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Introduction

1.1. Evolutionary computation in food science and
technology

Food is a major factor for health and public well-being. It is one of

the most important sectors of industry and deals with chemicals,

agriculture, animal feed, food processing, trade, retail and consumer

sectors. Providing an adequate food supply to a growing world

population is one of the greatest challenges our global society has to

address. Enterprises need to continuously provide safe, tasty, healthy,

affordable and sustainable food in sufficient volumes. This requires

adapt on to a range of factors, such as the increase in human population

and health requirements, and the reduction in crops and livestock due

to environmental factors and changes in the sociopolitical scene

[VAN 14]. Besides, there is a need for an integrated vision looking at

these factors from multiple scales and perspectives:

– from the emotion and pleasure generated when eating food to the

nanostructures of a food emulsion or food microbial ecosystems;

– from regional organization to nutritional and sociological impact;

– from health considerations to intercrop culture and microbial

complexities, within the human body and in relation to food microbial

ecosystems.

Under these conditions, creativity, pragmatism and robust

optimization methods are crucial for reaching breakthrough innovations
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and sustainable solutions. There is a huge opportunity for evolutionary

computation, in particular for developing efficient integrative models

and decision-support tools [PER 16] to address the aforementioned

challenges. Nonetheless, the specific characteristic features of food

systems pose a significant challenge to evolutionary computation

heuristics:

– the uncertainty and variability (in process, data and available

knowledge) that severely influences the dynamics and emergence of

various properties;

– the heterogeneity of data, from big volumes at the genomic scale

to scarce samples at a more macroscopic level (i.e. process scales). To

give an indication of size, an ecosystem of nine microorganisms can be

characterized using 40,000 genes, and its dynamics with 10 aromatic

compounds;

– the complexity of qualitative and quantitative information, for

instance for social and environmental evaluation, at various scales in

space and time;

– the variety of perspectives, types of models, research goals and

data produced by conceptually disjointed scientific disciplines, ranging

from physics and physiology to sociology and ethics.

1.2. A panorama of the current use of evolutionary
algorithms in the domain

The potentials of evolutionary optimization methods for the

resolution of complex problems in the food domain are demonstrated

by a number of publications. A 2004 overview on optimization tools in

food industries [TAR 05] mentioned the community interest in

evolutionary approaches. Important journals such as the International
Journal of Food Engineering, Journal of Food Process Engineering
and Journal of Food Engineering regularly publish papers based on

evolutionary techniques (more than a dozen papers per year in the last

10 years).

The main focus of these works is issues related to modeling using

various model schemes. Evolutionary optimization is mainly used for



Introduction 3

building models (structure and parameter learning) or exploring the

behavior of models, to find some mono- or multiobjective optima, for

decision-making purposes (sustainability issues).

There are also other applications, for instance for classification or

signal detection [BAR 06], that used genetic algorithms (GAs) to

identify the smallest discriminant set of variables to be used in

certification process for an Italian cheese (validation of origin labels),

or genetic programming to select the most significant wave numbers

produced by a Fourier transform infrared spectroscopy measurement

device in order to build a rapid detector of bacterial spoilage of beef

[ELL 04].

Figure 1.1. Genetic algorithms and food applications from 2010 to 2016.
Research focuses on the core collection of the Web of science, with the topics
(genetic algorithm) and (food) and research domains (computer science) or
(engineering) or (food science technology); 403 records. For a color version of
this figure, see www.iste.co.uk/lutton/algorithms.zip

An analysis of the current publications related to evolutionary

optimization in food science provides an interesting panorama.

Evolutionary algorithms (EAs) are rather commonly used for single and

multiobjective optimization for various purposes, including constrained
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optimization and modeling (structure and/or parameter learning).

The multiobjective non-sorting genetic algorithm II NSGA-II tool is

regularly cited. EA techniques are also often coupled with artificial

neural networks, response surface models or fuzzy expert systems.

Figure 1.1 highlights five main topics for the period 2010–2016:

– Decision support for supply chain optimization: on this topic,

evolutionary computation is used as a pure optimization tool to provide

optimal solutions for difficult, and often multiobjective, problems

related to decision making. [NAK 16] is a typical example: the aim is to

manage both the quality of perishable products and product cost (in this

paper, GAs have been compared to simulated annealing). Work on the

development of biodiesel and other alternatives to petroleum fuels also

relies on multiobjective evolutionary optimization. See, to find the case

study presented in [WOI 14], where GAs are used to find an optimal

economical, environmental and social biodiesel production design from

soybean oil.

– Non-destructive measurement of food: the focus here is on the

use of EAs for learning predictive models by turning the learning task

into an optimization. This topic is well represented in the literature.

The models can be of any type, from white-box models that strongly

rely on a precise knowledge of the underlying mechanisms (differential

equations or other explicit mechanistic models) to black-box models.

For example, for measuring the loss in apple moisture content during

conservation, [TRI 14] use a GA to learn neural networks (NNs). Both

the structure and weights of a NN are optimized by a GA with the

help of a variable length genotype. Experimental results show the

predictive model has high precision. There are many other applications

based on similar strategies, for example [ABB 12], applied to predict

the properties of wheat-flour dough. Partial least square (PLS) models

are also widely used, like in [LIU 14], where it is used to extract

relevant information from a near-infrared hyperspectral image; or like in

[RAD 15], where it is used for predicting the sugar content of potatoes;

or even in [GHA 14] for the qualitative characterization of beer.

– Food microbial detection and prediction: as mentioned earlier,

EAs are used for learning about various models of microbial food

contamination. The models considered are mostly NN and PLS, models,
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as in [FEN 13], where near-infrared measurements are used. There are

also more sophisticated model combinations, like in [ALG 15] where

a NN is coupled with a neuro fuzzy inference system to predict the

population dynamics of Pseudomonas aeruginosa in a complex food

system.

– Food process modeling for process optimization: in this category,

EAs are not only used as discussed previously to build models (model

learning), but also to run models, in order to find optimal conditions

(model exploration). Here, a model can be used response surface

method (RSM) as in [AGH 11], applied to optimize spray dryer

operational conditions for the production of fish oil microcapsules. The

aim is to simultaneously get the highest values for both encapsulation

efficiency and energy efficiency. NNs are also a favorite tool in this

category, as, for example, in [MOH 11a] for modeling the oil content

of pretreated fried mushrooms, or in [MOH 11b] for modeling and then

optimizing a process for dehydrating of carrot slices.

– Personalized food: EAs are also used for building decision support

systems for personalized diet advice. For example in [LEE 15], a model

relying on fuzzy sets and linguistic rules is learned (structure and

parameters) using a GA.

Sustainability is a particularly challenging task for evolutionary

computation. Multiobjective methods are quasi-mandatory for dealing

with incompatible constraints. Datta et al. [DAT 07], for instance,

propose an evolutionary multiobjective strategy with three objectives

for the ecological management of soils: maximization of economic

return, maximization of carbon sequestration and minimization of soil

erosion. The use of evolutionary computation for eco-design is rather

common in domains like architecture1, or ecology [CHE 10]. In the

agrifood domain, however, issues are so complex that the vast majority

of work does not rely on optimization heuristics but on manual

trial-and-error processes referring to huge international databases of

process evaluations. There is a huge field of application for interactive

and multiobjective EAs.

1 See http://eccogen.crai.archi.fr/wordpress/publications/.
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1.3. The purpose of this book

This book is an attempt to address some questions related to

optimization in the specific domain of food science. We try to show

how evolutionary computation tools pave the way to new solutions

because of their versatility and robustness, and by offering new ways to

better integrate what can be called the “human factor”.

After a brief introduction to EAs, three examples from our own

experience are presented in order to illustrate some new usages of EAs

in food science, with a focus on the issues related to human expertise

and to co-operative co-evolution strategies.

A first example is given in Chapter 3, where it is shown that a

visualization of the behavior of an EA during optimization yields

important information for modeling. This simple experiment stresses

the fact that an appropriate visualization is important for understanding

and revisiting model design and data-fitting steps. Within an iterative

modeling process, expert users play an important role, and efficient and

appropriate visualizations are important for the ease of the process.

User interactions can be more closely integrated into a computational

process than a succession of autonomous computations followed by user

interaction. Chapter 4 presents a modeling tool based on an interactive

EA.

Finally, Chapter 5 develops two strategies for dealing with

modeling issues based on cooperative–co-evolution schemes, another

way of performing optimization with an EA.


