
PART 1

Randomness in Optimization

CO
PYRIG

HTED
 M

ATERIA
L





1

Necessary Risk

Il arrive souvent de ne rien obtenir parce que l’on ne tente rien
(Often, nothing is gained because nothing is attempted)

Jacques Deval

In using chance to solve a problem, there is always a risk of failure, unless
an unlimited number of attempts are permitted: this is rarely possible. The
basic idea involved in stochastic optimization is that this risk is necessary, for
the simple reason that no other solution is available; however, it may be
reduced by carefully controlling the use of random elements. This is generally
true, in that a correctly-defined optimizer will produce better results than a
purely random search for most test cases. However, this is not always the
case, and the ability to identify these “anomalous” situations is valuable.

1.1. No better than random search

Let us take a set of permutation tests. A precise definition is given in the
Appendices (section 7.1). Here, note simply that based on one discrete finite
function, all of the other functions can be generated by permutations of
possible values at each point.

The definition space is E = (0, 1, 2, 3) and the value space is
V = (1, 2, 3). A function is therefore defined by its values at the points of E,
for example f1 ≡ (1, 3, 2, 2). One possible permutation of this function is



4 Guided Randomness in Optimization

f2 ≡ (1, 2, 3, 2); there are 12 such functions in total, each of which is a
permutation of the others, shown in the first column of Table 1.1. Each
function has a minimum value of 1 (to simplify our discussion, optimization
in this case will always be taken to mean minimization). Now, let us consider
three iterative algorithms, and calculate the probability that they will find the
minimum of each function. These algorithms are all without repetition, and
conserve the best position obtained along with the associated value (the
ratchet effect). A brief, informal description of these algorithms is given
below. For each, the result is given as a pair (x∗, f (x∗)), where x∗ is the
proposed solution.

1.1.1. Uniform random search

This algorithm, like those which follow, includes an initialization phase,
followed by an iteration phase (see section 1.1.). Let us calculate the
probability p (t) of finding the solution after t position draws. As there is only
one solution, p (1) = 1

4 , the probability of not obtaining the solution on the
first try is therefore 1 − p (1). In this case, as three nonsampled permutations
remain, the probability of obtaining the solution on the second try is 1

3 . Thus,
the probability of obtaining the solution on the first or second try is
p (2) = p (1) + (1− p (1)) 1

3 = 1
4 + 3

4
1
3 = 1

2 . Similarly, the probability of
obtaining the solution on the first, second or third try is
p (3) = p (2) +

(
1− p (2) 1

2

)
= 3

4 . Evidently, as the algorithm is without
repetition, the probability of having found the solution on the fourth try is 1,
as an exhaustive search will have been carried out.

Algorithm 1.1. Random search without repetition
Initialization

– Draw a position x∗ at random, following a uniform distribution (each
position has the same selection probability).

Iterations

As long as the STOP criterion (for example a maximum number of
iterations) has not been reached:

– draw a position x at random from the unsampled population;

– if f (x) < f (x∗), then replace x∗ by x.



Necessary Risk 5

1.1.2. Sequential search

This method consists of drawing positions one by one, not at random
(without repetition), but in a predefined order, for example position 1,
position 2, etc. To calculate p (t), each function must be considered
individually. For f4 ≡ (3, 1, 2, 2), for example, a solution will definitely be
found after two tries, compared to a probability of 1

2 using the previous
method.

However, the opposite situation also occurs, for example for
f6 ≡ (3, 2, 2, 1). After two tries, the solution can not be found, as the random
method may find it, with a probability of 1

2 . Overall, this method is therefore
equivalent to the previous method in terms of probabilities p (t).
Improvements are thus required.

1.1.3. Partial gradient

Using this method, the first two positions are drawn sequentially. Next, if
the two values obtained are decreasing, the sequential approach is retained, as
the “direction” of the search appears to be correct. Otherwise, positions are
drawn at random from the remaining population. This means that differences
from the previous method will only emerge at draw p (3). Once again, each
function must be examined individually for calculation purposes. Take, for
example, a function such as f6 ≡ (3, 2, 2, 1). The first two draws give results
of 3 and 2. As the direction appears promising, the third position is drawn: the
value is 2. This is not the minimum, as p (3) = 0. With a function such as
f9 ≡ (2, 2, 1, 3), there is no clear preferred direction, and so the third point
is drawn at random from the two remaining points, giving a probability of
success of 1

2 .

The probabilities of success for these three methods, p (t) for t = 1, 2, 3,
using the 12 function test case defined above, are given in Table 1.1.
Naturally, all of these algorithms obtain the solution with the same
probability, 1 (certainty), after four attempts, as they are repetition-free.
However, their average performance will not be necessarily identical after
one, two or three attempts. The partial gradient algorithm, which is slightly
more sophisticated, might be expected to be somewhat more efficient; it is the
only method which has a chance of finding a solution to f10 or f11 after three



6 Guided Randomness in Optimization

attempts. However, success is not guaranteed for f9 and f12. Finally, as
demonstrated in the final line of the table, the three algorithms give the same
average performance over the set of test cases.

One attempt Two attempts Three attempts
Random Seq. Rand. Seq. Rand. Seq. Grad.

f1 ≡ (1, 3, 2, 2) 1/4 1 1/2 1 3/4 1 1
f2 ≡ (1, 2, 3, 2) 1/4 1 1/2 1 3/4 1 1
f3 ≡ (1, 2, 2, 3) 1/4 1 1/2 1 3/4 1 1
f4 ≡ (3, 1, 2, 2) 1/4 0 1/2 1 3/4 1 1
f5 ≡ (3, 2, 1, 2) 1/4 0 1/2 0 3/4 1 1
f6 ≡ (3, 2, 2, 1) 1/4 0 1/2 0 3/4 0 0
f7 ≡ (2, 1, 3, 2) 1/4 0 1/2 1 3/4 1 1
f8 ≡ (2, 1, 2, 3) 1/4 0 1/2 1 3/4 1 1
f9 ≡ (2, 2, 1, 3) 1/4 0 1/2 0 3/4 1 1/2

f10 ≡ (2, 2, 3, 1) 1/4 0 1/2 0 3/4 0 1/2

f11 ≡ (2, 3, 2, 1) 1/4 0 1/2 0 3/4 0 1/2

f12 ≡ (2, 3, 1, 2) 1/4 0 1/2 0 3/4 1 1/2

Average 1/4 1/4 1/2 1/2 3/4 3/4 3/4

Table 1.1. Permutation test cases. Probability of success after one, two
and three attempts. The three algorithms are repetition-free and present
the same average performance, as the conditions of the No Free Lunch

Theorem (NFLT) are fulfilled

This is due to the fact that the conditions of the NFLT [WOL 97, IGE 03]
are met. Without going into the mathematical formalization, these conditions
are:

– finite discrete definition space;

– finite discrete value space;

– set of test cases closed under permutations (c.u.p.).

Under these conditions, any repetition-free algorithm, no matter how
sophisticated, will present the same average performance in terms of random
search, however performance is measured. Note that the first two conditions
are necessarily fulfilled if calculations are carried out digitally, as a computer
always has a limited number of bytes, and thus the numbers which may be
represented are limited. This means that an algorithm can only out-perform
random search methods in a non-c.u.p. set of test cases. This is the case for
most sets of test cases. However, there will always be at least one function



Necessary Risk 7

where the algorithm will perform less well than a purely random search
(without repetition). This is the first risk which must be taken. We might hope
that functions of this type would be so “monstrous” as to make this situation
practically impossible, but this is too optimistic; in reality, the situation can
arise in cases where a function presents a sufficiently high proportion of
plateaux, as discussed in section 1.2.2.

Note that, in theory, there is nothing to prevent the existence of a single,
ultimate algorithm, better than any other, for a set of non-c.u.p. functions
[CLE 07]. Authors occasionally claim that an algorithm is better than all
others for the majority of problems, but not all, in a set of test cases, “due to
the No Free Lunch theorem”. In reality, the theorem should not be used in this
way, if only because the prerequisites are not satisfied for the test set in
question. However, a real, widely-noted phenomenon does exist: for a “good”
test set (this notion will be discussed later), the higher the efficiency of an
algorithm for certain problems, the weaker its performance will be in other
cases. Although, superficially, this appears to be a result of the theorem, it is,
in reality, due to another factor. This is illustrated by the fact that the
algorithm presents better overall performance than a random search for the
problems in the test set, despite the performance differences for individual
examples. This type of behavior will be discussed in the following section.

1.2. Better or worse than random search

Clearly, all of the algorithms developed over the years present better
results than those of a random search in the majority of cases. Moreover,
improvements are regularly put forward, although these are always for
specific classes of problems. However, two problems exist. First, with a few
exceptions, the definition of the classes in question is insufficiently precise
(for example, how, precisely, do we define “weakly multimodal”?); second, as
metaheuristics are often used in a “black box” context, we do not know, a
priori, what class the problem in question belongs to. Therefore, there is a
risk of using an unsuitable algorithm, producing poor results.

However, if we know that a problem belongs to a clearly-defined class,
such as the class of unimodal continuous functions, then it should be possible
to find an ultimate, unbeatable algorithm. However, many test sets are
constructed using problems from a variety of different classes (unimodal,



8 Guided Randomness in Optimization

multimodal, continuous, discrete, mixed, separable or otherwise, high or low
dimensionality, etc.), in an attempt to represent the variety of situations
encountered in the real-world. An iterative algorithm will only be more
efficient than a random search if, over the course of iterations, it collects and
uses information relating to the structure of the problem. As a starting point, a
structure needs to exist: as this is always the case in practice, the risk may be
left aside. More importantly, the information needs to be used in a relevant
manner, and this is where many metaheuristics fall short.

All metaheuristics presume, explicitly or implicitly, that the problem to
solve belongs to the broad “positive correlation” class [CLE 07, CLE 11].
This notion will be discussed below, without going into mathematical detail.

1.2.1. Positive correlation problems

This class covers all functions where, if a point x is better than a point y,
then the average probability of finding a better position than y is higher in the
domain defined by a set of points z such that distance(x, z) <
distance(x, y) than outside of this area. Using Euclidean distance
(2-distance), this is a hypersphere of center x and radius ‖y − x‖2. Other
distances may be used, such as 1-distance (taxi-distance or Manhattan
distance) or, for combinatorial problems, the distance between two
permutations, such as the Cayley distance1 or the Kendall-Tau distance2,
which is easier to calculate, but less intuitive.

This property is shown in Figure 1.1. Taking the value of a position to be
its quality (in this case, the lower the value, the higher the quality), and
referring to the distance between two positions as proximity, then the term
“correlation” may be taken to mean the average relationship between
proximity and quality. Table 1.2 gives a number of examples. Note the case of
combinatorial problems, which present coefficients which are as positive as
for certain “continuous” problems (these problems are, in fact, always
discrete when processed digitally). There is no fundamental difference
between a discrete problem and a combinatorial problem, as explained in
[CLE 06]: a search space and metrics are used in both cases. This suggests

1 The minimum number of transpositions needed to pass from one permutation to the other.
2 The number of pairs which are not in the same order in the two permutations.



Necessary Risk 9

that efficient methods which appear to be specific to combinatorial problems
may also be suitable for use with discrete problems; however, this is a
separate issue.

a) Euclidean distance.

 

b) Taxi-distance.

Figure 1.1. Illustration of the “positive correlation” property. In average
terms, across a definition space, a position is more likely to be

improved by moving toward another, better position than vice versa. A variety
of distances may be used

In practice, the positive correlation hypothesis is reflected in the search
algorithm through a number of rules:

– if a position is good, then search “around” this position;



10 Guided Randomness in Optimization

– if a better position is found by moving in a certain direction, continue to
move in this direction;

– etc.

Most algorithms, with the exception of “greedy” algorithms, also include
opposite rules in an attempt to limit premature convergence, notably in the case
of local minima; however, it is important to note that rules of the type described
above are applied more frequently than these opposite rules. Consequently, if
the problem does not belong to a c.u.p. class, there is a risk that the algorithm
will perform less well than a random search. Some examples of this type will
be presented in the following section.

Note that this is an average property. Generally, a problem is closed under
permutations for one or more subdomains of the definition space, and not for
others. The problem will be more or less easy to solve for an algorithm, which
presumes that the property is globally verified, according to the relative
importance of these subdomains. Moreover, certain problems which appear
very simple demonstrate negative correlation (again, as an average value).

Coeff. Type of distance
Alpine 2D 0.51 Euclidean

Rosenbrock 2D 0.51 Euclidean
Pressure vessel 0.54 Euclidean, over normalized search

space
Alpine 10D 0.41 Euclidean

Rosenbrock 10D 0.50 Euclidean
Sphere 30D 1 Euclidean

Traveling salesman 6 towns 0.37 Cayley
Traveling salesman 14

towns (Burma 14)
0.43 Cayley

Table 1.2. Examples of positive correlation problems. The precise definitions
of these problems are given in the appendix

1.2.2. Negative correlation problems

Certain problems, even those with relatively simple definitions, do not
present positive correlation. Table 1.2 and Figure 1.2 provide a number of
examples. This does not necessarily indicate that a random search will give
the best performance, as explained in the chapter 6 about comparisons of



Necessary Risk 11

optimizers; however, this is a risk. In case of doubt, i.e., in practice, if the
problem “landscape” is suspected of containing plateaux, it is as well to check
whether or not any new stochastic algorithm is genuinely superior to a
random search approach. Even if this is not the case, improvements may be
possible. However, this requires a clear understanding of the precise definition
of the term “stochastic”.

Distance-quality correlation
Deceptive 1 (Flash) -0.3
Deceptive 2 (Comb) -0.34
Deceptive 3 (Brush) -0.90

Table 1.3. Three simple functions showing negative correlation

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

Position 

V
al

ue
 

 

a) Deceptive 1 (Flash). Correlation coefficient of around -0.3.



12 Guided Randomness in Optimization

0 102 4 6 81 3 5 7 9

0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

Position 

V
al

ue
 

 

b) Deceptive 2 (Comb). Correlation coefficient of around -0.34.

V
al

ue

c) Deceptive 3 (Brush). Correlation coefficient of around -0.90.

Figure 1.2. Examples of functions with no “positive correlation” property, due
to the existence of plateaux. In these cases, sophisticated optimization

algorithms may perform more poorly than purely random search methods. For
a color version of the figure, see www.iste.co.uk/clerc/randomness.zip


