
1

Introduction

In computer science, a string s is defined as a finite sequence of characters

from a finite alphabet Σ. Apart from the alphabet, an important characteristic

of a string s is its length which, in this book, will be denoted by |s|. A string

is, generally, understood to be a data type i.e. a string is used to represent and

store information. For example, words in a specific language are stored in a

computer as strings. Even the entire text may be stored by means of strings.

Apart from fields such as information and text processing, strings arise in the

field of bioinformatics. This is because most of the genetic instructions

involved in the growth, development, functioning and reproduction of living

organisms are stored in a molecule which is known as deoxyribonucleic acid
(DNA) which can be represented in the form of a string in the following way.

DNA is a nucleic acid that consists of two biopolymer strands forming a

double helix (see Figure 1.1). The two strands of DNA are called

polynucleotides as they are composed of simpler elements called nucleotides.

Each nucleotide consists of a nitrogen-containing nucleobase as well as

deoxyribose and a phosphate group. The four different nucleobases of DNA

are cytosine (C), guanine (G), adenine (A) and thymine (T). Each DNA strand

is a sequence of nucleotides that are joined to one another by covalent bonds

between the sugar of one nucleotide and the phosphate of the next. This

results in an alternating sugar–phosphate backbone (see Figure 1.1).

Furthermore, hydrogen bonds bind the bases of the two separate

polynucleotide strands to make double-stranded DNA. As a result, A can only

bind with T and C can only bind with G. Therefore, a DNA molecule can be

stored as a string of symbols from Σ = {A,C, T,G} that represent one of the

two polynucleotide strands. Similarly, most proteins can be stored as a string

CO
PYRIG

HTED
 M

ATERIA
L

2 Metaheuristics for String Problems in Bio-informatics

of letters from an alphabet of 20 letters, representing the 20 standard amino

acids that constitute most proteins.

Figure 1.1. DNA double helix (image courtesy of Wikipedia)

As a result, many optimization problems in the field of computational

biology are concerned with strings representing, for example, DNA or protein

sequences. In this book we will focus particularly on recent works concerning

string problems that can be expressed in terms of combinatorial optimization
(CO). In early work by Papadimitriou and Steiglitz [PAP 82], a CO problem

P is defined by a tuple (S, f), where S is a finite set of objects and

f : S �→ IR+ is a function that assigns a non-negative cost value to each of

the objects s ∈ S . Solving a CO problem P requires us to find an object s∗ of

minimum cost value1. As a classic academic example, consider the

well-known traveling salesman problem (TSP). In the case of the TSP, set S
consists of all Hamiltonian cycles in a completely connected, undirected

1 Note that searching for a solution with minimum cost value with respect to f is the same as

searching for a solution with maximum cost value with respect to −f . Therefore, generality is

not limited when only referring to minimization.

Introduction 3

graph with positive edge weights. The objective function value of such a

Hamiltonian cycle is the sum of the weights of its edges.

Unfortunately, most CO problems are difficult to optimality solve in

practice. In theoretical terms, this is confirmed by corresponding results about

non-deterministic (NP)-hardness and non-approximability. Due to the

hardness of CO problems, a large variety of algorithmic and mathematical

approaches have emerged to tackle these problems in recent decades. The

most intuitive classification labels these approaches as either complete/exact
or approximate methods. Complete methods guarantee that, for every instance

of a CO problem of finite size, there is an optimal solution in bounded time

[PAP 82, NEM 88]. However, assuming that P �= NP, no algorithm that solves

a CO problem classified as being NP-hard in polynomial time exists

[GAR 79]. As a result, complete methods, in the worst case, may require an

exponential computation time to generate an evincible optimal solution.

When faced with large size, the time required for computation may be too

high for practical purposes. Thus, research on approximate methods to solve

CO problems, also in the bioinformatics field, has enjoyed increasing

attention in recent decades. In contrast to complete methods, approximate

algorithms produce, not necessarily optimal, solutions in relatively acceptable

computation times. Moreover, note that in the context of a combinatorial

optimization problem in bioinformatics, finding an optimal solution is often

not as important as in other domains. This is due to the fact that often the

available data are error prone.

In the following section, we will give a short introduction into some of

the most important complete methods, including integer linear programming

and dynamic programming. Afterward, some of the most popular approximate

methods for combinatorial optimization are reviewed. Finally, the last part of

this chapter outlines the string problems considered in this book.

1.1. Complete methods for combinatorial optimization

Many combinatorial optimization problems can be expressed in terms of

an integer programming (IP) problem, in a way that involves maximizing or

minimizing an objective function of a certain number of decision variables,

subject to inequality and/or equality constraints and integrality restrictions on

the decision variables.

4 Metaheuristics for String Problems in Bio-informatics

Formally, we require the following ingredients:

1) a n-dimensional vector x = (x1, x2, . . . , xn) ∈ Z
n, where each xj ,

j = 1, 2, . . . , n, is called a decision variable and x is called the decision vector;

2) m scalar functions {gi(x) : Rn → R, i = 1, 2, . . . ,m} of the decision

vector x;

3) a m-dimensional vector b = (b1, b2, . . . , bm) ∈ R
m, called the right-

hand side vector;

4) a scalar function z(x) : Rn → R of the decision vector x.

With these ingredients, an IP problem can be formulated mathematically as

follows:

(IP) min (resp. max) z(x)
s.t.

g1(x) ≈ b1
g2(x) ≈ b2

· · · ≈ · · ·
gm(x) ≈ bm

x ∈ Z
n,

where ≈ ∈ {≤,=,≥}. Therefore, the set

X = {x ∈ Z
n | gi(x) ≈ bi, i = 1, 2, . . . ,m}

is called a feasible set and consists of all those points x ∈ Z
n that satisfy the

m constraints gi(x) ≈ bi, i = 1, 2, . . . ,m. Function z is called the objective
function. A feasible point x∗ ∈ X , for which the objective function assumes

the minimum (respectively maximum) value i.e. z(x∗) ≤ z(x) (respectively

z(x∗) ≥ z(x)) for all x ∈ X is called an optimal solution for (IP).

In the special case where X ⊂ Z
n is a finite set, the (IP) problem is a CO

problem. The optimization problems in the field of computational biology

described in this book are concerned with strings and can be classified as CO

problems. Most of them have a binary nature, i.e. a feasible solution to any of

these problems is a n-dimensional vector x ∈ {0, 1}n, where for each xi it is

necessary to choose between two possible choices. Classical binary CO

problems are, for example, the 0/1 knapsack problem, assignment and

Introduction 5

matching problems, set covering, set packing and set partitioning problems

[NEM 88, PAP 82].

In what follows, unless explicitly noted, we will refer to a general integer

linear programming (ILP) problem in standard form:

(ILP) min z(x) = c′x [1.1]

s.t. Ax = b [1.2]

x ≥ 0 and integer, [1.3]

where A ∈ R
m×n is the matrix of the technological coefficients aij ,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, b ∈ R
m and c ∈ R

n are the m-dimensional

array of the constant terms and the n-dimensional array of the objective

function coefficients, respectively. Finally, x ∈ Z
n is the n-dimensional array

of the decision variables, each being non-negative and integer. ILP is linear

since both the objective function [1.1] and the m equality constraints [1.2] are

linear in the decision variables x1, . . . , xn.

Note that the integer constraints [1.3] define a lattice of points in R
n, some

of them belonging to the feasible set X of ILP. Formally, X = P ∩ Z
n ⊂ P ,

where P = {x ∈ R
n | Ax = b, x ≥ 0} (Figure 1.2).

Figure 1.2. Graphical representation of the feasible region
X of a generic ILP problem: X = P ∩ Z

2 ⊂ P ,
where P = {x ∈ R

2 | Ax = b, x ≥ 0}

6 Metaheuristics for String Problems in Bio-informatics

Many CO problems are computationally intractable. Moreover, in contrast

to linear programming problems that may be solved efficiently, for example

by the simplex method, there is no single method capable of solving all of

them efficiently. Since many of them exhibit special properties, because they

are defined on networks with a special topology or because they are

characterized by a special cost structure, the scientific community has

historically lavished its efforts on the design and development of ad hoc
techniques for specific problems. The remainder of this section is devoted to

the description of mathematical programming methods and to dynamic

programming.

1.1.1. Linear programming relaxation

A simple way to approximately solving an ILP using mathematical

programming techniques is as follows:

a) Relax the integer constraints [1.3], obtaining the following continuous

linear programming problem in the standard form:

(ILP-c) min z(x) = c′x
s.t. Ax = b

x ≥ 0.

ILP-c is called the linear programming relaxation of ILP. It is the problem

that arises by the replacement of the integer constraints [1.3] by weaker

constraints that state that each variable xj may assume any non-negative real

value. As already mentioned, ILP-c can be solved by applying, for example,

the simplex method [NEM 88]. Let x∗ and z∗
(ILP-c)

= z(x∗) be the optimal

solution and the optimal objective function value for ILP-c, respectively.

Similarly, let x∗I and z∗
(ILP)

= z(x∗I) be the optimal solution and the optimal

objective function value for ILP, respectively.

Note that since X ⊂ P , we have:

z∗(ILP-c) = min{c′x | x ∈ P} ≤ min{c′x | x ∈ X} = z∗(ILP).

therefore, z∗
(ILP-c)

is a lower bound for z∗
(ILP)

.

Introduction 7

b) If x∗ ∈ Z
n, then x∗ is also an optimal solution for ILP, i.e.

z∗(ILP-c) = z∗(ILP).

The procedure described above generally results in failure, as the optimal

solution x∗ to the linear programming relaxation typically does not have all

integer components, except for in special cases such as problems whose

formulation is characterized by a totally unimodular matrix A (see the

transportation problem, the assignment problem and shortest path problems

with non-negative arc lengths). Furthermore, it is wrong to try to obtain a

solution xI for ILP by rounding all non-integer components of x∗, because it

may lead to infeasible solutions, as shown in Example 1.1 below.

EXAMPLE 1.1.– Let us consider the following integer linear program:

max x2
x1 ≥ 1

4 (a)

x1 ≤ 3
4 (b)

x2 ≤ 2 (c)

x1, x2 ≥ 0 and integer.

The corresponding feasible set X is depicted in Figure 1.3. Optimal

solutions of its linear relaxation are all points x∗ = (x∗1, x∗2), with x∗1 ∈
[
1
4 ,

3
4

]
and x∗2 = 2. Therefore, x∗ /∈ Z

2. Moreover, xI /∈ X , since either xI = (0, 2)
or xI = (1, 2).

Summarizing, the possible relations between ILP and its linear

programming relaxation ILP-c are listed below and X∗ and P ∗ denote the

set of optimal solutions for ILP and ILP-c, respectively:

1) P = ∅ =⇒ X = ∅;

2) z∗
(ILP)

= ∞ =⇒ z∗
(ILP-c)

= ∞ (not possible in the case of

combinatorial optimization problems);

3) P ∗ �= ∅, X∗ �= ∅ =⇒ z∗
(ILP-c)

≤ z∗
(ILP)

(lower bound);

4) y ∈ P ∗, y ∈ Z
n =⇒ y ∈ X∗ and

z(y) = z∗(ILP-c) = z∗(ILP);

8 Metaheuristics for String Problems in Bio-informatics

5) X = ∅, but P ∗ �= ∅, as for the problem described in Example 1.1, whose

feasible set is depicted in Figure 1.3;

6) X = ∅, but z∗
(ILP-c)

= ∞ (not possible in the case of combinatorial

optimization problems), as for the following problem, whose feasible set is

shown in Figure 1.4:

max x2
x1 ≥ 1

4 (a)

x1 ≤ 3
4 (b)

x1, x2 ≥ 0 and integer.

Figure 1.3. Feasible set of the problem described in Example 1.1.
x∗ = (x∗

1, x
∗
2), with x∗

1 ∈ [
1
4
, 3
4

]
and x∗

2 = 2, x∗ /∈ Z
2. Furthermore,

xI /∈ X, since either xI = (0, 2) or xI = (1, 2)

Even if it almost always leads to failure while finding an optimal solution to

ILP, linear programming relaxation is very useful in the context of many exact

methods, as the lower bound that it provides avoids unnecessary explorations

of portions of the feasible set X . This is the case with branch and bound (B&B)

algorithms, as explained in section 1.1.2.1. Furthermore, linear programming

relaxation is a standard technique for designing approximation algorithms for

hard optimization problems [HOC 96, VAZ 01, WIL 11].

Introduction 9

Figure 1.4. Feasible set of the problem described in point
(6) below Example 1.1: X = ∅, but z∗(ILP-c) = ∞

1.1.2. Cutting plane techniques

Historically, cutting plane techniques were the first algorithms developed

for ILP that could be proved to converge in a finite number of steps. A

cutting plane algorithm iteratively finds an optimal solution x∗ following linear

programming relaxation ILP-c. If x∗ has at least one fractional component, a

constraint satisfied by all integer solutions belonging to P , but not satisfied by

x∗, is identified. This constraint, which is violated by x∗ and is added to the

mathematical formulation of ILP-c, is called a cut. Formally, given x∗ ∈ P ,

a ∈ R
n and b ∈ R, the constraint a′x ≤ b is a cut if the following two

conditions hold:

1) a′x ≤ b, ∀ x ∈ X;

2) a′x∗ > b.

Any cutting plane algorithm proceeds in iterations, as shown in

Algorithm 1.1. Different cutting plane algorithms differ from each other in

the method they adopt to identify the cut to be added to the current linear

programming formulation ILP-ck at each iteration. Since the number of

iterations performed corresponds to the number of cuts needed, it is intuitive

that stronger cuts imply fewer iterations. Unfortunately, most state-of-the-art

cutting plane techniques can cut only small portions of P .

10 Metaheuristics for String Problems in Bio-informatics

Algorithm 1.1. General Cutting Plane Technique

1: input: an ILP problem

2: initialization: Set ILP-c0 :=ILP-c, x∗0 := x∗, k := 0
3: while x∗k not integer do
4: find a cut a′kx ≤ bk for x∗k
5: obtain ILP-ck+1 by adding the cut a′kx ≤ bk to ILP-ck
6: find an optimal solution x∗k+1 for ILP-ck+1

7: k := k + 1
8: end while
9: output: optimal solution x∗k to ILP

A feasible solution x ∈ R
n of a system Ax = b of equality constraints,

A ∈ R
m×n and b ∈ R

m, is a basic solution if the n components of x can be

partitioned into m non-negative basic variables and n−m non-basic variables

in a way such that the m columns of A, corresponding to the basic variables,

form a non-singular submatrix B (basis matrix), and the value of each non-

basic variable is 0. In 1958, Gomory [GOM 58] proposed the most famous

and well-known cutting plane method, whose basic idea is to exploit important

information related to the m×m non-singular submatrix B of A corresponding

to the m currently basic variables in the optimal continuous solution x∗.

Let us consider a generic iteration k of Gomory’s algorithm. Suppose that

the optimal continuous solution x∗k has at least one fractional component. Let

xh be such a variable. Clearly, xh must be a basic variable and let us suppose it

is carried in the tth row of the optimal table. We can observe that the equation

associated with the tth row of the optimal table can be stated as follows:

xh +
∑
j∈N

ātjxj = b̄t,

where:

– N is the set of non-basic variables;

– ātj , j ∈ N are the elements of the tth row of the optimal table

corresponding to the columns of the non-basic variables;

– b̄t is a fractional constant, by hypothesis.

Introduction 11

Since xj ≥ 0, for all j = 1, 2, . . . , n, we have:

xh +
∑
j∈N

�ātj�xj ≤ xh +
∑
j∈N

ātjxj = b̄t.

Moreover, since xj must assume an integer value, the following inequality

holds:

xh +
∑
j∈N

�ātj�xj ≤ �b̄t�. [1.4]

The tth row of the optimal table is referred to as the row generating the cut
and inequality [1.4] is the cut that Gomory’s algorithm uses at each iteration,

until it is not obtained in an optimal continuous solution x∗k ∈ Z
n. It can easily

be proved that the cut [1.4] is still satisfied by all feasible integer solution,

but violated by x∗k, since the current value of the hth component of x∗k is b̄t,
the components of x∗k corresponding to the non-basic variables are zero, and

�b̄t� ≤ b̄t.

1.1.2.1. Branch and Bound

An alternative exact approach is B&B, which is an implicit enumeration
technique because it can prove the optimality of a solution without explicitly

visiting all valid solutions when it finishes. Almost always outperforming the

cutting plane approach, it is a divide and conquer framework that addresses

ILP by dividing it into a certain number of subproblems, which are “simpler”

because they are smaller in size.

Given the following ILP:

(ILP0) min z(x) = c′x
s.t.

Ax ≈ b
x ≥ 0 and integer,

with feasible set X0 and optimal objective function value given by:

z∗(ILP0) = min{z(x) | x ∈ X0},

12 Metaheuristics for String Problems in Bio-informatics

we obtain ILP0 B&B partitions in a certain number of subproblems

ILP1, . . . , ILPn0 , whose totality represents ILP0. Such a partition is obtained

by partitioning X0 into the subsets X1, . . . , Xn0 such that:

– for i = 1, . . . , n0, Xi is the feasible set of subproblem ILPi;

– for i = 1, . . . , n0, z∗ILPi
= min{z(x) | x ∈ Xi} is the optimal objective

function value of subproblem ILPi;

–

n0⋃
k=1

Xk = X0,

n0⋂
k=1

Xk = ∅.

Note that, since any feasible solution of ILP0 is feasible for at least one

subproblem among ILP1, . . . , ILPn0 , it clearly results that:

z∗ILP0
= min

i=1,...,n0

z∗ILPi
.

Therefore, ILP0 is solved by solving ILP1, . . . , ILPn0 , i.e. for each ILPi,

i = 1, . . . , n0. One of the three options given below will hold true:

– an optimal solution to ILPi is found; or

– it can be proved that ILPi is unfeasible (Xi = ∅); or

– it can be proved that an optimal solution to ILPi is not better than a known

feasible solution to ILP0 (if any).

Each ILPi subproblem, i = 1, . . . , n0, has the same characteristics and

properties as ILP0. Hence, the procedure described above can be applied to

solve it, i.e. its feasible set Xi is partitioned and so on.

The whole process is usually represented dynamically by means of a

decision tree, also called a branching tree (see Figure 1.5), where:

– the choice of the term branching refers to the partitioning operation of Xi

sets;

– the choice of the classical terms used in graph and tree theory include:

- root node (corresponding to the original problem ILP0),

- father and children nodes,

Introduction 13

- leaves, each corresponding to some ILPi subproblem, i > 0, still to be

investigated.

 ILP0

 ILPn0 ILP1 ILPi

 Root

 Leaves

Branching
operation

Figure 1.5. Branch and bound branching tree

It is easily understandable and intuitive that the criterion adopted to

fragment every ILPi (sub)problem, i = 0, 1, . . . , n0, has a huge impact

on the computational performance of a B&B algorithm. In the literature,

several different criteria have been proposed to perform this task, each closely

connected to some specific procedure, called a relaxation technique. Among

the well-known relaxation techniques, those that ought to be mentioned are:

– linear programming relaxation;

– relaxation by elimination;

– surrogate relaxation;

– Lagrangian relaxation;

– relaxation by decomposition.

The most frequently applied relaxation technique is linear programming

relaxation. To understand the idea underlying this technique, let us consider

ILP0 with feasible set X0 depicted in Figure 1.6. The optimal solution to its

14 Metaheuristics for String Problems in Bio-informatics

linear programming relaxation (with feasible set P0) is x∗ =
(
3
2 , 2

)
, with

x∗1 = 3
2 . Clearly, in the optimal integer solution it must be either x1 ≤ 1 or

x1 ≥ 2. Therefore, one can proceed by separately adding to the original

integer formulation of ILP0 the constraints x1 ≤ 1 and x1 ≥ 2, respectively.

By adding constraint x1 ≤ 1, the subproblem ILP x1≤1 is generated, with the

optimal solution x∗x1≤1. Similarly, by adding constraint x1 ≥ 2, the

subproblem ILP x1≥2 is generated, with the optimal solution x∗x1≥2. In this

way, ILP0 is partitioned into the two subproblems ILP x1≤1 and ILP x1≥2,

whose feasible sets (see Figure 1.7) are X1 and X2 such that X1 ∪X2 = X0

and X1 ∩ X2 = ∅. An optimal solution to ILP0 is obtained with the best

solution between x∗x1≤1 and x∗x1≥2.

x1

x2

1 2 3 4

1

2

3

PX

x*

0
0

Figure 1.6. B&B scenario

x1

x2

1 2 3 4

1

2

3

P

X

x*

1

X
2

0

Figure 1.7. B&B partitioning (branching)

Introduction 15

More generally, given ILP0, one needs to solve its linear programming

relaxation:

(ILP0-c) min z(x) = c′x
s.t.

Ax ≈ b
x ≥ 0,

with feasible set P0. Let x∗P0
be an optimal solution to ILP0-c. If all

components of x∗P0
are integer, then x∗P0

is an optimal solution to ILP0.

Otherwise, (see Figure 1.8) a fractional component [x∗P0
]h ([x∗P0

]h = a /∈ Z)

is chosen and the following two subproblems are identified:

(ILP1) min z(x) = c′x
s.t.

Ax ≈ b
xh ≤ �a�
x ≥ 0 and integer,

and

(ILP2) min z(x) = c′x
s.t.

Ax ≈ b
xh ≥ �a�
x ≥ 0 and integer.

Figure 1.8. Branching: [x∗
P0

]h = a /∈ Z

16 Metaheuristics for String Problems in Bio-informatics

Identifying subproblems ILP1 and ILP2 starting from ILP0 corresponds to

performing a branching operation. Variable xh is called the branching
variable. Subproblems ILP1 and ILP2 are children of ILP0 as they are

obtained by adding the branching constraints xh ≤ �a� and xh ≥ �a�,

respectively to the formulation of ILP0.

Since ILP1 and ILP2 are still integer problems, they are approached with

the same procedure, i.e. for each of them its linear relaxation is optimally

solved and, if necessary, further branching operations are performed.

Proceeding in this way, we obtain a succession of hierarchical subproblems
that are more constrained and hence easier to solve. As already underlined,

the whole process is represented dynamically by means of a decision tree,

also called a branching tree, whose root node corresponds to the original

problem, ILP0. Any child node corresponds to the subproblem obtained by

adding a branching constraint to the formulation of the problem

corresponding to its father node.

Generally speaking, the constraints of any subproblem ILPt corresponding

to node t in the branching tree are the following ones:

1) the constraints of the original problem, ILP0;

2) the branching constraints that label the unique path in the branching tree

from the root node to node t (node t “inherits” the constraints of its ancestors).

In principle, the branching tree could represent all possible branching

operations and, therefore, be a complete decision tree that enumerates all

feasible solutions to ILP0. Nevertheless, as explained briefly, thanks to the

bounding criterion, entire portions of the feasible region X0 that do not

contain the optimal solution are not explored or, in other words, a certain

number of feasible solutions are not generated, since they are not optimal.

Let us suppose that the B&B algorithm is evaluating subproblem ILPt and

let xopt be the best current solution (incumbent solution) to ILP0 (i.e. xopt is

an optimal solution to at least one subproblem, ILPk, k > 0 and k �= t, among

those subproblems already investigated). Let zopt = z(xopt), where initially

zopt := +∞ and xopt := ∅.

Introduction 17

Recalling the possible relations existing between a linear integer program

and its linear programming relaxation described in section 1.1.1, it is useless

to operate a branch from ILPt if any of the following three conditions holds:

1) The linear programming relaxation ILPt-c is infeasible (hence, ILPt is

infeasible as well). This happens when the constraints of the original problem,

ILP0, and the branching constraints from the root of the branching tree to node

t are inconsistent;

2) The optimal solution to linear programming relaxation ILPt-c is integer.

In this case, if necessary, xopt and zopt are updated.

3) The optimal solution to linear programming relaxation ILPt-c is not

integer, but:

z∗(ILPt-c) ≥ zopt. [1.5]

In the latter case, it is clearly useless to keep partitioning Xt. This is because

none of the feasible integer solutions are better than the incumbent solution

xopt, since it always holds that z∗
(ILPt)

≥ z∗
(ILP-ct)

. Inequality [1.5] is called

the bounding criterion.

1.1.2.2. Choice of branching variable

Suppose that the B&B algorithm is investigating subproblem ILPt and that

a branching operation must be performed because none of the three

conditions listed above is verified. Let x∗Pt
be an optimal solution to

ILPt-c and suppose that it has at least two fractional components, i.e.

F = {l ∈ {1, . . . , n} | [x∗Pt
]l /∈ Z}; |F | ≥ 2

The most commonly used criteria adopted to choose the branching variable

xh are as follows:

1) h is randomly selected from set F ;

2) h = min {l | l ∈ F} (h is the minimum index in F);

3) h = min
{
[x∗Pt

]l | l ∈ F
}

(h is the index in F corresponding to the

minimum fractional value).

18 Metaheuristics for String Problems in Bio-informatics

1.1.2.3. Generation/exploration of the branching tree

A further issue that still remains to be determined is the criterion for

generating/exploring the branching tree. At each iteration, a B&B algorithm

maintains and updates a list Q of live nodes in the branching tree, i.e. a list of

the current leaves that correspond to the active subproblems:

Q = {ILPi | ILPi to be investigated and z∗ILPi-c
< zopt}.

Two main techniques are adopted to decide the next subproblem in Q to be

investigated:

– Depth first: recursively, starting from the last generated node t
corresponding to subproblem ILPt whose feasible region Xt must be

partitioned, its left child is generated/explored, until node k corresponding to

subproblem ILPk is generated from which no branch is needed. In the latter

case, backtracking is performed to the first active node j < k that has already

been generated. Usually, set Q is implemented as a stack and the algorithm

stops as soon as Q = ∅, i.e. when a backtrack to the root node must be

performed.

This technique has the advantages of being relatively easier to implement

and of keeping the number of active nodes low. Moreover, it produces feasible

solutions rapidly, which means that good approximate solutions are obtained

even when stopped rather early (e.g. in the case of the running time limit being

reached). On the other hand, deep backtracks must often be performed.

– Best bound first: at each iteration, the next active node to be considered

is the node associated with subproblem ILPt corresponding to the linear

programming relaxation with the current best objective function value, i.e.

ILPt = argmin
{
z∗ILPh-c | h ∈ Q

}
.

The algorithm stops as soon as Q = ∅. This technique has the advantage of

generating a small number of nodes, but rarely goes to very deep levels in the

branching tree.

1.1.3. General-purpose ILP solvers

The techniques described in the previous section, among others, are

implemented as components of general-purpose ILP solvers that may be

Introduction 19

applied to any ILP. Examples of such ILP solvers include IBM ILOG CPLEX

[IBM 16], Gurobi [GUR 15] and SCIP [ACH 09]. The advantage of these

solvers is that they are implemented in an incredibly efficient way and

they incorporate all cutting-edge technologies. However, for some CO

problems it might be more efficient to develop a specific B&B algorithm, for

example.

1.1.4. Dynamic programming

Dynamic programming is an algorithmic framework for solving CO

problems. Similar to any divide and conquer scheme, it is based on the

principle that it is possible to define an optimal solution to the original

problem in terms of some combination of optimal solutions to its

subproblems. Nevertheless, in contrast to the divide and conquer strategy,

dynamic programming does not partition the problem into disjointed

subproblems. It applies when the subproblems overlap, i.e. when subproblems

share themselves. More formally, two subproblems (ILPh) and (ILPk) overlap

if they can be divided into the following subproblems:

(ILPh) = {(ILPh1), (ILPh2), . . . , (ILPhi)}

(ILPk) = {(ILPk1), (ILPk2), . . . , (ILPkj)}

{(ILPh1), (ILPh2), . . . , (ILPhi)} ∩ {(ILPk1), (ILPk2), . . . , (ILPkj)} �= ∅,

where (ILPh) and (ILPk) share at least one subproblem.

A CO ILP problem can be solved by the application of a dynamic

programming algorithm if it exhibits the following two fundamental

characteristics:

1) ILP exhibits an optimal substructure, i.e. an optimal solution to ILP

contains optimal solutions to its subproblems. This characteristic guarantees

there is a formula that correctly expresses an optimal solution to ILP as

combination of optimal solutions to its subproblems.

20 Metaheuristics for String Problems in Bio-informatics

2) ILP must be divisible into overlapping subproblems. From a

computational point of view, any dynamic programming algorithm takes

advantage of this characteristic. It solves each subproblem, ILPl, only once

and stores the optimal solution in a suitable data structure, typically a table.

Afterwards, whenever the optimal solution to ILPl is needed, this optimal

solution is looked up in the data structure using constant time per lookup.

When designing a dynamic programming algorithm for a CO ILP problem,

the following three steps need to be taken:

1) Verify that ILP exhibits an optimal substructure.

2) Recursively define the optimal objective function value as combination

of the optimal objective function value of the subproblems (recurrence
equation). In this step, it is essential to identify the elementary subproblems,

which are those subproblems that are not divisible into further subproblems

and thus are immediately solvable (initial conditions).

3) Write an algorithm based on the recurrence equation and initial

conditions stated in step 2.

1.2. Approximate methods: metaheuristics

In contrast to complete (or exact) techniques as outlined in the previous

section, metaheuristics [BLU 03, GEN 10a] are approximate methods for

solving optimization problems. They were introduced in order to provide

high-quality solutions using a moderate amount of computational resources

such as computation time and memory. Metaheuristics are often described as

“generally applicable recipes” for solving optimization problems. The

inspiration for specific metaheuristics are, taken from natural processes, such

as the annealing of glass or metal that give rise to a metaheuristic known as

simulated annealing (see section 1.2.5) and the shortest path-finding behavior

of natural ant colonies that inspired the ant colony optimization (ACO)

metaheuristic (see section 1.2.1). Many ideas originate from the way of

visualizing the search space of continuous and CO problems in terms of a

landscape with hills and valleys. When a maximization problem is

considered, the task is then to find the highest valley in the search landscape.

Introduction 21

The general idea of a local search, for example, is to start the search process

at some point in the search landscape and then move uphill until the peak of a

mountain is reached. In analogy, an alternative expression for a search

procedure based on a local search is hill-climber. Several metaheuristics are

extensions of a simple local search, equipped with strategies for moving from

the current hill to other (possibly neighboring) hills in the search landscape.

In any case, during the last 40–50 years, metaheuristics have gained a strong

reputation for tackling optimization problems to which complete methods

cannot be applied – for example, due to the size of the problem considered –

and for problems for which simple greedy heuristics do not provide solutions

of sufficient quality.

As mentioned above, several metaheuristics are extensions of a simple local

search. To formally define a local search method, the notion of a so-called

neighborhood must be introduced. Given a CO problem (S, f), where S is

the search space – that is, the set of all valid solutions to the problem – and

f : S �→ R
+ is the objective function that assigns a positive cost value to

each valid solution S ∈ S , a neighborhood is defined as a function, N : S �→
2S . In other words, a neighborhood assigns to each solution S ∈ S a subset

N(S) ⊆ S which is called the neighborhood of S. Any solution S such that

f(S) ≤ f(S′) for all S′ ∈ N(S) is called a local minimum with respect to

N . Moreover, a solution S∗ such that f(S∗) ≤ f(S′) for all S′ ∈ S is called

a global minimum. Note that any global minimum is a local minimum with

respect to any neighborhood at the same time.

Algorithm 1.2. Local search

input: initial solution S, neighborhood N
while S is not a local minimum w.r.t. N do
S′ := ChooseImprovingNeighbor(N(S))
S := S′

end while
output: a local minimum S

Given a neighborhood N , a simple local search method can be defined as

follows; see also Algorithm 1.2. First, an initial solution S must be generated.

This may be done randomly, or by means of a greedy heuristic. Then, at each

22 Metaheuristics for String Problems in Bio-informatics

step a solution S′ ∈ N(S) is chosen in function ChooseImproving Neighbor
(N(S)) such that f(S′) < f(S). Solution S is then replaced by S′ and the

algorithm proceeds to the next iterations. There are at least

two standard ways of implementing function ChooseImproving Neighbor
(N(S)). In the first one – henceforth, referred to as best-improvement local
search – S′ is chosen as follows:

S′ := argmin{f(S′′) | S′′ ∈ N(S)} [1.6]

The second standard way of implementing this function is first-
improvement local search. In first-improvement local search, the solutions to

N(S) are ordered in some way. They are then examined in the order they are

produced and the first solution that has a lower objective function value than

S (if any) is returned.

In general, the performance of a local search method depends firmly on the

choice of the neighborhood N . It is also interesting to note that a local search

algorithm partitions the search space into so-called basins of attraction of local

minima. Hereby, the basin of attraction B(S) of a local minimum S ∈ S is a

subset of the search space, i.e. B(S) ⊆ S . In particular, when starting the local

search under consideration from any solution S′ ∈ B(S), the local minimum at

which the local search method stops is S. In relation to constructive heuristics,

it can be stated that constructive heuristics are often faster than local search

methods, yet they frequently return solutions of inferior quality.

In the following section, we will describe some important metaheuristics.

With the exception of evolutionary algorithms (see section 1.2.2), all these

metaheuristics are either extensions of constructive heuristics or of a local

search. The order in which the metaheuristics are described is alphabetical.

1.2.1. Ant colony optimization

ACO [DOR 04] is a metaheuristic which was inspired by the observation

of the shortest-path finding behavior of natural ant colonies. From a technical

perspective, ACO algorithms are extensions of constructive heuristics. Valid

solutions to the problem tackled are assembled as subsets of the complete set

C of solution components. In the case of the traveling salesman problem

Introduction 23

(TSP), for example, C may be defined as the set of all edges of the input

graph. At each iteration of the algorithm, a set of na solutions are

probabilistically constructed based on greedy information and on so-called

pheromone information. In a standard case, for each solution with

components c ∈ C, the algorithm considers a pheromone value τc ∈ T , where

T is the set of all pheromone values. Given a partial solution, Sp ⊆ C, the

next component c′ ∈ C to be added to Sp is chosen based on its pheromone

value τc′ and the value η(c′) of a greedy function η(·). Set T is commonly

called the pheromone model, which is one of the central components of any

ACO algorithm. The solution construction mechanism together with the

pheromone model and the greedy information define a probability distribution

over the search space. This probability distribution is updated at each iteration

(after having constructed na solutions) by increasing the pheromone value of

solution components that appear in good solutions constructed in this iteration

or in previous iterations.

In summary, ACO algorithms attempt to solve CO problems by iterating

the following two steps:

– candidate solutions are constructed by making use of a mechanism for

constructing solutions, a pheromone model and greedy information;

– candidate solutions are used to update the pheromone values in a way that

is deemed to bias future sampling toward high-quality solutions.

In other words, the pheromone update aims to lead the search towards

regions of the search space containing high-quality solutions. The

reinforcement of solution components depending on the quality of solutions

in which they appear is an important ingredient of ACO algorithms. By doing

this, we implicitly assume that good solutions consist of good solution

components. In fact, it has been shown that learning which components

contribute to good solutions can – in many cases – help to assemble them into

better solutions. A high-level framework of an ACO algorithm is shown in

Algorithm 1.3. Daemon actions (see line 5 of Algorithm 1.3) mainly refer to

the possible application of local search to solutions constructed in the

AntBasedSolutionConstruction() function.

A multitude of different ACO variants have been proposed over the years.

Among the ones with the best performance are (1) MAX–MIN Ant System

24 Metaheuristics for String Problems in Bio-informatics

(MMAS) [STÜ 00] and (2) Ant Colony System (ACS) [DOR 97]. For more

comprehensive information, we refer the interested reader to [DOR 10].

Algorithm 1.3. Ant colony optimization (ACO)

1: while termination conditions not met do
2: ScheduleActivities
3: AntBasedSolutionConstruction()
4: PheromoneUpdate()
5: DaemonActions() {optional}

6: end ScheduleActivities
7: end while

1.2.2. Evolutionary algorithms

Evolutionary algorithms (EAs) [BÄC 97] are inspired by the principles of

natural evolution, i.e. by nature’s capability to evolve living beings to keep

them well adapted to their environment. At each iteration, an EA maintains a

population P of individuals. Generally, individuals are valid solutions to the

problem tackled. However, EAs sometimes also permit infeasible solutions or

even partial solutions. Just as in natural evolution, the driving force in EAs is

the selection of individuals based on their fitness, which is – in the context of

combinatorial optimization problems – usually a measure based on the

objective function. Selection takes place in two different operators of an EA.

First, selection is used at each iteration to choose parents for one or more

reproduction operators in order to generate a set, P off, of offspring. Second,

selection takes place when the individuals in the population of the next

iteration are chosen from the current population P and the offspring generated

in the current iteration. In both operations, individuals with higher fitness

have a higher probability of being chosen. In natural evolution this principle

is known as survival of the fittest. Note that reproduction operations, such as

crossover, often preserve the solution components that are present in the

parents. EAs generally also make use of mutation or modification operators

that cause either random changes or heuristically-guided changes in an

individual. This process described above is pseudo-coded in Algorithm 1.4.

A variety of different EAs have been proposed over the last decades. To

mention all of them is out of the scope of this short introduction. However,

Introduction 25

three major lines of EAs were independently developed early on. These are

evolutionary programming (EP) [FOG 62, FOG 66], evolutionary strategies
(ESs) [REC 73] and genetic algorithms (GAs) [HOL 75, GOL 89]. EP, for

example, was originally proposed to operate on discrete representations of

finite state machines. However, most of the present variants are used for CO

problems. The latter also holds for most current variants of ESs. GAs,

however are still mainly applied to the solution of CO problems. Later, other

EAs – such as genetic programming (GP) [KOZ 92] and scatter search (SS)

[GLO 00b] – were developed. Despite the development of different strands,

EAs can be understood from a unified point of view with respect to their main

components and the way in which they explore the search space. This is

reflected, for example, in the survey by Kobler and Hertz [HER 00].

Algorithm 1.4. Evolutionary algorithm (EA)

1: P := GenerateInitialPopulation()
2: while termination conditions not met do
3: P s := Selection(P)
4: P off := Recombination(P s)
5: P ′ := Mutation(P off)
6: P := Replacement(P, P ′)
7: end while

1.2.3. Greedy randomized adaptive search procedures

The greedy randomized adaptive search procedure (GRASP) [RES 10a] is

a conceptually simple, but often effective, metaheuristic. As indicated by the

name, the core of GRASP is based on the probabilistic construction of

solutions. However, while ACO algorithms, for example, include a memory

of the search history in terms of the pheromone model, GRASP does not

make use of memory. More specifically, GRASP – as pseudo-coded in

Algorithm 1.5 – combines the randomized greedy construction of solutions

with the subsequent application of a local search. For the following discussion

let us assume that, given a partial solution Sp, set Ext(Sp) ⊆ C is the set of

solution components that may be used to extend Sp. The probabilistic

construction of a solution using GRASP makes use of a so-called restricted
candidate list L, which is a subset of Ext(Sp), at each step. In fact, L is

26 Metaheuristics for String Problems in Bio-informatics

determined to contain the best solution components from Ext(Sp) with

respect to a greedy function. After generating L, a solution component c∗ ∈ L
is chosen uniformly at random. An important parameter of GRASP is α,

which is the length of the restricted candidate list L. If α = 1, for example,

the solution construction is deterministic and the resulting solution is equal to

the greedy solution. In the other extreme case – that is, when choosing

α = |Ext(Sp)| – a random solution is generated without any heuristic bias. In

summary, α is a critical parameter of GRASP which generally requires a

careful fine-tuning.

Algorithm 1.5. Greedy randomized adaptive search procedure (GRASP)

while termination conditions not met do
S := ConstructGreedyRandomizedSolution()
S := LocalSearch(S)

end while

As mentioned above, the second component of the algorithm consists of

the application of local search to the solutions constructed. Note that, for this

purpose, the use of a standard local search method such as the one from

Algorithm 1.2 is the simplest option. More sophisticated options include, for

example, the use of metaheuristics based on a local search such as simulated

annealing. As a rule of thumb, the algorithm designer should take care that:

(1) the solution construction mechanism samples promising regions of the

search space: and (2) the solutions constructed are good starting points for a

local search, i.e. the solutions constructed fall into basins of attraction for

high-quality local minima.

1.2.4. Iterated local search

Iterated local search (ILS) [LOU 10] is – among the metaheuristics

described in this section – the first local search extension. The idea of ILS is

simple: instead of repeatedly applying local search to solutions generated

independently from each other, as in GRASP, ILS produces the starting

solutions for a local search by randomly perturbing the incumbent solutions.

The requirements for the perturbation mechanism are as follows. The

perturbed solutions should lie in a different basin of attraction with respect to

the local search method utilized. However, at the same time, the perturbed

Introduction 27

solution should be closer to the previous incumbent solution than a randomly

generated solution.

More specifically, the pseudo-code of ILS – as shown in Algorithm 1.6 –

works as follows. First, an initial solution is produced in some way in the

GenerateInitialSolution() function. This solution serves as input for the first

application of a local search (see ApplyLocalSearch(S) function in line 2 of

the pseudo-code). At each iteration, first, the perturbation mechanism is

applied to the incumbent solution S; see Perturbation(S,history) function. The

parameter history refers to the possible influence of the search history on this

process. The perturbation mechanism is usually non-deterministic in order to

avoid cycling, which refers to a situation in which the algorithm repeatedly

returns to solutions already visited. Moreover, it is important to choose the

perturbation strength carefully. This is, because: (1) a perturbation that causes

very few changes might not enable the algorithm to escape from the current

basin of attraction; (2) a perturbation that is too strong would make the

algorithm similar to a random-restart local search. The last algorithmic

component of ILS concerns the choice of the incumbent solution for the next

iteration; see function Choose(S, S′, history). In most cases, ILS algorithms

simply choose the better solution from among S and S′. However, other

criteria – for example, ones that depend on the search history – might be

applied.

Algorithm 1.6. Iterated local search (ILS)

1: S := GenerateInitialSolution()
2: S := ApplyLocalSearch(S)
3: while termination conditions not met do
4: S′ := Perturbation(S, history)
5: S′ := ApplyLocalSearch(S′)
6: S := Choose(S, S′, history)
7: end while

1.2.5. Simulated annealing

Simulated annealing (SA) [NIK 10] is another metaheuristic that is an

extension of local search. SA has – just like ILS – a strategy for escaping

from the local optimal of the search space. The fundamental idea is to allow

moves to solutions that are worse than the incumbent solution. Such a move is

28 Metaheuristics for String Problems in Bio-informatics

generally known as an uphill move. SA is inspired by the annealing process of

metal and glass. When cooling down such materials from the fluid state to a

solid state, the material loses energy and finally assumes a crystal structure.

The perfection – or optimality – of this crystal structure depends on the speed

at which the material is cooled down. The more carefully the material is

cooled down, the more perfect the crystal structure. The first times that SA

was presented as a search algorithm for CO problems was in [KIR 83] and in

[CER 85].

SA works as shown in Algorithm 1.7. At each iteration, a solution

S′ ∈ N(S) is randomly selected. If S′ is better than S, then S′ replaces S as

incumbent solution. Otherwise, if S is worse than S′ – that is, if the move

from S to S′ is an uphill move – S′ may still be accepted as new incumbent

solution with a positive probability that is a function of a temperature

parameter Tk – in analogy to the natural inspiration of SA – and the

difference between the objective function value of S′ and that of S
(f(s′) − f(s)). Usually this probability is computed in accordance with

Boltzmann’s distribution. Note that when SA is running, the value of Tk

gradually decreases. In this way, the probability of accepting an uphill move

decreases during run time.

Algorithm 1.7. Simulated annealing (SA)

1: S := GenerateInitialSolution()
2: k := 0
3: Tk := SetInitialTemperature()
4: while termination conditions not met do
5: S′ := SelectNeighborAtRandom (N(S))
6: if (f(S′) < f(S)) then
7: S := S′

8: else
9: accept S′ as new solution with a probability p(S′ | Tk, S)

10: end if
11: Tk+1 :=AdaptTemperature (Tk, k)
12: k := k + 1
13: end while

Note that the SA search process can be modeled as a Markov chain
[FEL 68]. This is because the trajectory of solutions visited by SA is such that

Introduction 29

the next solution is chosen depending only on the incumbent solution. This

means that – just like GRASP – basic SA is a memory-less process.

1.2.6. Other metaheuristics

Apart from the five metaheuristics outlined in the previous sections, the

literature offers a wide range of additional algorithms that fall under the

metaheuristic paradigm. Examples are established metaheuristics, such as

Tabu search [GLO 97, GEN 10b], particle swarm optimization [KEN 95,

JOR 15], iterated greedy algorithms [HOO 15] and variable neighborhood
search (VNS) [HAN 10]. More recent metaheuristics include artificial bee
colony optimization [KAR 07, KAR 08] and chemical reaction optimization
[LAM 12].

1.2.7. Hybrid approaches

Quite a large number of algorithms have been reported in recent years that

do not follow the paradigm of a single traditional metaheuristic. They

combine various algorithmic components, often taken from algorithms from

various different areas of optimization. These approaches are commonly

referred to as hybrid metaheuristics. The main motivation behind the

hybridization of different algorithms is to exploit the complementary

character of different optimization strategies, i.e. hybrids are believed to

benefit from synergy. In fact, choosing an adequate combination of

complementary algorithmic concepts can be the key to achieving top

performance when solving many hard optimization problems. This has also

seen to be the case in the context of string problems in bioinformatics, for

example in the context of longest common subsequence problems in

Chapter 3. In the following section, we will mention the main ideas behind

two generally applicable hybrid metaheuristics from the literature: large

neighborhood search (LNS), and construct, merge, solve & adapt (CMSA). A

comprehensive introduction into the field of hybrid metaheuristics is

provided, for example, in [BLU 16e].

1.2.7.1. Large neighborhood search

The LNS Algorithm (see [PIS 10] for an introduction) was introduced

based on the following observation. As complete solvers are often only

30 Metaheuristics for String Problems in Bio-informatics

efficient for small to medium size problems, the following general idea might

work very well. Given a problem for which the complete solver under

consideration is no efficient longer, we generate a feasible solution in some

way – for example, by means of a constructive heuristic – and try to improve

this solution in the following way. First, we partially destroy the solution by

removing some components of the solution. This can either be done in a

purely random way or guided by a heuristic criterion. Afterwards, the

complete solver is applied to the problem of finding the best valid solution to

the original problem that includes all solution components of the given partial

solution. As a partial solution is already given, the complexity of this problem

is significantly lower and the complete solver might be efficiently used to

solve it. This procedure is iteratively applied to an incumbent solution. In this

way, LNS still profits from the advantages of the complete solver, even in the

context of large problems.

The pseudo-code of a general LNS algorithm is provided in

Algorithm 1.8. First, in line 2 of Algorithm 1.8, an initial incumbent solution

Scur is generated in the GenerateInitialSolution() function. This solution

(Scur) is then partially destroyed at each iteration, for example by removing

some of its components. The number (or percentage) of components to be

removed, as well as how these components are chosen, are important design

decisions. The resulting partial solution Spartial is fed to a complete solver;

see function ApplyCompleteSolver(Spartial, tmax) in line 6 of Algorithm 1.8.

This function includes the current partial solution Spartial and a time limit

tmax. Note that the complete solver is forced to include Spartial in any

solution considered. The complete solver provides the best valid solution

found within the computation time available tmax. This solution, denoted by

S′
opt, may or may not be the optimal solution to the subproblem tackled. This

depends on the given computation time limit tmax for each application of the

complete solver. Finally, the last step of each iteration consists of a choice

between Scur and S′
opt to be the incumbent solution of the next iteration.

Possible options are: (1) selecting the better one among the two; or (2)

applying a probabilistic choice criterion.

1.2.7.2. Construct, merge, solve and adapt

The CMSA algorithm was introduced in [BLU 16b] with the same

motivation that had already led to the development of LNS as outlined in the

Introduction 31

previous section. More specifically, the CMSA algorithm is designed in order

to be able to profit from an efficient complete solver even in the context of

problem that are too large to be directly solved by the complete solver. The

general idea of CMSA is as follows. At each iteration, solutions to the

problem tackled are generated in a probabilistic way. The components found

in these solutions are then added to a sub-instance of the original problem.

Subsequently, an exact solver such as, for example, CPLEX is used to solve

the sub-instance to an optimal level. Moreover, the algorithm is equipped with

a mechanism for deleting seemingly useless solution components from the

sub-instance. This is done such that the sub-instance has a moderate size and

can be quickly and optimally solved.

Algorithm 1.8. Large neighborhood search (LNS)

1: input: problem instance I, time limit tmax for the complete solver

2: Scur ← GenerateInitialSolution()

3: Sbsf ← Scur

4: while CPU time limit not reached do
5: Spartial ← DestroyPartially(Scur)

6: S′
opt ← ApplyCompleteSolver(Spartial, tmax)

7: if S′
opt is better than Sbsf then Sbsf ← S′

opt

8: Scur ← ApplyAcceptanceCriterion(S′
opt, Scur)

9: end while
10: return Sbsf

The pseudo-code of the CMSA algorithm is provided in Algorithm 1.9.

Each algorithm iteration consists of the following actions. First, the

best-so-far solution Sbsf is set to NULL, indicating that no such solution yet

exists. Moreover, the restricted problem, C ′, which is simply a subset of the

complete set, C, of solution components is set to the empty set2. Then, at each

iteration, na solutions are probabilistically generated in function

ProbabilisticSolutionGeneration(C); see line 6 of Algorithm 1.9. The

components found in the solutions constructed are then added to C ′. The

so-called age of each of these solution components (age[c]) is set to 0. Next, a

complete solver is applied in function ApplyExactSolver(C ′) to find a possible

2 In the context of the famous TSP for example, the complete set of solution components might

consist of all the edges of the input graph.

32 Metaheuristics for String Problems in Bio-informatics

optimal solution S′
opt to the restricted problem C ′. If S′

opt is better than the

current best-so-far solution Sbsf , solution S′
opt is taken as the new best-so-far

solution. Next, sub-instance C ′ is adapted on the basis of solution S′
opt in

conjunction with the age values of the solution components; see function

Adapt(C ′, S′
opt, agemax) in line 14. This is done as follows. First, the age of

each solution component in C ′ \ S′
opt is incremented while the age of each

solution component in S′
opt ⊆ C ′ is re-set to zero. Subsequently, those

solution components from C ′ with an age value greater than agemax – which

is a parameter of the algorithm – are removed from C ′. This means that

solution components that never appear in solutions derived by the complete

solver do not slow down the solver in subsequent iterations. Components

which appear in the solutions returned by the complete solver should be

maintained in C ′.

Algorithm 1.9. Construct, merge, solve & adapt (CMSA)

1: given: problem instance I, values for parameters na and agemax

2: Sbsf ← NULL; C ′ ← ∅
3: age[c] ← 0 for all c ∈ C
4: while CPU time limit not reached do
5: for i ← 1, . . . , na do
6: S ← ProbabilisticSolutionGeneration(C)

7: for all c ∈ S and c /∈ C ′ do
8: age[c] ← 0
9: C ′ ← C ′ ∪ {c}

10: end for
11: end for
12: S′

opt ← ApplyExactSolver(C ′)
13: if S′

opt is better than Sbsf then Sbsf ← S′
opt

14: Adapt(C ′, S′
opt, agemax)

15: end while
16: return sbsf

1.3. Outline of the book

The techniques outlined in the previous sections have been used

extensively over recent decades to solve CO problems based on strings in the

Introduction 33

field of bioinformatics. Examples of such optimization problems dealing with

strings include the longest common subsequence problem and its variants

[HSU 84, SMI 81], string selection problems [MEN 05, MOU 12a, PAP 13],

alignment problems [GUS 97, RAJ 01a] and similarity search [RAJ 01b]. We

will focus on a collection of selected string problems and recent techniques

for solving them in this book:

– Chapter 2 is concerned with a CO problem known as the unbalanced
minimum common string partition (UMCSP) problem. This problem is a

generalization of the minimum common string partition (MCSP) problem.

First, an ILP model for the UMCSP problem is presented. Second, a simple

greedy heuristic initially introduced for the MCSP problem is adapted to

be applied to the UMCSP problem. Third, the application of the hybrid

metaheuristic, CMSA (see section 1.2.7.2 for a general description of this

technique), to the UMCSP problem is described. The results clearly show that

the CMSA algorithm outperforms the greedy approach. Moreover, they show

that the CMSA algorithm is competitive with CPLEX for small and medium

problems whereas it outperforms CPLEX for larger problems.

– Chapter 3 deals with a family of string problems that are quite common in

bio-informatics applications: longest common subsequence (LCS) problems.

The most general problem from this class is simply known as the LCS

problem. Apart from the general LCS problem, there is a whole range of

specific problems that are mostly restricted cases of the general LCS problem.

In this chapter we present the best available algorithms for solving the

general LCS problem. In addition, we will deal with a specific restriction

known as the repetition-free longest common subsequence (RFLCS) problem.

An important landmark in the development of metaheuristics for LCS

problems was the application of beam search to the general LCS problem

in 2009 [BLU 09]. This algorithm significantly outperformed any other

algorithm that was known at this time. Moreover, most algorithms proposed

afterwards are based on this original beam search approach. After a

description of the original beam search algorithm, Chapter 3 presents a hybrid

metaheuristic called Beam–ACO. This algorithm is obtained by combining

the ACO metaheuristic with beam search. Subsequently, the current state-

of-the-art metaheuristic for the RFLCS problem is described. This algorithm

is also a hybrid metaheuristic obtained by combining probabilistic solution

34 Metaheuristics for String Problems in Bio-informatics

construction with the application of an ILP solver to solve sub-instances of

the original problem (see section 1.2.7.2 for a general description of this

technique).

– Chapter 4 deals with an NP-hard string selection problem known as

the most strings with few bad columns (MSFBC) problem. This problem

models the following situation: a set of DNA sequences from a heterogeneous

population consisting of two subgroups: (1) a large subset of DNA sequences

that are identical apart from at most k positions at which mutations may have

occurred; and (2) a subset of outliers. The goal of the MSFBC problem is

to separate the two subsets. First, an ILP model for the MSFBC problem

is described. Second, two variants of a rather simple greedy strategy are

outlined. Finally, the current state-of-the-art metaheuristic for the MSFBC

problem, which is a LNS approach, is described. The LNS algorithm makes

use of the ILP solver CPLEX as a sub-routine in order to find, at each

iteration, the best neighbor in a large neighborhood of the current solution. A

comprehensive experimental comparison of these techniques shows that LNS,

generally, outperforms both greedy strategies. While LNS is competitive with

the stand-alone application of CPLEX for small and medium size problems, it

outperforms CPLEX in the context of larger problems.

– Chapter 5 provides an overview over the best metaheuristic approaches

for solving string selection and comparison problems, with a special emphasis

on so-called consensus string problems. The intrinsic properties of the

problems are outlined and the most popular solution techniques overviewed,

including some recently-proposed heuristic and metaheuristic approaches. It

also proposes a simple and efficient ILP-based heuristic that can be used for

any of the problems considered. Future directions are discussed in the last

section.

– Chapter 6 deals with the pairwise and the multiple alignment

problems. Solution techniques are discussed, with special emphasis on

the CO perspective, with the goal of providing conceptual insights

and referencing literature produced by the broad community of researchers and

practitioners.

Introduction 35

– Finally, the last chapter describes the best metaheuristic approaches for

some other string problems that are not dealt with in this book in more

detail, such as several variants of DNA sequencing and the founder sequence

reconstruction problem.

