
1

Evolutionary Algorithms

This chapter presents the basic principles of evolutionary algorithms as an

introduction to the subsequent chapters. After a brief history of the domain in

section 1.1, a generic evolutionary model is described in section 1.2. Sections

1.3 to 1.5 detail widespread variants of the operators composing the

evolutionary algorithms, with a particular emphasis on binary representation.

The chapter ends with a short presentation in section 1.6 of the famous

genetic algorithms that have the originality to favor the binary representation

associated with a transcription genotype–phenotype.

1.1. From natural evolution to engineering

According to Charles Darwin [DAR 59], the evolution of living beings rests

on several facts:

– the variations of individual characteristics between parents and offspring;

– the heritability of much of these characteristics;

– a competition that selects the fittest individuals of a population in relation

to their environment, in order to survive and reproduce.

From these facts, Darwin deduced that competition allows the

transmission of hereditary beneficial variations among individuals that

accumulate from generation to generation.

In the 1950s, the development of the electronic computer facilitated the

simulation of this theory and some researchers desired to test it to solve

CO
PYRIG

HTED
 M

ATERIA
L



2 Evolutionary Algorithms

engineering problems. But these works were not convincing because of the

weak performances of the calculators available at that time. Furthermore, the

extreme slowness of the evolution appeared prohibitive to usefully simulate

this process.

During the 1960s and 1970s, as soon as calculators of more credible

capacity became accessible, many attempts to model the process of evolution

were undertaken. Among those, three approaches emerged and progressed

independently until the beginning of the 1990s:

– the evolution strategies (ESs) of H. P. Schwefel and I. Rechenberg

[REC 65, BEY 01], which are derived from an experimental optimization

method to solve fluid dynamics problems;

– the evolutionary programming (EP) of L. J. Fogel et al. [FOG 66] which

aimed, in the mid-1960s, to evolve the structure of finite-state automata with

iterated selections and mutations; it was desired to be an alternative to artificial

intelligence at the time;

– Genetic algorithms (GAs) were presented in 1975 by J.H. Holland

[HOL 92], with the objective of understanding the underlying mechanisms of

systems able to self-adapt to their environment.

Thereafter, these approaches underwent many modifications according to

the variety of the problems faced by their founders and their pupils. Genetic

algorithms became extremely popular after the publication of the book

“Genetic Algorithms in Search, Optimization and Machine Learning” by D.

E. Goldberg in 1989 [GOL 89]. This book, distributed worldwide, resulted in

exponential growth in interest in this field. While there were about a few

hundred publications in this area during the 20 year period before this book

was published, there are several hundreds of thousands of references related

to evolutionary computation available today, according to the website “google

scholar”1. Researchers in this field have organized common international

conferences for presenting and combining their different approaches.

The widespread term Evolutionary Computation appeared in 1993 as the

title of a new journal published by the MIT Press. It was widely used to

designate all methods based on the metaphor of the biological evolution

1 https://scholar.google.com/scholar?q=“genetic+algorithms”



Evolutionary Algorithms 3

theory, as well as many others. For example, although it is inspired by a

simplified model of social behavior, it is common to consider “Particle Swarm

Optimization” as an evolutionary approach. “Particle Swarm Optimization”

algorithms have notable common points with other more conventional

evolutionary algorithms by assimilating “swarm” and “population”,

“particles” and “individuals”. According to Michalewicz [MIC 12]: “It seems
that Evolutionary Algorithms, in the broad sense of this term, provide just a
general framework on how to approach complex problems.”

1.2. A generic evolutionary algorithm

Evolutionary algorithms are iterative algorithms that make the individuals

of a population evolve over a number of generations. A generation is in fact an

iteration of the main loop of these algorithms (Figure 1.1). Any individual in

a population contains at least the information required to represent a more or

less efficient solution to the target problem or a part of a solution, such as in

“Learning Classifier Systems” [BOO 89] [URB 09].

An evolutionary algorithm works on a population of interacting parent
individuals to produce a set of offspring individuals at every generation. At

the end of each generation, selected offspring replace parents to build the

parent population at the next generation, in such a way that its size is constant

or, more rarely, controlled according to a given policy.

In accordance with the Darwinist guiding principle, the fitter an individual

is, the more often it is selected to reproduce or survive. To make this selection

possible, a fitness value is attached to each individual. It may be evaluated

with a given fitness function, or possibly by other means such as simulations.

For instance, in the context of optimization tasks, the fitness function is the

objective function or else it strongly depends on the objective function. For

each generation, the fitnesses of the offspring have to be evaluated, which can

be computation intensive if the population is large.

The variation operators generate new offspring from one or several parents

according to a given representation. For instance, to solve a given problem

in a domain of Rn, this representation could be an array of n floating point

numbers. But it could also be an array of binary digits that represents a vector

of these n real values, with an appropriate encoding. Thus, the choice of a



4 Evolutionary Algorithms

representation for the individuals depends not only on the problem, but also

on the properties of the available variation operators. These properties have

to favor the generation of good offspring as much as possible. The choice of

appropriate representation and variation operators has a critical influence on

the performance of evolutionary algorithms.

Figure 1.1. The generic evolutionary algorithm

Interactions between individuals of a population characterize the

evolutionary algorithms. Several parents can interact to generate new

offspring. Offspring and parents interact to select the fittest of them for

reproduction or survival through election operators. Obviously, when a

population contains only one parent, for instance, there is no interaction

between several parents. However, this particular case is still an evolutionary

algorithm if the interactions are specified in the algorithm and occur when

they can be applied.

Figure 1.1 depicts the generic evolutionary algorithm. The operators

involved in this algorithm are generic because many variants of these operators

have been proposed:

– first, the initialization step generates μ individuals to constitute a

population, μ being a free parameter of the algorithm. The population

initialization can be obtained from dedicated heuristics if some information

about the problem to solve is known, or in the contrary case, by default, the

initialization step generates the individuals randomly in the search domain



Evolutionary Algorithms 5

according to a distribution depending on the evolutionary algorithm variant

used;

– the fitness values of the μ individuals are then determined during the

“fitness evaluation” step;

– the parental selection or selection for the reproduction, or simply

the selection operator determines how many times any individual will be

reproduced in a generation, depending on its fitness: the higher the fitness

of an individual, the more it reproduces. The selection operator generates a

total of κ copies of parents that will be used by the variation operators;

– assuming that each selected copy can be used only once by the variation

operators, κ has to be large enough to allow the variation operators to generate

λ offspring, where λ is another free parameter of the algorithm. For instance,

if the variation operators produce two offspring from one pair of parents, then

κ = λ. If the variation operators produce only one offspring from one pair of

parents, then λ pairs of parents are required and κ = 2λ. The hexagonal shape

related to “variation operators” shown in Figure 1.1 may represent a chain of

several operators that are subsequently applied, such as mutation and crossover

operators, typically;

– the fitnesses of the λ offspring are then evaluated;

– afterwards, the environmental selection or selection for the replacement,
or simply the replacement operator decides which individuals will survive in

the population in the next generation among the μ parents and λ offspring;

– when the current generation ends, a stopping test allows the algorithm to

stop according to the criteria defined by the user. Otherwise, another generation

begins with the new population built by the environmental selection operator.

Among the evolutionary algorithm variants, parental selection or else

environmental selection may be independent of fitnesses, provided that there

is a bias in favor of the fittest individuals from generation to generation.

1.3. Selection operators

1.3.1. Selection pressure

The individuals which have the best fitnesses are reproduced more often

than the others and replace the worst ones. Sometimes, a population contains

a non-optimal super-individual with a much higher fitness than the others.



6 Evolutionary Algorithms

Depending on the nature or the parameters of the selection operators, it could

potentially reproduce much more quickly than the others. Its copies could

then invade the population before the variation operators find better solutions.

The exploration of the search space becomes local, since it is limited to a

random local search centered on the super-individual. In this way, there will

be a high risk that the algorithm cannot find a global optimum because it

remains trapped in any local optimum.

In another case, according to the nature of the parameters of the selection

operators, low fitness individuals and high fitness individuals could have

almost the same average number of offspring. In this case, the convergence

could be strongly slowed down unnecessarily.

In the first case mentioned above, the super-individual creates a selection

pressure that is too high, while in the second case, the selection pressure is too

low.

If the variation operators are disabled, the best individual should reproduce

more quickly than the others, until its copies completely take over the

population. This observation leads to the first evaluation of the selection

pressure for evolutionary algorithms, suggested by Goldberg and Deb in 1991

[GOL 91]. The takeover time τ∗ is defined as the number of generations

required to fill the population with copies of the best individual under the

action of the selection operators only: the lower the value of τ∗, the higher the

selection pressure.

The selection intensity S is another concept, borrowed from the “population

genetics” theory [HAR 06], to evaluate the selection pressure. Let f̄ be the

average fitness of the population before the selection. Let ḡ be the average

fitness of the selected individuals. Then, S measures the increase in the average

fitness of the individuals of a population determined before and after selection

with the standard deviation σf of the individual fitnesses before selection taken

as a unit of measure:

S =
ḡ − f̄

σf

If the selection intensity is computed for the reproduction, then

f̄ =
∑μ

i=1 fi/μ, where fi is the fitness of an individual i, and

ḡ =
∑κ

i=1 gi/κ, where gi is the fitness of the selected individual i and κ is the



Evolutionary Algorithms 7

number of selected individuals. The definitions presented above are general

and are applicable to any selection technique. It is possible to present other

definitions, whose validity is possibly limited to certain techniques, as we will

see later with regard to the proportional selection.

1.3.2. Genetic drift

Genetic drift is also a concept which derives from the population genetics
theory [HAR 06]. It is related to random fluctuations of the frequency of

alleles in a population of small size, where an allele is a variant of an element

of a sequence of DNA having a specific function. For this reason, hereditary

features can disappear or be fixed at random in a small population even

without any selection pressure.

This phenomenon also occurs within the framework of the evolutionary

algorithms if their selection operators are stochastic. At the limit, even for a

population composed of different individuals subject to neutral selection2, in

the absence of the variations generated by mutation and crossover operators,

the population converges towards a state where all the individuals are

identical. Figure 1.2 illustrates the effect of genetic drift in a population of

100 individuals in a two-dimensional search space Ω, according to the

generation number. Individuals are represented as points, possibly “stacked”

as vertical lines when several individuals are at the same location in Ω.

Individuals are subject to neutral selection, without mutation or crossover.

The figure shows that at the 100th generation, all the individuals are identical.

The genetic drift can be estimated from the time required to obtain a

homogeneous population using a Markovian analysis. But these results are

approximations and are difficult to generalize outside the cases studied in the

literature [ROG 99]. However, it is verified that the time of convergence

towards an absorbing state becomes longer as the population size increases.

Another approach assesses the genetic drift rate caused by a selection

operator [ROG 99]. Let r be the ratio of E(V ′
f ): the expectation of the fitness

variance of the population after selection, to Vf : the fitness variance before

2 Neutral selection: the number of offspring of an individual is independent of its fitness.



8 Evolutionary Algorithms

selection. In the case of neutral selection, A. Rogers and A. Prügel-Bennett

showed that r depends only on variance Vs of the number of offspring for

each individual and on population size P , assumed constant:

r =
E(V ′

f )

Vf
= 1− Vs

P − 1

Figure 1.2. Effect of genetic drift according to the
generation number, for a population of 100 individuals in a

two-dimensional search space Ω

Vs is a characteristic of the selection operator. The expression clearly

shows that increasing the population size or reducing the variance Vs of the

selection operator decreases r, i.e. the genetic drift. Figure 1.3 shows the

effect of genetic drift with the same conditions as mentioned previously

(Figure 1.2), but for a population of 1,000 individuals. After 100 generations,

there is still diversity in the population of 1,000 individuals, whereas the

population of size 100 only contains identical individuals.

The effect of genetic drift is predominant when the selection pressure is

low. This situation leads to a loss of diversity, which may involve a premature

convergence a priori far away from the optimum, since it does not depend on

the fitness of the individuals.



Evolutionary Algorithms 9

Figure 1.3. Effect of genetic drift according to the
generation number for a population of 1,000 individuals in a

two-dimensional search space Ω

In short, in order for an evolutionary algorithm to work efficiently, it is

necessary that the selection pressure is neither too strong nor too weak. To

fight the genetic drift, the population size must be large enough, unless the

selection operator is characterized by a low variance.

1.3.3. Proportional selection

Proportional selection was originally proposed by J. Holland for genetic

algorithms. It is used only for the reproduction. The expected number of

selections ni of an individual i is proportional to its fitness fi. This implies

that the fitness function is positive in the search domain and that it has to be

maximized. Let μ be the population size and let κ be the total number of

individuals generated by the selection operator for one generation, ni can be

expressed as:

ni =
κ∑μ

j=1 fj
fi

However, the effective number of offspring can be only integers. They can

be obtained by successive random draws of offspring according to

distributions chosen such that the expected number of offspring for parent i is

equal to ni. Two techniques are widespread and are described below: the

roulette wheel selection method, RWS because it is the operator originally

proposed for the genetic algorithms, but it suffers from high variance, and the

stochastic universal sampling method, SUS because it guarantees a minimal

variance of the sampling process [BAK 87].



10 Evolutionary Algorithms

1.3.3.1. Roulette Wheel Selection (RWS)

The RWS method exploits the metaphor of a biased roulette game, for

which the wheel comprises as many pockets as individuals in the population.

Each individual is associated to a pocket with a size proportional to its fitness.

Once the game is started, the selection of an individual is indicated by the fall

of the ball into its pocket. For instance, Figure 1.4 depicts a roulette wheel

where the ball has fallen into pocket 7. So, individual 7 with fitness 156 is

selected for the reproduction. The ball is spun κ times to select κ individuals.

Figure 1.4. Biased roulette wheel metaphor for the RWS method:
individual 7 with fitness 156 is selected after drawing a random number

represented as the ball position on a roulette wheel

The RWS algorithm selects individual i such that:

i−1∑
j=0

fj ≤ U [0, 1]
μ∑

j=1

fj <

i∑
j=1

fj with f0 = 0

where U [0, 1] is a random number uniformly drawn from [0, 1]. fj is the fitness

of individual j.

1.3.3.1.1. Genetic drift

The effective number of selections of individual i follows a binomial

distribution B(κ, pi) with pi = fi/
∑μ

j=1 fj . Its variance VRWS(i) is

κpi(1 − pi) = ni(1 − pi), where ni is the expected number of individual i
selections. For a given selection pressure (section 1.3.3.3), and if μ is large

enough, VRWS(i) ≈ ni. The variance of this process is high: it is possible that



Evolutionary Algorithms 11

an individual with a good fitness value is never selected. By misfortune, it is

also possible that bad quality individuals are selected for all the offspring.

Thus, the high variance creates a high genetic drift level, allowing some poor

individuals to have offspring to the detriment of better individuals. To reduce

this risk, the population size must be large enough.

1.3.3.1.2. Algorithmic complexity

The selection of an individual requires O log(n) comparisons by using a

dichotomy algorithm, where n = μ + κ. In this way, there are O(n log(n))
comparisons to select κ individuals.

1.3.3.2. Stochastic Universal Sampling selection (SUS)

The SUS method [BAK 87] still uses the metaphor of the wheel of a biased

roulette game. However, the ball is spun only once to obtain the set of the

κ selected individuals. When the ball falls in a pocket, it defines a random

offset position. Offspring are then determined by a set of κ equidistant pointers

around the wheel such that one of these pointers is set at the offset position,

as shown in Figure 1.5. According to the figure, individuals 5 and 9 are not

selected, and the others are selected once.

Figure 1.5. SUS method: the selected individuals are determined by
κ = 8 equidistant pointers. Thus, individuals 5 and 9 are not selected,
and the others are selected once. The fitnesses corresponding to the

individuals are given in Figure 1.4



12 Evolutionary Algorithms

Let δ be the distance between the pointers: δ =
∑μ

j=1 fi/κ. Let ω be the

random offset: ω = U [0, δ]. The SUS operator selects κ individuals i such

that:

∀k ∈ {0, ..., κ− 1},
i−1∑
j=0

fj ≤ ω + kδ <

i∑
j=1

fj with f0 = 0

1.3.3.2.1. Genetic drift
For an expected number of selections ni of individual i, the effective

number of selections is either its lower integer part �ni�, or its upper integer

part �ni	 according to a Bernoulli distribution of parameter qi = ni − �ni�,

with variance VSUS(i) = qi(1 − qi). The maximum of VSUS is 1/4 for

qi = 1/2. From expressions of VRWS(i) and VSUS(i), it can easily be shown

that VSUS(i) < VRWS(i) if κ > 1.

If κ ≥ μ, the best individual is certain to have at least one offspring. This is

the case in Figure 1.6 where μ = κ = λ = 100. When the variation operators

are disabled, the population is kept unchanged indefinitely under SUS selection

for a constant fitness function (neutral selection). In contrast, Figure 1.2 (p. 8)

shows what happens during an evolution by replacing SUS selection with the

RWS operator: its high variance results in a complete loss of diversity in the

population after 100 generations.

Figure 1.6. Genetic drift does not occur with the SUS selection
operator for a population of μ = κ = 100 individuals in a

two-dimensional search space Ω

1.3.3.2.2. Algorithmic complexity
The number of comparisons to select the individuals is of the order of O(n),

where n = μ+ κ.



Evolutionary Algorithms 13

1.3.3.3. Proportional selection and selection pressure

In the case of proportional selection, the expected number of selections of

the best individual with fitness f̂ among μ selections for a population of μ
parents is appropriate to define selection pressure ps:

ps =
μ∑μ

j=1 fj
f̂ =

f̂

f̄

where f̄ is the average of the fitnesses of the population. If ps = 1, then all

the individuals have equal chances to be selected, indicating an absence of

selection pressure.

Let us consider the search for the maximum of a continuous function, e.g.

f(x) = exp(−x2). The individuals of the initial population are assumed to

be uniformly distributed in the domain [−2,+2]. Some of them have a value

close to 0, which is also the position of the optimum, and thus their fitness f̂
will be close to 1. The average fitness of the population f̄ will be:

f̄ ≈
∫ +∞

−∞
f(x)p(x)dx

where p(x) is the presence probability density of an individual at x. A uniform

density is chosen in the interval [−2,+2], thus p(x) = 1/4 in this interval, and

is 0 elsewhere. Thus,

f̄ ≈ 1

4

∫ +2

−2
e−x2

dx

that is f̄ ≈ 0.441, which gives a selection pressure of the order of ps = f̂/f̄ ≈
2.27. The best individual will thus have an expected number of offspring close

to two at generation 0.

Figure 1.7 shows the repartition of a population of μ = λ = κ = 100
individuals according to the number of generations to find the maximum of

f(x) = exp(−x2) in interval [−2, 2]. Individuals are represented as dots on

the curve of f(x). The figure also indicates the value of the fitness average for

each graph by using a dashed line and the number of offspring nbest for the

best individual taken as a measure of the selection pressure. Individuals are

subject to a proportional selection (RWS) and uniform mutations in interval

[–0.05, 0.05], i.e. x′ = x+ U [−0.05, 0.05], where x′ is the offspring obtained



14 Evolutionary Algorithms

from the mutation of x and U [−0.05, 0.05] is a uniform random number in

[−0.05, 0.05]. The environmental selection replaces all the individuals in the

population at the next generation with their offspring (generational

replacement).

Figure 1.7 shows that when individuals concentrate towards the optimum

over generations due to the selection pressure, the fitness average increases,

approaching the maximum value and consequently, the selection pressure

decreases, tending to one. This means that:

– every individual has an expected number of offspring close to one, even

the best one;

– the stochastic fluctuations of the selection operator become predominant

to determine the offspring number (genetic drift);

– the evolution is no longer guided by the fitness and therefore the algorithm

fails to find the optimum with a high precision.

average fitness 0.44
nbest 2.27

average fitness 0.69
nbest 1.44

average fitness 0.87
nbest 1.14

average fitness 0.95
nbest 1.05

average fitness 0.98
nbest 1.02

average fitness 0.99
nbest 1.01

Figure 1.7. Selection pressure nbest decreases when the population
concentrates in the neighborhood of the optimum

This undesirable behavior of proportional selection, where the selection

pressure strongly decreases when the population approaches the optimum in



Evolutionary Algorithms 15

the case of continuous functions, can be overcome by scaling the fitness

function [GOL 89]. It is interesting to note the Boltzmann selection (De La

Maza and Tidor 1993 [DE 93b]), because it makes a link with simulated

annealing. The method uses a scaled fitness expressed as:

f ′
i = exp(fi/T )

The value of parameter T , known as the “temperature”, determines the

selection pressure. T is usually a decreasing function of the number of

generations. Thus, the selection pressure increases with time.

1.3.3.4. Rank-based selection

Another way to control the selection pressure combines a proportional

selection and a ranking of the individuals of the population. Individuals x are

ranked from the best one (first) to the worst one (last), according to raw

fitnesses f(x). The actual fitness value fr of each individual depends only on

its rank r by decreasing value (see Figure 1.8) according to, for instance, the

expression given below, which is usual:

fr =

(
1− r

μ

)p

where μ is the number of parents, r is the rank of the individual considered in

the population of the parents after ranking and p is an exponent which depends

on the desired selection pressure. After ranking, a proportional selection is

applied according to fr. With our definition of the selection pressure ps =
nbest = 1 + p. Thus, p must be greater than 0 to obtain a selection pressure

greater than 1. This ranking-based selection is interesting because:

– it is not affected by a constraint of sign: f(x) can either be positive or

negative;

– it is appropriate for a maximization problem as well as for a minimization

problem, without any extra transformation;

– it does not consider the importance of the differences between the

fitnesses of the individuals. Thus, a ranking-based selection method does not

require exact knowledge of the objective function. It only needs to rank the

individuals by comparing each one with the others.



16 Evolutionary Algorithms

These good properties mean that ranking-based selections are often

preferred by the users of evolutionary algorithms when compared to fitness

scaling methods. Linear ranking, for which p = 1, is quite a good choice by

default.

Figure 1.8. Fitness fr = (1− r/μ)p obtained after ranking, where r is
the rank of an individual. μ is chosen equal to 100. The selection

pressure is nbest = 1 + p

1.3.4. Tournament selection

Tournament selection is an alternative to the proportional selection

techniques which, as seen before, present difficulties in controlling the

selection pressure during the evolution, while being relatively expensive in

computational costs.

1.3.4.1. Deterministic tournament

The simplest tournament consists of choosing at random p individuals in

the population and selecting the one that has the best fitness for reproduction.



Evolutionary Algorithms 17

During a selection step, there are as many tournaments as selected individuals.

The individuals that take part in a tournament are replaced in the population,

or withdrawn from it, according to the choice of the user. A drawing without

replacement makes it possible to carry out �N/p� tournaments for a population

of N individuals. A copy of the population is re-generated when it is exhausted,

as many times as required, until the desired number of selections is reached.

The variance of the tournament process is high, which favors genetic drift. It

is however lower in the case of drawing without replacement. This method of

selection is very much used, because it is much simpler to implement than a

proportional reproduction with properties similar to the ranking selection.

The selection pressure is adjusted by the number of contestants p in a

tournament. Indeed, let us consider the case where the contestants in a

tournament are replaced in the population. Then, the probability that the best

individual of the population is not selected with p random drawings is

((N − 1)/N)p. Assuming that N is large compared to p, this probability is

approximately 1− p/N by a Taylor expansion limited to the first order. Thus,

the probability that the best individual is drawn at least once in a tournament

is close to p/N . If there are κ tournaments in a generation, the best individual

will have nbest = pκ/N expected selections. Let us consider again the

definition of selection pressure that was proposed for the proportional

reproduction, with κ = N . Then, the selection pressure is equal to p, which is

greater than or equal to 2.

1.3.4.2. Stochastic binary tournament

With the stochastic binary tournament, the best of the two contestants wins

with a probability p, which is a parameter whose value is chosen between 0.5

and 1. It is still easy to calculate the selection pressure generated by this

process. The best individual takes part in a tournament with a probability of

2/N (see the previous section 1.3.4.1). Furthermore, the winner of the

tournament will be selected with a probability p. The two events being

independent, the probability that the best individual of the population is

selected after a tournament is then 2p/N . If there are N tournaments, the best

parent will thus have 2p expected offspring. The selection pressure thus will

range between 1 and 2.



18 Evolutionary Algorithms

1.3.5. Truncation selection

This selection is very simple to implement, since it only chooses the n best

individuals from a population, where n is a parameter chosen by the user. If the

operator is used for the reproduction, n = κ to select κ parents. If the operator

is used for the replacement and thus generates the population of μ individuals

for the next generation, then n = μ.

1.3.6. Environmental selection

The environmental selection or replacement selection method determines

which individuals in generation g, among offspring and parents, will constitute

the population in generation g + 1.

1.3.6.1. Generational replacement

This kind of replacement is the simplest, since the population of the parents

in generation g + 1 will be composed of all the offspring, and only them,

generated at generation g, thus: μ = λ to keep the population size constant.

The canonical genetic algorithm is proposed with a generational replacement.

1.3.6.2. Replacement “(μ, λ) – ES”

A truncation selection of the best μ individuals among the λ offspring

constitutes the population for the next generation. This operator was

introduced for the evolution strategies [REC 65, BEY 01]. In this case, λ is

larger than μ.

1.3.6.3. Replacement “(μ+ λ) – ES”

A truncation selection of the best μ individuals from the union of the set

of the μ parents and the set of the λ offspring constitutes the population for

the next generation. This operator was introduced for the evolution strategies

[REC 65, BEY 01]. It is said to be elitist since it preserves the best individual

found so far in the population.

1.3.6.4. One-to-one selection

This operator is a deterministic binary tournament typically between each

parent of a population and its only offspring. The best of them is kept in the

population for the next generation. Thus, the variance of the selection number

for each parent is 0. In this context, the parental selection is disabled because



Evolutionary Algorithms 19

each parent has only one offspring, whatever its fitness is. This very simple

operator is especially used for the powerful Differential Evolution and Particle
Swarm Optimization algorithms, described in Chapter 2.

1.3.6.5. Steady state replacement

In each generation, a few (often one or two) offspring are generated. They

replace a lower or equal number of parents to produce the population at the

next generation. This strategy is particularly useful when the representation of

a solution is distributed on several individuals, possibly the entire population,

as for Learning Classifier Systems [BOO 89] [URB 09]. In this way, the loss of

a small number of individuals in each generation: those that are replaced by the

offspring, does not excessively disturb the solutions, which evolve gradually.

The replaced parents can be chosen in various ways. With uniform

replacement, the replaced parents are selected at random. The choice can also

depend on the fitness: the worst parent is replaced, or else it is selected

stochastically, according to a probability distribution that depends on the

fitness or other criteria.

Steady state replacement generates a population where the individuals are

subject to large variations of lifespan in terms of generation numbers and

therefore offspring numbers. The high variance of these values involves high

genetic drift, especially as the population is small [DE 93a].

1.3.6.6. Elitism

An elitist strategy consists of at least keeping the individual with the best

fitness in the population, from generation to generation. The fitness of the best

individual from the current population is thus monotonically non-decreasing

from one generation to the next.

There are various elitist strategies such as the “(μ + λ) – ES” mentioned

above. In another current alternative, the k best parents in the current

generation are kept in the population for the next generation. The replacement

operator then has to replace the N − k remaining individuals, where N is the

population size.

These strategies may considerably speed up the performance of

evolutionary algorithms for some classes of fitness functions, such as convex

functions. But, they may be disappointing for other classes, such as



20 Evolutionary Algorithms

multimodal functions, because elitism increases the selection pressure around

the best individuals of the population, even when they are trapped in local

optima. However, this is an algorithm design issue. Thus, Chapter 2 presents

elitist elaborated algorithms able to quite efficiently find near-optimal

solutions for massively multimodal functions. Figure 1.9 shows a graphical

representation in a 2D search space of such a multimodal function, which

counts 15d local minima in domain [−40, 40]d, where dimension d is an

integer usually taken between 2 and 100. Its analytic expression is given in

section 2.10 (p. 89).

Figure 1.9. The Griewank’s multimodal function in domain [−40, 40]2

Choosing a non-elitist strategy can be advantageous, but there is no

guarantee that the fitness function of the best individual in the current

population is increasing during the evolution. This obviously implies keeping

a copy of the best solution found so far by the algorithm, without this copy

taking part in the evolutionary process. It should be noted, this is a requisite

precaution for any stochastic optimization algorithm.

1.3.7. Selection operators: conclusion

Table 1.1 summarizes the properties of basic selection operators used by

evolutionary algorithms in terms of selection pressure, variance of the selected



Evolutionary Algorithms 21

individual number and algorithmic complexity. Among these operators, the

best one is “one-to-one selection”, but it is rather used by specific evolutionary

algorithms (Chapter 2). The tournament selection is widespread because of

its ease of implementation, despite a high variance. The population ranking

associated with a selection process such as truncation selection or SUS is also

often used, although its algorithm complexity is the worst.

Selection pressure Variance Complexity

RWS Non-controlled High O(n log n)

SUS Non-controlled Low O(n)

Tournament selection Controlled High O(n)

Ranking + SUS Controlled Low O(n log n)

One-to-one selection Controlled 0 O(n)

Table 1.1. Comparisons of basic selection operators according to their
control of the selection pressure, variances and algorithmic

complexities. n is the population size

1.4. Variation operators and representation

1.4.1. Generalities about the variation operators

The variation operators are generally stochastic operators that transform

and combine copies of one or several individuals in a population to create

offspring, possibly fitter than their parents, which partly inherit the features of

them. These operators are classified into two categories:

– the mutation operators, which alter an individual independently of the

others;

– the crossover or recombination operators, which generate one or more

offspring from the combinations of several parents, often two of them but also

possibly the combination of the whole parent population.

The way of modifying an individual depends strongly on the structure of

the solution that it represents. Thus, if we aim to solve an optimization

problem in a continuous space, e.g. a domain of R
n, a priori, it will be

appropriate to choose a vector of Rn to represent a solution. In this case, the

crossover operator combines at least two “parent” vectors of Rn to create one

or several “offspring” vectors in the same space. On the other hand, if an

evolutionary algorithm is used to solve instances of the Traveling Salesman
Problem, an individual could represent a Hamiltonian path as a list of



22 Evolutionary Algorithms

vertices. The variation operators should then generate only new Hamiltonian

paths. These examples show that it is impossible to design universal variation

operators, independently of the problem under consideration. They are

inevitably related to the representation of the solutions in the search space.

Variation operators have to:

– explore the search space, in order to discover its promising areas, which

are more likely to contain the global optima;

– exploit these promising areas, by focusing the search there to find the

optima with the required accuracy.

For instance, a variation operator that draws offspring at random uniformly

in the search space will have excellent qualities of exploration. But it will likely

fail to discover an optimum in a reasonable time with the required accuracy,

because there is no exploitation of the promising areas.

The search should be more efficient if the offspring are generated

preferentially close to their parents, according to an appropriate distance,

depending on the problem to solve. Such a policy is reasonable to the extent

that parents are located in promising areas since they are selected according

to their fitnesses. But if all the offspring generated by a variation operator are

close to their parents, the search algorithm could be trapped in a local

optimum: in this case, there is not enough exploration compared to

exploitation.

A good balance should be found between exploitation and exploration

abilities of variation operators. This requirement is not easy to ensure.

1.4.2. Crossover

The crossover operator uses at least two parents to generate one or

more offspring. The crossover rate, which is a priori a parameter of the

evolutionary algorithm, determines the proportion of the crossed individuals

in the population. The operator is generally stochastic, and thus the repeated

crossover with the same couple of distinct parents yields different offspring. It

often respects the following properties:

– the crossover of two identical parents will generate offspring, identical to

the parents;



Evolutionary Algorithms 23

– by extension, on the basis of an index of proximity depending on the

chosen representation, defined in the search space, two parents which are close

in the search space will generate offspring close to them.

These properties are satisfied by the “classical” crossover operators like

most of those described in this book, but they are not absolute. In the current

state of knowledge of evolutionary algorithms, the design of a crossover

operator does not follow precise rules.

In the simplest version of an evolutionary algorithm, the selected

individuals are mated at random. As a result, some selected parents could be

located on several peaks of the fitness function, as depicted in Figure 1.10.

The figure shows that the probability distribution of offspring is uniform

between parent solutions x1 and x2. This widespread crossover is referred to

as the flat crossover [RAD 90]. In this case, the conditional probability

distribution of offspring given by the parents is inappropriate because

offspring are likely to have poor fitness values. The crossover is said to be

lethal if, from high fitness parents, it generates offspring with too low fitness

to survive.

Figure 1.10. Let x1 and x2 be parents placed on different peaks of
fitness function f . Assuming that the crossover x1 and x2 yields an

offspring y uniformly drawn from interval [x1, x2], y is likely to have a
poor fitness value. The probability that offspring are better than their

parents is represented by the dark gray region



24 Evolutionary Algorithms

If the fitness function is continuous, the following approaches can be used

to avoid a too high proportion of lethal crossovers:

1) by restricting the mating to similar parents;

2) by giving more chance to yield offspring close to their parents, as with

the Simulated Binary Crossover [DEB 95].

The first option is inspired by the natural genetics metaphor: individuals

of different species cannot be crossed to yield viable offspring if they are too

dissimilar. In the frame of evolutionary algorithms, the simplest way consists

of crossing individuals if distance between them is less than a threshold rc
called the restriction radius [GOL 89]. However, a too small value for rc could

significantly lower the effective crossover rate as well as the exploration in the

search space, which could slow down or even freeze the search of the optimum.

rc is difficult to estimate because it depends on distances between peaks, which

are not known in general. It is possible to consider a decreasing radius rc during

the evolution to overcome this problem.

Figure 1.11. Compared to the case of Figure 1.10, for the same fitness function, a
multimodal probability density function of the offspring presence after crossover, for
which the modes are parents x1 and x2, increases the probability that offspring are
better than their parents. This probability is represented by the dark gray region

Another option to avoid a high proportion of lethal crossover consists of

using a multimodal probability distribution of offspring, such that its modes

are the parents. An example is given in Figure 1.11. The areas of the dark gray



Evolutionary Algorithms 25

regions in Figures 1.11 and 1.10 represent the probabilities that offspring have

better fitness values than those of their parents. By comparing these figures, it

appears that this probability is higher with the multimodal distribution.

1.4.3. Mutation

Most of the mutation operators alter an individual in such a way that the

result of the transformation is often close to it, but not always, to preserve the

exploration ability of the operator. They mainly perform a random local search

around each individual to mutate. Thus, the mutation gives each individual a

chance to approach the exact location of the maximum of a fitness function, as

much as the characteristics or the parameters of the chosen operator allow it.

The proportion of the mutated individuals in the offspring population is

equal to the mutation rate. In the frame of genetic algorithms (section 1.6),

the mutation is considered as a minor operator, useful to preserve diversity in

the population, which the crossover cannot ensure. The mutation rate is then

typically low, about 0.01 to 0.1, whereas the crossover rate is high. Conversely,

a 100% mutation rate was required for the first Evolution Strategy algorithms

since they did not use crossover. A large enough mutation rate helps to preserve

diversity in the population, which is useful for a good exploration of the search

space. Thus, this operator can contribute to fight the reduction of the population

variance due to a strong selection pressure or genetic drift.

Using mutation as a local search operator suggests to combine it with other

more efficient, although more problem-dependent, local techniques such as

a gradient method for example. This approach leads to the design of hybrid
evolutionary algorithms.

1.5. Binary representation

The idea of evolving a population of binary vectors mainly comes from

genetic algorithms, which implements a simple model of the transcription

genotype–phenotype existing in the living world. Within the framework of

genetic algorithms, the genotype of an individual is comprised of a string of

binary symbols, or more generally, a string of symbols belonging to a low-

cardinality alphabet. The phenotypes are solutions to a problem expressed in



26 Evolutionary Algorithms

a “natural” representation, a priori easy to understand by people who want to

solve it. They are used by the algorithm only for the fitness evaluation of an

individual. Conversely, the binary genotypes are hard to interpret by a human

expert. They undergo the action of the genetic operators: mutations and

crossover.

For example, if a solution to a given problem is expressed naturally as a

vector of real numbers, the phenotype could be this vector. Thus, the

genotype is a binary string obtained from this vector. The simplest way

consists of converting each of its components with a number of bits

corresponding to the required precision. Then, these binary numbers can be

concatenated to generate the genotype.

1.5.1. Crossover

For a binary representation, there exist three widespread variants of

crossovers:

– the “single point” crossover;

– the “two point” crossover;

– the uniform crossover.

A pair of individuals being chosen randomly among the selected

individuals, the “single point” crossover [HOL 92] is applied in two steps:

1) random choice of an identical cut point on the two bit strings (see

Figure 1.12(a));

2) cut of the two strings (Figure 1.12(b)) and exchange of the two fragments

located on the right (Figure 1.12(c)).

This operator generates two offspring from two parents. If only one

offspring is needed by the evolutionary algorithm, it is chosen at random in

the pair and the other one is discarded. The “single point” crossover is the

simplest one for codings with a low cardinality alphabet, like binary coding.

A “two point” crossover can be implemented by randomly choosing two cut

points c1 and c2, with c1 < c2, in parent individuals as shown in Figure 1.13.

Symbols whose indices are in interval [c1, c2] are exchanged between the two

strings to obtain an offspring.



Evolutionary Algorithms 27

Figure 1.12. “Single point” crossover of two 8 bit strings

Figure 1.13. “Two point” crossover of two 8 bit strings

The “single point” and “two point” crossovers are usually employed in

practice for their simplicity and efficiency. An immediate generalization of

these operators consists of multiplying the cut points on each string. The

uniform crossover [ACK 87] can be viewed as a multipoint crossover where

the number of cuts is a priori unspecified. Practically, a “template string” is

used. It is a binary string of the same length as the individuals. A “0” at the

nith position of the template leaves the symbols in the nith position of the two

strings unchanged. A “1” activates an exchange of the corresponding symbols

(in Figure 1.14). The template is generated at random for each pair of

individuals. The values “0” or “1” of the template elements are generally

drawn with a probability of 0.5. Lower probabilities generate offspring closer

to the parents in the sense of the Hamming distance3.

3 Hamming distance: number of different symbols between two strings of the same length.



28 Evolutionary Algorithms

Figure 1.14. Uniform crossover

1.5.2. Mutation

The mutation operator on bit strings changes some of its symbols at

random. The most common variants are the deterministic mutation and the

bit-flip mutation. With the “deterministic” mutation, a fixed number of bits

chosen at random are reversed for each mutated individual, i.e. a “1” becomes

“0” and vice versa. With the “bit-flip” mutation, each bit can be reversed

independently of the others according to a given probability. These operators

have good exploitation abilities if the number of reversed bits is small enough

in accordance with the Hamming distance (see section 1.4.1). However, this

number should also be large enough to preserve the diversity in the

population. This parameter is problem-dependent.

When a bit string represents a vector of integer or real numbers, the search

for the optimum of the fitness function might be countered by the difficulty of

crossing the Hamming cliffs, due to the conversion of the bit strings towards

real number vectors. For example, let us consider function C(x) defined below:

C(x) =

{
x if x ≤ 16
0 otherwise

Let b(x) = {b1(x), . . . , b5(x)} be a string of five bits to represent an

integer individual x that ranges from 0 to 31. b(x) can be simply defined as

the standard representation of x in base 2. The maximum of C(x) is obtained

for x = 16, which thus corresponds to b(0) = {1, 0, 0, 0, 0}. The value

x = 15, obtained from the string {0, 1, 1, 1, 1}, yields the highest fitness apart

from the maximum: this value will thus be favored by the selection operators.



Evolutionary Algorithms 29

However, there is no common bit between {1, 0, 0, 0, 0} and {0, 1, 1, 1, 1}.

This means that there is no other individual with which {0, 1, 1, 1, 1} can be

crossed to give {1, 0, 0, 0, 0}. As for the mutation operator, it will have to

change all the bits of string {0, 1, 1, 1, 1} simultaneously to obtain the

optimum. The Hamming distance between the optimum and the individual

which has the nearest fitness is maximal, equal to the length of the strings.

This is a Hamming cliff. It is unlikely to jump over it with a “bit-flip”

mutation, and it is impossible with the “deterministic” mutation, unless it flips

all the bits of the string, which is never used.

But the mutation will be able to easily find the optimum if there are

individuals in the population that differ in only one bit of the optimal string.

Here, these individuals are:

String b(x) x C(x)

〈0, 0, 0, 0, 0〉 0 0

〈1, 1, 0, 0, 0〉 24 0

〈1, 0, 1, 0, 0〉 20 0

〈1, 0, 0, 1, 0〉 18 0

〈1, 0, 0, 0, 1〉 17 0

Unfortunately, all these individuals have zero fitness and thus they are not

likely to “survive” from one generation to the next one.

This annoying phenomenon, which hinders the progress towards the

optimum, can be eliminated by choosing a Gray code, which ensures that two

successive integers will have binary representations that differ only in one bit.

Starting from strings b(x) that represent integer numbers in base 2, it is easy

to obtain a Gray code g(x) = {g1(x), . . . , gl(x)} by performing, for each bit

i, the operation:

gi(x) = bi(x)⊕ bi−1(x)

where the operator ⊕ implements the “exclusive or” operation and b0(x) = 0.

Conversely, the string of l bits b(x) = {b1(x), . . . , bl(x)} can be obtained from

the string g(x) = {g1(x), . . . , gl(x)}:

bi(x) =
i⊕

j=1

gj(x)



30 Evolutionary Algorithms

The Gray codes of {0, 1, 1, 1, 1} and {1, 0, 0, 0, 0} are respectively

{0, 1, 0, 0, 0} and {1, 1, 0, 0, 0}. The mutation of bit g1 is therefore enough to

reach the optimum. A Gray code is thus desirable from this point of view.

However, the Hamming cliffs are generally not the cause of significant

decrease in the performance of a search algorithm. More details about Gray

codes and binary representations are developed in [ROW 04]. Especially, it is

noted that the use of several Gray codes modifies the landscape of the fitness

function and can help to escape from local optima.

1.6. The simple genetic algorithm

The simple genetic algorithm is an evolutionary algorithm, similar to the

one presented in Figure 1.1 (p. 4), with a notable particularity: it implements a

transcription genotype–phenotype inspired by natural genetics. The phenotype
is the expression of a solution to a problem in its usual formalism. A genotype
is a string of symbols (often binary) from which the associated phenotype is

built. The phenotype can then be evaluated to give a fitness value that can be

used by the selection operators.

The flowchart of a simple genetic algorithm is presented in Figure 1.15.

It implements a proportional selection operator (see section 1.3.3, p. 9) and a

generational replacement, i.e. the population of the offspring replaces that of

the parents. Another classical variant uses the steady state replacement (section

1.3.6.5, p. 19).

The variation operators alter the genotypes. As they are bit strings,

crossover and mutation operators for binary strings (section 1.5) are naturally

used. The crossover is considered as the main variation operator. The

mutation is usually applied with a small rate to maintain diversity in the

population [GOL 89]. An appropriate coding of the genotype should be

designed, such that the variation operators produce viable offspring,

satisfying the constraints of the problem as much as possible.

Holland, Goldberg and many other authors have worked on a

mathematical formalization of the genetic algorithms based on a “Schema

Theorem” [GOL 89]. It provides arguments for the choice of a binary

representation. However, deceiving results obtained with this theorem have



Evolutionary Algorithms 31

given rise to controversies and debates about its utility [VOS 98]. In

particular, the suitability of binary encoding has been challenged.

Fitness 
evaluation

of the μ 
offspring

Proportional 
selection

Mutation
of the μ 
selected 
offspring

Crossover
of the μ 
selected 
offspring

Generational
replacementStop ?

yes

no

μ
individuals

μ offspring
+

μ parents

best individual

Fitness 
evaluation

of the μ 
individuals

Population 
initialization

μ
genotypes 

Genotype
↓

phenotype
mapping

Genotype
↓

phenotype
mapping

Figure 1.15. A simple genetic algorithm

Many variants of genetic algorithms have been proposed in order to

improve their performances or to extend their application domains. Thus, the

bit strings have been replaced by other data structures closer to the natural

formalism of the problems to solve, provided that appropriate variation

operators are available. This avoids the difficult and complex question of the

design of an efficient coding. For example, the “Real Coded Genetic

Algorithms” use genotypes that are real vectors, instead of binary strings, to

solve problems defined in R
n. In addition, proportional selection is often

replaced by other kinds of selection. These modifications are significant

enough that the specific features of the genetic algorithms blend in with the

diversity of the other evolutionary approaches.

1.7. Conclusion

This introductory chapter has presented the basic principles of

evolutionary algorithms and a collection of widespread selection and



32 Evolutionary Algorithms

variation operators. Binary representation has been addressed to introduce the

transcription genotype–phenotype implemented in the genetic algorithm.

Other representations are used in the world of evolutionary algorithms. They

will be described in further chapters with their associated variation operators.


