Chapter 1

Mathematical Concepts

1.1 Basic concepts on probability

Without describing in detail the formalism used by Probability Theory, we
will simply remind the reader of some useful concepts. However we advise the
reader to consult some of the many books with authority on the subject [1].

Definition 1.1 (Discrete random variable) A random variable X is said
to be discrete if the set of its possible values is, at the most, countable. If
{ap,....an,...}, wheren € N, is the set of its values, the probability distribution
of X is characterized by the sequence:

px(n)=P1'(X=an) (11)

representing the probability that X is equal to the element a,,. These values are
such that 0 <px(n) <1 and ) - px(n)=1.

This leads us to the probability for the random variable X to belong to the
interval a, b). It is given by:

Pr(X €la,b)) =3, 50px(n)1(an €]a,b])
The function defined for = € R by:

Fx(z) = Pr(X <z) =) (n4,<2} Px(n)
= ZnZD Px (?’E)]l(ﬂn e] — 20, T]) (12)

is called the cumulative distribution function (cdf) of the random variable X. It
is a monotonic increasing function, and verifies Fix (—oc) = O and Fx (+o0) = L.
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Its graph resembles that of a staircase function, the jumps of which are located
at z-coordinates a,, and have an amplitude of px(n).

Definition 1.2 (Two discrete random variables) Lel X and Y be two dis-
crete random variables, with possible values {ay,...,apn,...} and {bg, ..., by, ...}

respectively. The joint probability distribution is characterized by the sequence
of positive values:

pxv(n, k) =Pr(X =a,,Y = b) (1.3)

with 0 < pxy(n, k) <1 and Y-, <> isoPxy(n, k) = 1.

Pr(X = a,,Y = bg) represents the probability to sirmullaneously have X =
an, and Y = bg. This definition can easily be extended to the case of a finite
number of random variables.

Property 1.1 (Marginal probability distribution) Let X and Y be two
discrete random variables, with possible values {ag,...,an,...} and {by,...,

by, ...} respectively, and with their joint probability distribution characterized
by pxy(n, k). We have:

oo

rx(n) = Pr(X =a,)= pry{n, k) (1.4)
o

py(k) = Pr(Y =b)=> pxv(n,k)

px(n) and py (k) denote the marginal probability distribution of X and Y
respectively.

Definition 1.3 (Continuous random variable) A random variable is said
to be continuous' if its values belong to R and if, for any real numbers a and
b, the probability that X belongs to the interval ]a,b] is given by:

o0

Pr(X €la, b)) :/ px (@)dx :/ px(2)l(x €la, b])dx (1.5)

—00

where px(x) is a function that must be positive or equal to zero such that
jj;o px(x)dx = 1. px(x) is called the probability densily function (pdf) of X.

1 The exact expression says that the probability distribution of X is absolutely continuous
with respect to the Lebesque measure.
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The function defined for any « € R by:

T

Fx(z)=Pr(X <x)= ] px(u)du (1.6)

-0

is called the cumulative distribution function (cdf) of the random variable X. It
is a monotonic increasing function and it verifies F'x (—oc) = 0 and Fx (4oc) =
1. Notice that px (x) also represents the derivative of Fx (z) with respect to z.

Definition 1.4 (Two continuous random variables) Let X and Y be two
random variables with possible values in R x R. They are said to be continuous
if, for any domain A of R, the probability that the pair (X,Y) belongs to A is
given by:

Pr(X,Y) € &) = ] A porr o iiidody (L.7)

where the function pxy (z,y) = 0, and is such that:

/ / pxy (@, y)drdy = 1
J4 JBR2

pxy(x,y) is called the joint probability density function of the pair (X,Y).

Property 1.2 (Marginal probability distributions) Let X and Y be two
continuous random variables with a joint probability distribution characterized
by pxvy(x,y). The probability distributions of X and Y have the following
marginal probability density functions:

+co

px@ = [ pxv(eudy (18)
+oo

py(y) = f_ pxy (@, y)dx

An example involving two real random variables (X,Y') is the case of a
complex random variable Z = X + jY.

It is also possible to have a mixed situation, where one of the two variables
is discrete and the other is continuous. This leads to the following:

Definition 1.5 (Mixed random variables) Let X be a discrete random vari-
able with possible values {ap, ..., ay,,...} and Y a continuous random variable
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with possible values in R. For any value a,, and for any real numbers a and b,
the probability:

b
Pr(X = an, Y €la ) = [ pxy () (1.9)

@

where the function pxy(n,y), withn € {0,...,k,...} and y € R, is > 0 and
verifies 3,50 Jepxy(n,y)dy = 1.

Definition 1.6 (Two independent random variables) Two random vari-
ables X and Y are said to be independent if and only if their joint probability
distribution is the product of the marginal probability distributions. This can
be expressed:

— for two discrete random variables:
pxv(n, k) = px(n)py (k)
for two continuous random variables:
pxy(2,y) = px(x)py ()
for two mized random variables:
pxy(n,y) = px(n)py (y)

where the marginal probability distributions are obtained with formulae (1.4)
and (1.8).

It is worth noting that, knowing pxy (z,y), we can tell whether or not X and
Y are independent. To do this, we need to calculate the marginal probability
distributions and to check that pxy (x,y) = px(x)py (y). If that is the case,
then X and Y are independent.

The following definition is more general.

Definition 1.7 (Independent random variables) The random wvariables
(X1,....Xy) are jointly independent if and only if their joint probability dis-
tribution is the product of their marginal probability distributions. This can be
expressed:

PX1 X2 X (21,22, - - ., Tn) = Px, (T1)Px, (22) - - . px,, (20) (1.10)

where the marginal probability distributions are obtained as integrals with respect
to (n — 1) variables, calculated from px,x,. x,(x1,02,...,2n).
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For example, the marginal probability distribution of X'y has the expression:

rx, (1) = [---/pxlx2.,.xn(ﬁ-‘1:£2,---aiﬁ-n)ffiﬁz---d:tfn
e e
R

In practice, the following result is a simple method for determining whether
or not random variables arc independent: if px, x,.. x, (1, 22,...,2,) is a prod-
uct of n positive functions of the type f1 (1) fo (:1:2) fn( ‘n ), then the variables
are independent.

It should be noted that if n random variables are independent of one an-
other, it does not necessarily mean that they are jointly independent.

Definition 1.8 (Mathematical expectation) Let X be a random variable
and [(x) a function. The mathematical expectation of [(X) — respectively

F(X,Y) - is the value, denoted by E{f(X)} — respectively E{f(X,Y)} - de-
fined:

— for a discrete random variable, by:

E{f(X)} =) flan)px(n)

=0

— for a continuous random variable, by:
E{(0) = [ f@px(@)da

— for two discrete random variables, by:

E {I(X‘ Y)} = Z Z .}r(wrr.e bk)pXY ("ﬂ., k)

n>0k>0

— for two continuous random variables, by:
BT = [ [ fe sy (e g)dody
R

provided that all expressions exist.

Property 1.3 If {X,, Xp, ..., X, } are jointly independent, then for any
integrable functions f1, fo, .... fu:

E {H fk(Xk}} = [T E{/e(X0)} (1.11)

k=1 k=1
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Definition 1.9 (Characteristic function) The characteristic function of the
probability distribution of the random variables X1, ..., X, is the function of

(w1, ...,uy,) € R™ defined by:

n
G')lexn (u] " un) ) {Cj“‘ Xi4tjun X, } —F {H cjun.Xk } (112)
k=1

Because |e/4X | = 1, the characteristic function exists and is continuous even
if the moments [E {X k} do not exist. The Cauchy probability distribution,
for example, the probability density function of which is py(z) = 1/7(1 +
2?), has no moment and has the characteristic function e=1*. Let us notice

Theorem 1.1 (Fundamental) (X4,..., X,) are independent if and only if

mn
Oxy.. X (1 un) = [ ] b ()
k=1

Notice that the characteristic function ¢x, (ug) of the marginal probability
distribution of X, can be directly calculated using (1.12). We have ¢x, (uy) =
E {ﬁj"’“x“} = ¢x,..%,(0,...,0,u,0,...,0).

Definition 1.10 (Mean, variance) The mean of the random variable X is
defined as the first order moment, that is to say E{X}. If the mean is equal to
zero, the random wvariable is said to be centered. The variance of the random
variable X is the quantity defined by:

var (X) =E{(X —E{X})*} =E{X?*} - (E{X}) (1.13)

The variance is always positive, and its square root is called the standard
deviation.

As an exercise, we are going to show that, for any constants a and b:

E{aX +b} = aB{X}+b (1.14)
var(aX +b) = a?var(X) (1.15)

Expression (1.14) is a direct consequence of the integral’s linearity. We
assume that Y = aX + b, then var(Y) = E{(Y —E{Y})?}. By replacing
E{Y} =aE{X} + b, we get var (V) =E {a®>(X —E{X})?} = o® var (X).

A generalization of these two results to random vectors (their components
are random variables) will be given by property (1.6).
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Definition 1.11 (Covariance, correlation) Let (X,Y) be two random vari-
ables®*. The covariance of X and Y is the quantity defined by:

cov(X,Y)

E{(X -E{X})(Y" —~E{Y"})} (1.16)
= E{XY*}-E{X}E{Y*}

In what follows, the variance of the random variable X will be noted var (X).
cov (X) or cov (X, X) have exactly the same meaning.

X and Y are said to be uncorrelated if cov (X.,Y) = 0 that is to say if
E{XY*} = E{X}E{Y™*}. The correlation coefficient is the quantity defined

by:

K T = K V) (1.17)
Vvar (X)/var (Y)
Applying the Schwartz inequality gives us |p(X,Y)| < 1.
Definition 1.12 (Mean vector and covariance matrix) Let {X;, ...,

Xn} be n random wariables with the respective means E{X;}. The mean
vector is the n dimension vector with the means E{X;} as its components.
The n X n covariance malric C is the matriz with the generaling element
Cij=cov(X;, X;) forl1<i<nandl1 <j<n.
Matrix notation: if we write
T
X=[X1 ... Xy

to refer to the random vector with the random variable X, as its k-th compo-
nent, the mean-vector can be expressed:

T
E{X}=[E{X1} ... E{X.}]
the covariance matrix:

C

E{(X -E{X})(X -E{X})T}
IE:{XXH} ~E{X}E{X}" (1.18)

and the correlation matriz

R=DCD (1.19)

2lixeept in some particular cases, the random variables considered from now on will be
real. However, the definitions involving the mean and the covariance can be generalized with
no exceptions to complex variables by conjugating the second variable. This is indicated by

a star () in the case of scalars and by the exponent H in the case of vectors.
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with
e o 0
D-| ° o (1.20)
: S T, 0
0 ... 0 Cc*?

R is obtained by dividing each element C;; of C by /C;;C};, provided that
Cy; # 0. Therefore R;; =1 and |[R;;]| < 1.

Notice that the diagonal elements of a covariance matrix represent the re-
spective variances of the n random variables. They are therefore positive. If
the n random variables are uncorrelated, their covariance matriz is diagonal
and their correlation matriz is the identity matriz.

Property 1.4 (Positivity of the covariance matrix) Any covariance ma-
triz is positive, meaning that for any vector a € C", we have a"Ca > 0.

Property 1.5 (Bilinearity of the covariance) Let Xy, ..., X, Y1, ...,

Y, be random variables, and vy, ..., vy, Wy, ..., w, be constants. Hence:
m mn m T
cov E v} X, E wiY; | = E E viw;cov (Xy, Y)) (1.21)
i=1 j=1 i=1 j=1

Let V and W be the vectors of components v; and w; respectively, and
A=V"X and B = W"Y. By definition, cov(A4,B) = {(A — E{A})(B
—E{B})*}. Replacing A and B by their respective expressions and using
E{A} = VIE{X} and E{B} = WHE{Y}, we obtain, successively:

cov(4,B) = E {V”(x _E{X})(Y —-E {Y})HW}

m n
ZZv:chov(Xg,Y})

i=1 j=1

thus demonstrating expression (1.21). Using matrix notation, this is written:
cov (V”X, WHY) -vicw (1.22)

where C' designates the covariance matrix of X and Y.
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Property 1.6 (Linear transformation of a random vector) Let {Xi,...,
Xn} be n random variables with E{X} as their mean vector and Cx as their

covariance matriz, and let {Y1,...,Y,} be q random variables obtained by the
linear transformation:
Y Xy
|=4]:|+b
Yq X'n.

where A is a malriz and b is a non-random vector with the adequate sizes. We
then have:

E{Y} = AE{X}+b
Cy = ACxA?

Definition 1.13 (White sequence) Let {X, ..., X,,} be a set of n random
variables. They are said to form a white sequence if var(X;) = o? and if
cov (X;, X;) =0 fori # j. Hence their covariance matriz can be expressed:

C =4I,

where I,, is the n x n identity matriz.

Property 1.7 (Independence = non-correlation) The random variables
{X1, ..., X,,} are independent, then uncorrelated, and hence their covariance
matriz is diagonal. Usually the converse statement is false.

1.2 Conditional expectation

Definition 1.14 (Conditional expectation) We consider a random wvari-
able X and a random vector Y taking values respectively in X C R and Y C RY
with joint probability density pxy (z,y). The conditional expectation of X given
Y. is a (measurable) real valued function g(Y) such that for any other real val-
wed function h(Y') we have:

E{IX -g(Y)P"} <E{|X - h(Y)[*} (1.23)
9(Y') is commonly denoted by E{X|Y }.

Property 1.8 (Conditional probability distribution) We consider a ran-

dom wvariable X and a random vector Y taking values respectively in X C R

and Y C R with joint probability density pxy (x,y). Then E{X|Y} = ¢(Y)

where:

g(y) = / T px|y (z,y)dx
Jx
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with

pxy (z,y)

and py(y) = / pxy (z, y)dz (1.24)
X
px|v(z,y) is known as the conditional probability distribution of X given Y.

Property 1.9 The conditional expectation verifies the following properties:

P

. linearity: E{a1 Xy + ax Xo|Y} = a1 E{ X |Y} 4+ aoE{X5|Y}:
2. orthogonality: E{(X —E{X|[Y}h(Y)} =0 for any function h : Y — R;

3. E{h(Y)f(X)|Y} = h(Y)E{f(X)|Y}, for all functions f : X — R and
h:Y—R;

4. EAE{f(X,Y)|Y}} = E{f(X,Y)} for any function f : X x Y — R;
specifically

E{E{X|Y}} = E{X}

5. refinement by conditioning: it can be shown (see page 13) that

cov (E{X|Y}) < cov(X) (1.25)

The variance is therefore reduced by conditioning:

6. if X and'Y are independent, then E{f(X)|Y} =E{f(X)}. Specifically,
E{X|Y} =E{X}. The reverse is not true;

7. E{X|Y} = X, if and only if X is a function of Y.

1.3 Projection theorem

Definition 1.15 (Scalar product) Let H be a vector space constructed over
C. The scalar product is an application

XYeUxH— (X Y)eC
which verifies the following properties:
-(X,Y)=(Y,X)*;
- (aX +8Y,Z2)=a(X,Z2)+ 8(Y, Z);
- (X, X) > 0. The equality occurs if. and only if, X = 0.
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A vector space constructed over € has a Hilbert space structure if it pos-
sesses a scalar product and if it is complete?. The norm of X is defined by
IX|| = +/(X,X) and the distance between two elements by d(X;, Xo) =
[|X1—Xz||. Two elements X and X are said to be orthogonal, noted X; 1 X,
if and only if (X, X5) = 0. The demonstration of the following properties is
trivial:

— Schwarz inequality:

(X1, Xo)| < [ Xyl [[ Xz (1.26)

the equality occurs if and only if A exists such that X; = AXs;

triangular inequality:
X1l = X2l < 11Xy = Xl < [ X3l + 1 Xzl (1.27)
— parallelogram identity:
I1X1 + Xall” + 1 X1 = Xoll = 21 X: |17 + 2/ X (1.28)

In a Hilbert space, the projection theorem enables us to associate any given
element from the space with its best quadratic approximation contained in a
closed vector sub-space:

Theorem 1.2 (Projection theorem) Let H be a Hilbert space defined over
C and C a closed vector sub-space of H. Each vector of H may then be associated
with a unique element Xy of C such that VY € C we have d(X, Xy) < d(X,Y).
Vector Xg wverifies, for any Y € C, the relationship (X — Xo) LY.

The relationship (X — Xy) L Y constitutes the orthogonality principle.

A geometric representation of the orthogonality principle is shown in Figure
1.1. The element of C closest in distance to X is given by the orthogonal
projection of X onto C. In practice, this is the relationship which allows us to
find the solution Xj.

This result is used alongside the expression of the norm of X — Xy, which
Is written:

IX - Xol2 = (X,X - Xo) — (X0, X — Xo)
= [IX]*> - (X, Xo) (1.29)

The term ( Xy, X — Xp) is null due to the orthogonality principle.

3A definition of the term “complete” in this context may be found in mathematical text-
hooks. In the context of our presentation, this property plays a concealed role, for example
in the existence of the orthogonal projection in theorem 1.2.
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Xo

Figure 1.1 — Orthogonality principle: the point Xo which is the closest to X in C is
such that X — Xo is orthogonal to C

In what follows, the vector X will be noted (X|C), or (X|Yi.,) when the
sub-space onto which projection occurs is spanned by the linear combinations
of vectors Y1, ..., Y.

The simplest application of theorem 1.2 provides that for any X € C and
any € € C:

(X.2)
(X|e) = — ¢ (1.30)
(€.€)
The projection theorem leads us to define an application associating element
X with element (X|C). This application is known as the orthogonal projection
of X onto C. The orthogonal projection verifies the following properties:

1. linearity: (AX7 + pX2|C) = MX1|C) + p(X2|C);
2. contraction: ||[(X|C)|| < || X]|;

3. if ¢’ C C, then ((X|C)|C") = (X|C);

4. if C; L Cy, then (X|C1 & C2) = (X]C1) + (X|C2).

The following result is fundamental:

(A¥inpr) = (XWin) + (Xle) = (XI¥i) + 22 (131)
where ¢ = Y11 — (Ve1|Y1.n ). Because the sub-space spanned by Yi.,41 coin-
cides with the sub-space spanned by (Yj.,.) and because ¢ is orthogonal to
the sub-space generated by (Y., ), then property (4) applies. To complete the
proof we use (1.30).

Formula (1.31) is the basic formula used in the determination of many
recursive algorithms, such as Kalman filter or Levinson recursion.
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Theorem 1.3 (Square-integrable r.v.) Let L3 be the vector space of square-
integrable random variables, defined over the probability space (U, A, P). Using
the scalar product (X,Y) = E{XY*}, L% has a Hilbert space structure.

Conditional expectation

The conditional expectation [E{X|Y } may be seen as the orthogonal projection
of X onto sub-space C of all measurable functions of Y. Similarly, E{X} may
be seen as the orthogonal projection of X onto the sub-space D of the constant
random variables. These vectors are shown in Figure 1.2. Because D C C,
using Pythagoras’s theorem, we deduce that:

var (X) = |X ~E{X}|” = | X —E{X|Y} >+ ||E{X]Y} - E{X} |?

—var(E{X|Y})

demonstrating var (E {X|Y}) < var(X). This can be extended to random
vectors, giving the inequality (1.25) i.e. cov (E{X|Y}) < cov (X).

E(x)

Figure 1.2 — The conditional expectation B {X|Y} is the orthogonal projection of X
onto the set C of measurable functions of Y. The expectation E{X} is the orthogonal
projection of X onto the set D of constant functions. Clearly, D C C

1.4 Gaussianity

Real Gaussian random variable

Definition 1.16 A randem variable X is said to be Gaussian, or normal, if
all its values belong to R and if ils characteristic function (see definition (1.9))
has the expression:

1 5 .
ox(u) =exp (jmu — Ecrzuz) (1.32)

where m is a real parameter and o is a positive parameter. We check that its

mean is equal to m and its variance to o2,
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If 0 # 0, it can be shown that the probability distribulion has a probability
density function with the expression:

exp (—M) (1.33)

(z) = —
pXI_J A 202

Complex Gaussian random variable

In some problems, and particularly in the field of communications, the complex
notation X = U + jV is used, where U and V refer to two real, Gaussian,
centered, independent random variables with the same variance o2 /2. Because
of independence (definition (1.7)), the joint probability distribution of the pair
(U, V') has the following probability density:

1 u? 1 2
pov(u,v) = pu(u)py(v) = J—\/EGXP (—;) X a—ﬁeXP (—;)
1 u? 4+ v?
) exp (_ o2 )

If we notice that |z|2 = u? 4+ v2, and if we introduce the notation px (z) =
puv (u,v), we can also write:

1 z/?
px(x) = —3 OXP (—lg—L) (1.34)

Expression (1.34) is called the probability density of a complex Gaussian
random variable. The word eircular is sometimes added as a reminder that the
isodensity contours are the circles u? + v = constant.

Note that:
E{X?} = E{U+jV)U+;V)}=0
and
E{|X]’} = E{XX*}=E{{U+,;V)U-;V)}

= E{U’}+E{V?} =47

Gaussian random vectors

Definition 1.17 (Gaussian vector) Xy, .... X, are said to be n jointly
Gaussian variables, or that the length n vector [Xl Xﬂ] r is Gaussian,
if any linear combination of its components, that is to say Y = a'' X for any
a = [a-l an]T € C", is a Gaussian random variable.
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This definition is applicable for vectors with real or complex components.

Theorem 1.4 (Distribution of a real Gaussian vector) It can be shown
that the probability distribution of a n Gaussian vector, with a length n mean
veetor m and an (n x n) covariance matriz C, has the characteristic function:

1
Ox(Ul,. .., Up) = CXP (IjmTu - EuTCu) (1.35)
where u = (uq,...,u,)T € R*. Letx = (21,...,2,)T. If det{C} # 0, the
probability distribution’s density has the expression:

1

B ) = ex —l z—m) C Mz - ;
,Tn) = (@n)"/2/aet (O] p( 2( m) C m)) (1.36)

Theorem 1.5 (Distribution of a complex Gaussian vector) We consider
a length n compler Gaussian vector, with a length n mean vector m and an
(n x n) covariance matriz C. If det{C} # 0, the probability distribulion’s
density has the expression:

D1y e ooy Bi) = m exp (—(z —m)AC™(z —m)) (1.37)
We have

]E{(:s—m)(m—m)H} = C (1.38)

E{(m—m)(az—m)z‘} = 0, (1.39)

where 0y, is the (n x n) null-matriz.

Below, the real and complex Gaussian distributions will be noted M (m, C)
and N.(m, C) respectively.

Theorem 1.6 (Gaussian case: non-correlation = independence) If n
jointly Gaussian variables are uncorrelated, C is diagonal; then they are inde-
pendent.

Theorem 1.7 (Linear transformation of a Gaussian vector) Let[X...
Xn]T be a Gaussian vector with a mean vector my and a covariance malric
Cx. The random vector’ Y = AX + b, where A and b are a matriz and a
vector respectively, with the ad hoc length, is Gaussian and we have:

my = Amx +b and Cy = ACxA” (1.40)

In other words, the Gaussian nature of a vector is untouched by linear
transformalions.
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Equations (1.40) are a direct consequence of definition (1.17) and of prop-
erty (1.6).

More specifically, if X is a random Gaussian vector N (m, C), then the
random variable Z = C~Y/?(X — M) follows a Gaussian distribution N(0, T).
Another way of expressing this is to say that if Z has the distribution A(0, I')
then X = M + C"Y?Z has the distribution N(m,C).

Note that, if C denotes a positive matrix, a square root of C' is a malrix
M which verifies:

C = MM (1.41)

Hence, if M is a square root of C, then for any unitary matrix U, i.e. such
that UUM = I, matrix MU is also a square root of C. Matrix M is therefore
defined to within a unitary matrix. One of the square roots is positive, and is
obtained in MATLAB® using the function sqrtm.

The Gaussian distribution is defined using the first and second order mo-
ments, i.c. the mean and the covariance. Consequently, all moments of an
order greater than 2 are expressed as a function of the first two values. The
following theorem covers the specific case of a moment of order 4.

Theorem 1.8 (Moment of order 4) Let X, Xo, X3 and X, be four real

or complex centered Gaussian random variables. Hence,
E{xPxfxpxf) = B{xPxfyE{xfx} (1.42)

+E{xP xR {xPxp ) +B{xPx]hE{xf x{ )

where [3; is either “star” (conjugate variable) or “non-star” (non-conjugate
variable). Hence:

cov (X-?' XPe, xps Xf“) (1.43)
= E{xPxfxfxf ) -m{xPxP m{xPx}

E {X{"’l X;?}E {Xff?xj} +E {Xfl Xf“} E {XfEXf‘“‘}

where (35 is “star” if 3; is “non-star” and conversely.

Note that, based on (1.39), for complezr Gaunssian variables, the terms
E{X;X,}=0.
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Gaussian conditional distribution

Consider two jointly Gaussian variables X and Y, taking their values from
X C CP and Y C C1 respectively. The respective means are noted px and py,
and

cov(X,X) cov(X.Y)

cov (Y, X) cov(Y,Y) (1.44)

is the joint covariance matrix. This produces the following results:

Property 1.10 The conditional expectation of X given'Y coincides with the
orthogonal projection of X onto the affine sub-space spanned by 1 and Y,
written B + AY . Hence:

— the conditional expectation is expressed as:

E{X|Y}=pux +cov(X,Y) [cov (Y, Y')]_E (Y — py) (1.45)
— the conditional covariance is expressed as:

cov (X|Y) = cov (X, X) — cov(X,Y) [cov (Y,Y)] T cov (Y, X) (1.46)
= the conditional distribution of px|y(®,y) is Gaussian. The mean is

expressed as (1.45) and the covariance is given by expression (1.46).

Let g(Y) be the second member of (1.45), and let us demonstrate that g(¥")
is the conditional expectation of X given Y. A rapid calculation shows that
E {(X - g(Y))YH} = 0. Consequently, the random vectors Z = (X — g(Y"))
and Y are uncorrelated. As the vectors are jointly Gaussian, following property
(1.9), they are independent and hence E{Z|Y} = E{Z}. Using the second
member of (1.45), we obtain E{Z} = 0. On the other hand:

E{X —g(V)IY} = E{X|Y}-g(Y)

It follows that E{X|Y} = ¢(Y"). To demonstrate expression (1.46), let us
denote X = X — pux and X3 = E{X|Y} — ux. Hence, successively:

E{(X°= Xy)(X° = Xp)"|Y} = E{(X°-X3)(X - X3)"}
E{(X°- X§)Xx°7}
= cov (X, X) — cov(X,Y)[cov (YY) eov (Y, X)

where, in the first equality, we use the fact that (X — X75) is independent of
Y. In conclusion, the conditional distribution of X, given Y, is written:
pxy(®,y) = N(ux +cov(X,Y) [cov (YY) H(Y —py),
cov (X, X) —cov (X,Y) [cov (YY) lcov (Y, X)) (1.47)
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Note that the distribution for random vector E {X|Y} should not be con-
fused with the conditional distribution px|y (@, y) of X given Y. We shall
restrict ourselves to the real, scalar case, taking pxy and py as the respective
means of X and Y, and

_| “ X POXOY
poxoy oy

with —1 < p < 1 as the covariance matrix. The conditional distribution of X

given Y has a probability density px |y (z:y) = N(px+pox (y—py)/oy, o%(1—

p%)). On the other hand the random variable distribution E { X |Y'} has a proba-

bility density of M (px, pgogfr) - Indeed based on equation (1.45), E {E{X|Y}} =

px and E{(E{X|Y} — pux)?} = p*o% 0} /oy = p°c%.

1.5 Random variable transformation

1.5.1 Change of variable formula

In many cases, it is necessary to determine the distribution of Y = g(X) from
the distribution of X. We shall consider this question in the context of contin-
uous random vectors of dimension 2; the generalization to higher dimensions
is straightforward.

Take two random variables X; and X with a joint probability density
Px, X, (21, x2) and two measurable functions gi (z1, z2) and go(z1, x2). We shall
consider the two random variables:

{Y1 = gi1(X1, Xp)
Yo = g2(X1,X5)

and assume that the transformation defined in this way is bijective. For any
pair (y1,¥y2), there is a single solution (x1,x2). We may therefore write:

Xy = M, Ye)
Xy = ho(Y1,Y2)
In this case, the probability distribution of the random variables (Yj,Y3)

has a density of:

dx
det {@H (1.48)

where g—ﬁ denotes the Jacobion of h : y — @ which is expressed as:

Ohi(y1,y2)  Oha(yr,y2)
Jx e e

dy | y,ye) Oha(yiy2)
iy )

Pvive (Y1, 92) = Px, x, (M (y1, 42), ha(y1,y2))
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In cases where the transformation is not bijective, it is necessary to sum all
of the solutions giving the pair (1, z2) as a function of the pair (y1,y2).
Note that the Jacobian of a bijective function has one particularly useful
property. Taking a bijective function & € R? « y € R%, we have:
dx d
ZTx¥ - g,
dy Oz

This property allows us to calculate the Jacobian using the expression which
is easiest to calculate, and, if necessary, to take the inverse.

Example 1.1 (Law of the sum of two random variables)

As an example, let us consider two random variables X; and X, with a joint
probability density px, x, (21, 22). We wish to determine the joint distribution
of the pair (Y7,Y3), defined by the following transformation:

Y1=X1 o X1=Y1
Yo =X+ Xo Xo=Ys-Y;

where the determinant of the Jacobian has a value of 1. Applying (1.48), we
obtain the following probability density for the pair (Y7, Y5):

pYLYQ(yltyQ) = pXLXQ(ylt?;J'Q - 1)

From this, the probability density of Y2 = X; + X5 may be deduced by
identifying the marginal distribution of ¥3. We obtain:

pra(o) = [ e (.02 = 32)dn
In cases where X and X, are independent:
Px1 x5 (71, 72) = px,(71)px, (2)
henee:
Py, (y2) = /R'pxj (y1)px2(y2 — y1)dys
which is the expression of the convolution product (px, * px,)(y2).

1.5.2 J§-method

In cases where only the first two moments are considered, under very general
conditions, the d-method allows us to obtain approximate formulas for the
mean and the covariance of:

Y =g(X) (1.49)
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for any function g : R™ s R?. Let ux = E{X} € R™. Assuming that g is
differentiable at point px and using the first order Taylor expansion of g in
the neighborhood of px, we write

d
Y =g(X) =g(px)+ ﬁ (X —px) (1.50)
T=px
where
Bgl 8g|
) 2 )]

%y _
x| :

N gf]'( ) ag‘)‘ ( )

PR .I_ - e ow
By P Bz,, X

is the g x m Jacobian matrix of g performed at point px. For the sake of
simplicity, this is noted J{px) below. Therefore, taking the expectation of
(1.50), we get at first order

E{Y}~g(ux)+ J(px) X E{X —pux} =g(pux) +0
then
Y -E{Y}= J(px)(X — px)
Therefore, according to the definition (1.18) of cov (YY), we have
cov (9(X)) ~ J(ux) cov (X) I (juxc)

It is worth noting that cov (g(X)) is a ¢ x ¢ matrix and cov (X ) is a m xm
matrix. In summary we have:

E{g(X)} ~ g(px)

(1.51)
cov(g(X)) ~ J(ux)cov(X) JH(ux)

The é-method is commonly used when calculating the mean and the covari-
ance of g(X) is either intractable or the probability distribution of X is not
fully specified.

Exercise 1.1 (d-method) (sce page 235) Consider two random variables
(X1, X5), Gaussian and independent, with means of gy and po respectively,
and with the same variance 2. Using the pair (X1, X»), we determine the pair
(R, 0) by bijective transformation:

) B | Xi = Rcos(f)eR
(X1,X2) = h(R, ) { X, = Rsin(f)eR

- ;[ B = 1Xi+iX|= VX +XFeRF
(RO =g(ti xa): { § 2 Mt o VAL
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Use the d-method to determine the covariance of the pair (R, 6). Use this
result to deduce the variance of R. This may be compared with the theoretical
value given by:

2 2 2

. o —(pi + p3)

var () = 2% + (i3 + 13) — "o I3, (#)

where Lys(x) = 1F1 (—%; ];IJ.') is the hypergeometric function. We see that,

when (u?+pu3)/0? tends toward infinity, var (R) tends toward 2. Additionally,
when p; = pe = 0, we have var (R) = (4 — 7)0?/2 =~ 0.4302.

1.6 Fundamental statistical theorems

The following two theorems form the basis of statistical methods, and are
essential to the validity of Monte-Carlo methods, which are presented in brief in
Chapter 3. In very general conditions, these theorems imply that the empirical
average of a series of r.v.s will converge toward the mean. The first theorem,
often (erroncously) referred to as a law, sets out this convergence; the second
theorem states that this convergence is “distributed in a Gaussian manner”.

Theorem 1.9 (Law of large numbers) Let X,, be a series of random vec-
tors of dimension d, independent and identically distributed, with a mean vector
m=E{X,} € R? and finite covariance. In this case,

)'\’

]- a.s.
Z Xy S noiee E{X 1} =m
n=1

N
and convergence is almost sure.

One fundamental example is that of empirical frequency, which converges
toward the probability. Let X, be a series of N random variables with values in
ay, ag, ..., ay and let f; be the empirical frequency, defined as the relationship
between the number of values equal to a; and the total number N. In this
case:

N
fi= 5 31X =a;) S5 E{L(X: = )} =P {X: = a;}

n=1

Theorem 1.10 (Central limit theorem) Let X,, be a series of random vec-
tors of dimension d, independent and identically distributed, of mean vector
m =E{X1} and covariance matriz C' = cov (X1, X1). In this case:

i >
vN (T > X - m) 2y sisa N0, G

n=1

with convergence in distribution.
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Convergence in distribution is defined as follows:

Definition 1.18 (Convergence in distribution) A set of r.v. Uy is said
to converge in distribution toward an r.v. U if, for any bounded continuous
function f, when N tends toward infinity, we have:

E{f(Un)} 9 N-oo E{f(U)} (1.52)

Theorem 1.10 is the basis for calculations of confidence intervals (see defini-
tion 2.6), and is used as follows: we approximate the probability distribution of
the random vector v NV (1\"‘1 Zg_l X, - -m) . for which the expression is often

impossible to calculate, by the Gaussian distr 1but1011 For illustrative purposes,
consider the case where d = 1, taking my = N~ Z ne1 Xn. Hence, for any
e > 0

® 1 2 2
N (Pnr PN QPR —u /20
]P{ N(mny —m) € ( ,g+-)}~2'/0 \/Q_c du

Letting € = co, we have:

P{ﬁ-w - :2;_ <m< My + — } / —c“ /de

Aim for a probability equal typically to 0.05, ¢ = 1.96.
As expected, the smaller o and/or the higher N, the narrower, i.e. “better”,
the interval will be.

Exercise 1.2 (Asymptotic confidence interval) (see page 236) Consider

a sequence of N independent random Bernoulli variables X such that
S e T e

P{X; =1} = p. To estimate the proportion p, we consider p = 5 >,y Xk.

1. Using the central limit theorem 1.10, determine the asymptotic distribu-
tion of p.

2. Use the previous result to deduce the approximate expression of the prob-
ability that p will lie within the interval between p—e¢/v N and p+¢/vN.

3. Use this result to deduce an interval which ensures that this probability
will be higher than 100 a%, expressed as a function of N and a: typically,
a = (0.95,

4. Write a program which verifies this asymptotic behavior.

The following theorem, known as the continuity theorem, allows us to extend
the central limit theorem to more complicated functions:
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Theorem 1.11 (Continuity) Let Uy be a series of random vectors of di-
mension d such that

\/N(UN -m) LN—Hm N(04,0C)

and let g be a function RY — RY supposed to be twice continuously differentiable.
Thus,

VN(g(Ux) — g(m)) ~ N 400 N(0,.T)
where I' = 8g(m) C 8T g(m) and where

Agr(tts--estig) = GG 1)
Juy g
a.‘}fi’ T T 89,1(-;;,1 Y

ts the Jacobian of g and dg(m) the Jacobian caleulated at point m.

Applying theorem (1.11), consider the function associating vector U with
its £-th component, which is written:

Uy~ Une=EjUy

where Ey is the vector of dimension d of which all components are equal to 0,
with the exception of the /-th, equal to 1. Direct application of the theorem
gives:

\/f\_'r(U;\r__g - mg) —d?* N(U C;gg)

where my is the £-th component of m and Cyy the £-th diagonal element of C.

1.7 Other important probability distributions

This section presents a non-exhaustive list of certain other important probabil-
ity distributions. Some of the associated functions, which are not available in
the basic version of MATLAB®, are given in simplified form in the Appendix.

Uniform distribution over (a,b) : noted U(a,b) of density

i, B = ﬁ]l(;r € (a,b)) (1.53)

where a < b. The mean is equal to (b+a)/2 and the variance to (b—a)?/12.
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Exponential distribution : noted E(#), of density
px(x:0) = 07 'e*/1(x > 0) (1.54)

with @ > 0. The mean is equal to § and the variance to #2. We can easily
demonstrate that E(9) = 0E(1).

Gamma distribution : noted G(k, ), of density

px(z; (k,0)) = r(;)gkc_”wa:k_lll(a: > 0) (1.55)

where § € Rt and k € R*. The mean is equal to k0 and the variance to
k02. Note that E(0) = G(1,0).

x? distribution with k d.o.f. : noted x2. The r.v. ¥ = 3°F X2 where
X; are k Gaussian, independent, centered r.v.s of variance 1 follows a x?
distribution with % degrees of freedom (d.o.f.). The mean is equal to k
and the variance to 2k.

Fisher distribution with (&1, k2) d.o.f. : noted ['(ky, k2). Let X and Y be
two real, centered Gaussian vectors of respective dimensions k; and ko,
with respective covariance matrices Iy, and I, and independent of each
other, then the r.v.

EIXTX

F'. o Py, [
i k;TYTY

(1.56)

follows a Fisher distribution with (&, k2) d.o.f.

Student distribution with % d.o.f. : noted Tj.. Let X be a real, centered
Gaussian vector, with a covariance matrix I, and Y a real, centered
Gaussian vector, of variance 1 and independent of X. The r.v.

o= — Y (1.57)

Jig ke
k IZ'E=1 X;z

follows a Student distribution with & d.o.f.

We can show that if Z follows a Student distribution with & degrees
of freedom, then Z? follows a Fisher distribution with (1, k) degrees of
freedom.



