flood claims/income (b) Mean excess crop loss

Figure 1.5. Mean excess plots, flood and crop loss

This can be observed in the mean excess plot of data sets
of 5,000 samples from a regularly varying distribution with
tail index α < 2. Let’s define the operation of aggregating by k
as dividing a data set randomly into groups of size k and
summing each of these k values. If we consider a data set of
size n and compare the mean excess plot of this data set with
the mean excess plot of a data set we obtained through
aggregating the original data set by k, then we will find that
both mean excess plots are very similar. For data sets from
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thin-tailed distributions, both mean excess plots look very
different.

To compare the shapes of the mean excess plots, we have
standardized the data such that the largest value in the data
set is scaled to one. This does not change the shape of the
mean excess plot, since we can easily see that e(cu) = ce(u).
Figures 1.6(a)–(d) show the standardized mean excess plot of
a sample from an exponential distribution, a Pareto (1)
distribution, a Pareto (2) distribution and a Weibull
distribution with shape parameter 0.5. The standardized
mean excess plots of a data set obtained through aggregating
by 10 and 50 are also shown in each plot. The Weibull
distribution is a subexponential distribution whenever the
shape parameter τ < 1. Aggregating by k for the exponential
distribution causes the slope of the standardized mean excess
plot to collapse. For the Pareto (1) distribution, aggregating
the sample does not have much effect on the mean excess
plot. The Pareto (2) is the “thinnest” distribution with infinite
variance, but taking large groups to sum causes the mean
excess slope to collapse. Its behavior is comparable to that of
the data set from a Weibull distribution with shape 0.5. This
underscores an important point: although a Pareto (2) is a
very fat-tailed distribution and a Weibull with shape 0.5 has
all its moments and has tail index ∞, the behavior of data
sets of 5,000 samples is comparable. In this sense, the tail
index does not tell the whole story.

Figures 1.7(a) and 1.7(b) show the standardized mean
excess plot for two data sets. The standardized mean excess
plot in Figure 1.7(a) is based on the income- and
exposure-adjusted flood claims from the US NFIP from 1980
to 2006; this is the first data set. The second data set is the
US crop loss. This data set contains all pooled values per
county with claim sizes larger than $1,000,000. The
standardized mean excess plot of the flood data in
Figure 1.7(a) seems to remain the same as we aggregate the
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data set. This is indicative for data drawn from a distribution
with infinite variance. The standardized mean excess plot of
the national crop insurance data in Figure 1.7(b) changes
when taking random aggregations, indicative of finite
variance.

(a) Exponential distribution (b) Pareto α = 1

(c) Pareto α = 2 (d) Weibull distribution τ = 0.5

Figure 1.6. Standardized mean excess plots. For a color version of this
figure, see www.iste.co.uk/cooke/distributions.zip

1.3.5. Estimating the tail index

Ordinary statistical parameters characterize the entire
sample and can be estimated as such. Estimating a tail index
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is complicated by the fact that it is a parameter of a limit of a
distribution function. If independent samples are drawn from
a regularly varying distribution, then the survivor function
tends to a polynomial as the samples get large. We cannot
estimate the degree of this polynomial from the whole
sample. Instead, we must focus on a small set of large values
and hope that these are drawn from a distribution which
approximates the limit distribution. In this section, we briefly
review the methods that have been proposed to estimate the
tail index.

(a) Flood claims per income (b) National crop insurance

Figure 1.7. Standardized mean excess plots of two data sets. For color
version of this figure, see www.iste.co.uk/cooke/distributions.zip

One of the simplest methods is to plot the empirical
survivor function on log-log axes and fit a straight line above
a certain threshold. The slope of this line is then used to
estimate the tail index. Alternatively, we could estimate the
slope of the mean excess plot. As mentioned above, the latter
method will not work for tail indices less than or equal to 1.
The self-similarity of heavy-tailed distributions was used in
[CRO 99] to construct an estimator for the tail index. The
ratio

R(p, n) =
max{Xp

1 , . . . X
p
n}∑n

i=1X
p
i

; Xi > 0, i = 1 . . . n
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is sometimes used to detect infinite moments. If the pth
moment is finite, then limn→∞R(p, n) = 0 [EMB 97]. Thus, if
for some p,R(p, n) � 0 for large n, then this suggests an
infinite pth moment. Regularly varying distributions are in
the “max domain of attraction” of the Fréchet class. That is,
under appropriate scaling, the maximum converges to a
Fréchet distribution: F (x) = exp(−x−α), x > 0, α > 0. Note
that for large x, x−α is small and F (X) ∼ 1 − x−α. The
parameter ξ = 1/α is called the extreme value index for this
class. There is a rich literature on the estimation of the
extreme value index, for which we refer the readers to
[EMB 97].

Perhaps the most popular estimator of the tail index is the
Hill estimator, which is proposed in [HIL 75] and given by

Hk,n =
1

k

k−1∑
i=0

(log(Xn−i,n)− log(Xn−k,n)) ,

where Xi,n are such that X1,n ≤ ... ≤ Xn,n. The tail index is
estimated by 1

Hk,n
. The idea behind this method is that if a

random variable has a Pareto distribution, then the log of this
random variable has an exponential distribution S(x) = e−λx

with parameter λ equal to the tail index. 1
Hk,n

estimates the
parameter of this exponential distribution. Like all tail index
estimators, the Hill estimator depends on the threshold, and
it is not clear how it should be chosen. A useful heuristic here
is that k is usually less than 0.1n. There are methods that
choose k by minimizing the asymptotic mean squared error
of the Hill estimator. Although the Hill estimator works very
well for Pareto distributed data, for other regularly varying
distribution functions it is less effective.

To illustrate this, we have drawn two different samples,
one from the Pareto (1) distribution and the other from a
Burr distribution (see Table 4.1) with parameters such that
the tail index of the Burr distribution is equal to 1.
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Figures 1.8(a) and 1.8(b) show the Hill estimator for the two
data sets together with the 95%-confidence bounds of the
estimate. Note that the Hill estimate is plotted against the
different values in the data set running from the largest to
the smallest, and the largest value of the data set is plotted
on the left of the x-axis. As can be seen in Figure 1.8(a), the
Hill estimator gives a good estimate of the tail index, but in
Figure 1.8(b) it is not clear that the tail index is equal to 1.
Beirlant et al. [BEI 05] explored various improvements of the
Hill estimator, but these improvements require extra
assumptions on the distribution of the data set.
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(b) Burr distributed data

Figure 1.8. Hill estimator for samples of a Pareto and
Burr distribution with tail index 1

Figure 1.9 shows a Hill plot for crop losses (a) and natural
disaster property damages (b). Figure 1.10 compares Hill
plots for flood damages (a) and flood damages per income (b).
The difference between these last two plots underscores the
importance of properly accounting for exposure. Figure 1.9(a)
is more difficult to interpret than the mean excess plot in
Figure 1.7(b).
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(a) Hill plot for crop loss

(b) Hill plot for property damages from natural
disasters

Figure 1.9. Hill estimator for crop loss and property
damages from natural disasters

Hospital discharge billing data are shown in Figure 1.11: a
mean excess plot (a), a mean excess plot after aggregation by
10 (b) and a Hill plot (c). The hospital billing data are a good
example of a modestly heavy-tailed data set. The mean excess
plot and Hill plots point to a tail index in the neighborhood of
3. Although definitely heavy-tailed according to all the
operative definitions, it behaves like a distribution with finite
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variance, as we see the mean excess collapse under
aggregation by 10.

(a) Hill plot for flood claims

(b) Hill plot for flood claims per income

Figure 1.10. Hill estimator for flood claims

1.3.6. The obesity index

We have discussed two definitions of heavy-tailed
distributions, the regularly varying distributions with tail
index 0 < α < ∞ and subexponential distributions. Regularly
varying distributions are a subset of subexponential
distributions which have infinite moments beyond a certain
point, but subexponentials include distributions all of whose
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moments are finite (tail index = ∞). Both definitions refer to
limiting distributions as the value of the underlying variable
goes to infinity. Their mean excess plots can be quite similar.
There is nothing like a “degree of subexponentiality” allowing
us to compare subexponential distributions with infinite tail
index, and there is currently no characterization of obesity in
finite data sets.

(a) Mean excess plot for hospital
discharge bills

(b) Mean excess plot for hospital
discharge bills, aggregation by 10

(c) Hill plot for hospital discharge
bills

Figure 1.11. Hospital discharge bills, obx = 0.79

We therefore propose the following obesity index that is
applicable to finite samples, and that can be computed for
distribution functions. Restricting the samples to the higher
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values then gives a tail obesity index.

Ob(X) = P (X1 +X4 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) ;

{X1, ...X4} independent and identically distributed.

In Table 1.2, the value of the obesity index is given for a
number of different distributions.

(a) Mean excess plot for Gross Cell
Product (non-mineral)

(b) Hill plot for Gross Cell Product
(non-mineral)

Figure 1.12. Gross Cell Product (non-mineral) obx=0.77

Distribution Obesity index
Uniform 0.5
Exponential 0.75
Pareto(1) π2 − 9

Table 1.2. Obesity index for three distributions

In Figure 1.13, we see the obesity index for the Pareto
distribution, with tail index α, and for the Weibull
distribution, with shape parameter τ .

In Chapter 5, we show that for the Pareto distribution, the
obesity index is decreasing in the tail index. Figures 1.13(a)
and 1.13(b) illustrate this fact. The same holds for the Weibull
distribution; if τ < 1, then the Weibull is a subexponential
distribution and is considered heavy-tailed. The obesity index
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increases as τ decreases. Note that the Weibull with shape
0.25 is much more obese than the Pareto (1).
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(b) Weibull distribution

Figure 1.13. Obesity index for different distributions

Given two random variables X1 and X2 with tail indices, α1

and α2, α1 < α2, the question arises whether the obesity index
of X1 is larger than that of X2. Numerical approximation of
two Burr distributed random variables indicates that this is
not the case. Consider X1, a Burr distributed random variable
with parameters c = 1 and k = 2, and X2, a Burr distributed
random variable with parameters c = 3.9 and k = 0.5. The tail
index of X1 is equal to 2 and the tail index of X2 is equal to
1.95. But numerical approximation indicates that the obesity
index of X1 is approximately equal to 0.8237 and the obesity
index of X2 is approximately equal to 0.7463. Of course, this
should not come as a surprise; the obesity index in this case
is applied to the whole distribution, whereas the tail index
applies only to the tail.

A similar qualification applies for any distribution that
takes positive and negative values. For a symmetrical
distribution, such as the normal or the Cauchy, the obesity
index is always 1

2 . The Cauchy distribution is a regularly
varying distribution with tail index 1 and the normal
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distribution is considered a thin-tailed distribution. In such
cases, it is more useful to apply the obesity index separately
to positive or negative values.

1.4. Relation to reliability theory

Loss distributions (the subject of this book) and life
distributions (the subject of reliability) are mathematical
siblings, yet with very different personalities. It is therefore
useful to point out some of their relationships.

Both reliability and loss analysis are concerned with
non-negative random variables. In reliability, these are life
variables whose realizations represent time of death or time
of failure. Infinite expected lifetimes are very unusual.
However, Pareto distributions do arise as mixtures of
exponential distributions. The gamma density over λ with
shape υ and scale α

f(λ) =
αυλυ−1e−αλ

Γ(υ)

has mean υ/α and variance υ/α2. If this is interpreted as a
mixing distribution over possible failure rates λ, then the
mixture density for an exponential life variable X with
failure rate λ drawn from density f(λ) is

p(x) =

∫
λ∈(0,∞)

λe−λxαυλυ−1e−αλ

Γ(υ)
dλ.

Integrating over λ gives

p(x) =
υαυ

(α+ x)υ+1

which is a Pareto density with tail index υ. All the diagnostics
for regularly varying distributions would apply in this case.
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The mean excess curve is another point of contact between
reliability and loss analysis. In reliability, the mean excess is
called the mean residual life. Again, all the mean excess
diagnostics will apply for mean residual life. The theory of
records has not yet had a large footprint in reliability theory,
but may someday. This may arise, for example, if we are
interested in estimating the maximal service time of some
component in a system of independent and identically
distributed components. Finally, the obesity index may find
applications in reliability as a non-parametric data-driven
method for identifying sub- or superexponential behavior.
These are among the research topics that remain to be
explored.

1.5. Conclusion and overview of the technical chapters

Fat-tailed phenomena are not rare or exotic; they occur
rather frequently in loss data. As attested in hospital billing
data and GCP data, they are encountered in mundane
economic data as well. Customary definitions in terms of
limiting distributions, such as regular variation or
subexponentiality, may have contributed to the belief that fat
tails are mathematical freaks of no real importance to
practitioners concerned with finite data sets. Good
diagnostics help dispel this imprudent belief, and sensitize us
to the dangers of uncritically applying thin-tailed statistical
tools to fat-tailed data: historical averages, even in the
absence of time trends, may be poor predictors regardless of
the sample size. Aggregation may not reduce variation
relative to the aggregate mean, and regression coefficients
are based on ratios of quantities that fluctuate wildly.

The various diagnostics discussed here and illustrated
with data each have their strengths and weaknesses.
Running historical averages have strong intuitive appeal but
may easily be confounded by real or imagined time trends in
the data. For heavy-tailed data, the overall impression may
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be strongly affected by the ordering. Plotting different
moving averages for different random orderings can be
helpful. Mean excess plots provide a very useful diagnostic.
Since these are based on ordered data, the problems of
ordering do not arise. On the downside, they can be
misleading for regular varying distributions with tail indices
less than or equal to 1, as the theoretical slope is infinite. Hill
plots, although very popular, are often difficult to interpret.
The Hill estimator is designed for regularly varying
distributions, not for the wider class of subexponential
distributions; but even for regularly varying distributions, it
may be impossible to infer the tail index from the Hill plot.

In view of the jumble of diagnostics, each with their own
strengths and weaknesses, it is useful to have an intuitive
scalar measure of obesity, and the obesity index is proposed
here for this purpose. The obesity index captures the idea
that larger values are further apart, or that the sum of two
samples is driven by the larger of the two, or again that the
sum tends to behave like the max. This index does not
require estimating a parameter of a hypothetical
distribution; it can be computed for data sets and , in most
cases numerically, for distribution functions.

In Chapters 2 and 3 we discuss different properties of
order statistics and present some results from the theory of
records. These results are used in Chapter 5 to derive
different properties of the index proposed by us. Chapter 4
discusses and compares regularly varying and
subexponential distributions, and develops properties of the
mean excess function. Chapter 6 opens a salient toward fat
tail regression by surveying dependence concepts.


